435
Views
16
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics and pharmacogenomics in psoriasis treatment: current challenges and future prospects

, , &
Pages 923-935 | Received 24 Feb 2016, Accepted 20 May 2016, Published online: 13 Jun 2016

References

  • Parisi R, Symmons DP, Griffiths CE, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133:377–385.
  • Menter A, Korman NJ, Elmets CA, et al.; American Academy of Dermatology Work, G. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol. 2011;65:137–174.
  • Dayangac-Erden D, Karaduman A, Erdem-Yurter H. Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients. Arch Dermatol Res. 2007;299:487–491.
  • Halsall JA, Osborne JE, Pringle JH, et al. Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D3 responsiveness and non-familial susceptibility in psoriasis. Pharmacogenet Genomics. 2005;15:349–355.
  • Smith G, Weidlich S, Dawe RS, et al. Glutathione S-transferase M1 (GSTM1) genotype but not GSTT1 or MC1R genotype influences erythemal sensitivity to narrow band (TL-01) UVB phototherapy. Pharmacogenet Genomics. 2011;21:217–224.
  • Ryan C, Renfro L, Collins P, et al. Clinical and genetic predictors of response to narrowband ultraviolet B for the treatment of chronic plaque psoriasis. Br J Dermatol. 2010;163:1056–1063.
  • Warren RB, Smith RL, Campalani E, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J Invest Dermatol. 2008;128:1925–1929.
  • Campalani E, Arenas M, Marinaki AM, et al. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127:1860–1867.
  • Vasilopoulos Y, Sarri C, Zafiriou E, et al. A pharmacogenetic study of ABCB1 polymorphisms and cyclosporine treatment response in patients with psoriasis in the Greek population. Pharmacogenomics J. 2014;14:523–525.
  • Gallo E, Cabaleiro T, Roman M, et al. The relationship between tumour necrosis factor (TNF)-alpha promoter and IL12B/IL-23R genes polymorphisms and the efficacy of anti-TNF-alpha therapy in psoriasis: a case-control study. Br J Dermatol. 2013;169:819–829.
  • Vasilopoulos Y, Manolika M, Zafiriou E, et al. Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. Mol Diagn Ther. 2012;16:29–34.
  • Tejasvi T, Stuart PE, Chandran V, et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132:593–600.
  • Prieto-Perez R, Solano-Lopez G, Cabaleiro T, et al. The polymorphism rs763780 in the IL-17F gene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics. 2015;16:1723–1731.
  • Cabaleiro T, Prieto-Perez R, Navarro R, et al. Paradoxical psoriasiform reactions to anti-TNFalpha drugs are associated with genetic polymorphisms in patients with psoriasis. Pharmacogenomics J. 2015;1–5. doi:10.1038/tpj.2015.53. Epub ahead of print.
  • Julia M, Guilabert A, Lozano F, et al. The role of Fcgamma receptor polymorphisms in the response to anti-tumor necrosis factor therapy in psoriasis A pharmacogenetic study. JAMA Dermatol. 2013;149:1033–1039.
  • Julia A, Ferrandiz C, Dauden E, et al. Association of the PDE3A-SLCO1C1 locus with the response to anti-TNF agents in psoriasis. Pharmacogenomics J. 2015;15:322–325.
  • Galluzzo M, Boca AN, Botti E, et al. IL12B (p40) gene polymorphisms contribute to ustekinumab response prediction in psoriasis. Dermatology. 2015;232:230–236.
  • Talamonti M, Botti E, Galluzzo M, et al. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br J Dermatol. 2013;169:458–463.
  • Martinez C, Blanco G, Ladero JM, et al. Genetic predisposition to acute gastrointestinal bleeding after NSAIDs use. Br J Pharmacol. 2004;141:205–208.
  • Chandran V, Siannis F, Rahman P, et al. Folate pathway enzyme gene polymorphisms and the efficacy and toxicity of methotrexate in psoriatic arthritis. J Rheumatol. 2010;37:1508–1512.
  • Hein DW, Doll MA. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics. 2012;13:31–41.
  • Tong Q, Zhao L, Qian XD, et al. Association of TNF-alpha polymorphism with prediction of response to TNF blockers in spondyloarthritis and inflammatory bowel disease: a meta-analysis. Pharmacogenomics. 2013;14:1691–1700.
  • Murdaca G, Gulli R, Spano F, et al. TNF-alpha gene polymorphisms: association with disease susceptibility and response to anti-TNF-alpha treatment in psoriatic arthritis. J Invest Dermatol. 2014;134:2503–2509.
  • Ramirez J, Fernandez-Sueiro JL, Lopez-Mejias R, et al. FCGR2A/CD32A and FCGR3A/CD16A variants and EULAR response to tumor necrosis factor-alpha blockers in psoriatic arthritis: a longitudinal study with 6 months of followup. J Rheumatol. 2012;39:1035–1041.
  • Julia A, Rodriguez J, Fernandez-Sueiro JL, et al. PDE3A-SLCO1C1 locus is associated with response to anti-tumor necrosis factor therapy in psoriatic arthritis. Pharmacogenomics. 2014;15:1763–1769.
  • Morales-Lara MJ, Canete JD, Torres-Moreno D, et al. Effects of polymorphisms in TRAILR1 and TNFR1A on the response to anti-TNF therapies in patients with rheumatoid and psoriatic arthritis. Joint Bone Spine. 2012;79:591–596.
  • Menter A, Gottlieb A, Feldman SR, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol. 2008;58:826–850.
  • Jani M, Barton A, Ho P. Pharmacogenetics of treatment response in psoriatic arthritis. Curr Rheumatol Rep. 2015;17:44.
  • Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57:163–172.
  • Ranganathan P, McLeod HL. Methotrexate pharmacogenetics: the first step toward individualized therapy in rheumatoid arthritis. Arthritis Rheum. 2006;54:1366–1377.
  • Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481–508.
  • O’Rielly DD, Rahman P. Pharmacogenetics of psoriasis. Pharmacogenomics. 2011;12:87–101.
  • Das KM, Dubin R. Clinical pharmacokinetics of sulphasalazine. Clin Pharmacokinet. 1976;1:406–425.
  • Wiese MD, Alotaibi N, O’Doherty C, et al. Pharmacogenomics of NAT2 and ABCG2 influence the toxicity and efficacy of sulphasalazine containing DMARD regimens in early rheumatoid arthritis. Pharmacogenomics J. 2014;14:350–355.
  • Davila L, Ranganathan P. Corrigendum: pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2015;11:258.
  • Koch AE. Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum. 2005;52:710–721.
  • Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141:3956–3964.
  • Mizutani H, Ohmoto Y, Mizutani T, et al. Role of increased production of monocytes TNF-alpha, IL-1beta and IL-6 in psoriasis: relation to focal infection, disease activity and responses to treatments. J Dermatol Sci. 1997;14:145–153.
  • Verstrepen L, Carpentier I, Verhelst K, et al. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol. 2009;78:105–114.
  • Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204:3183–3194.
  • Chen X, Tan Z, Yue Q, et al. The expression of interleukin-23 (p19/p40) and interleukin-12 (p35/p40) in psoriasis skin. J Huazhong Univ Sci Technolog Med Sci. 2006;26:750–752.
  • Chien AL, Elder JT, Ellis CN. Ustekinumab: a new option in psoriasis therapy. Drugs. 2009;69:1141–1152.
  • Krueger GG, Langley RG, Leonardi C, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 2007;356:580–592.
  • Chiu HY, Wang TS, Chan CC, et al. Human leucocyte antigen-Cw6 as a predictor for clinical response to ustekinumab, an interleukin-12/23 blocker, in Chinese patients with psoriasis: a retrospective analysis. Br J Dermatol. 2014;171:1181–1188.
  • Goldminz AM, Suarez-Farinas M, Wang AC, et al. CCL20 and IL22 messenger RNA expression after adalimumab vs methotrexate treatment of psoriasis: a randomized clinical trial. JAMA Dermatol. 2015;151:837–846.
  • Balato A, Schiattarella M, Di Caprio R, et al. Effects of adalimumab therapy in adult subjects with moderate-to-severe psoriasis on Th17 pathway. J Eur Acad Dermatol Venereol. 2014;28:1016–1024.
  • Wang CQ, Suarez-Farinas M, Nograles KE, et al. IL-17 induces inflammation-associated gene products in blood monocytes, and treatment with ixekizumab reduces their expression in psoriasis patient blood. J Invest Dermatol. 2014;134:2990–2993.
  • Markham T, Mullan R, Golden-Mason L, et al. Resolution of endothelial activation and down-regulation of Tie2 receptor in psoriatic skin after infliximab therapy. J Am Acad Dermatol. 2006;54:1003–1012.
  • Lembo S, Balato N, Caiazzo G, et al. The effects of etanercept on replication, proliferation, survival, and apoptosis markers in moderate to severe psoriasis. J Eur Acad Dermatol Venereol. 2016. doi:10.1111/jdv.13583. Epub ahead of print.
  • Krueger JG, Fretzin S, Suarez-Farinas M, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol. 2012;130:145–54 e9.
  • Hueber W, Patel DD, Dryja T, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2:52ra72.
  • Baerveldt EM, Onderdijk AJ, Kurek D, et al. Ustekinumab improves psoriasis-related gene expression in noninvolved psoriatic skin without inhibition of the antimicrobial response. Br J Dermatol. 2013;168:990–998.
  • Balato A, Mattii M, Caiazzo G, et al. IL-36gamma is involved in psoriasis and allergic contact dermatitis. J Invest Dermatol. 2016. doi:10.1016/j.jid.2016.03.020. Epub ahead of print.
  • Lovendorf MB, Zibert JR, Gyldenlove M, et al. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci. 2014;75:133–139.
  • Pivarcsi A, Meisgen F, Xu N, et al. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-alpha therapy. Br J Dermatol. 2013;169:563–570.
  • Chan ES, Fernandez P, Cronstein BN. Methotrexate in rheumatoid arthritis. Expert Rev Clin Immunol. 2007;3:27–33.
  • Cuchacovich R, Perez-Alamino R, Zea AH, et al. Distinct genetic profile in peripheral blood mononuclear cells of psoriatic arthritis patients treated with methotrexate and TNF-inhibitors. Clin Rheumatol. 2014;33:1815–1821.
  • Mease PJ, Goffe BS, Metz J, et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet. 2000;356:385–390.
  • Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor: Fcfusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med. 1999;340:253–259.
  • Suarez-Farinas M, Fuentes-Duculan J, Lowes MA, et al. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J Invest Dermatol. 2011;131:391–400.
  • Gottlieb AB, Chamian F, Masud S, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005;175:2721–2729.
  • Zaba LC, Suarez-Farinas M, Fuentes-Duculan J, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124:1022-10 e1-395.
  • Skarmoutsou E, Trovato C, Granata M, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. 2015;307:863–873.
  • Vageli DP, Exarchou A, Zafiriou E, et al. Effect of TNF-alpha inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and toll-like receptors-2 and -9 in psoriatic plaques. Exp Ther Med. 2015;10:1573–1577.
  • Knight DM, Trinh H, Le J, et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol. 1993;30:1443–1453.
  • Rosenberg A, Fan H, Chiu YG, et al. Divergent gene activation in peripheral blood and tissues of patients with rheumatoid arthritis, psoriatic arthritis and psoriasis following infliximab therapy. PLoS One. 2014;9:e110657.
  • Mease PJ, Gladman DD, Ritchlin CT, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005;52:3279–3289.
  • Burness CB, McKeage K. Adalimumab: a review in chronic plaque psoriasis. Drugs. 2015;75:2119–2130.
  • Alunno A, Carubbi F, Cafaro G, et al. Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis. Expert Opin Biol Ther. 2015;15:1727–1737.
  • Gudjonsson JE, Krueger G. A role for epigenetics in psoriasis: methylated cytosine-guanine sites differentiate lesional from nonlesional skin and from normal skin. J Invest Dermatol. 2012;132:506–508.
  • Gedebjerg A, Johansen C, Kragballe K, et al. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm Venereol. 2013;93:150–155.
  • McInnes IB, Mease PJ, Kirkham B, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386:1137–1146.
  • Boyd T, Kavanaugh A. Novel approaches to biological therapy for psoriatic arthritis. Expert Opin Biol Ther. 2016;16:173–186.
  • Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366:1190–1199.
  • Ryan C, Leonardi CL, Krueger JG, et al. Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA. 2011;306:864–871.
  • Jorgensen AL, Williamson PR. Methodological quality of pharmacogenetic studies: issues of concern. Stat Med. 2008;27:6547–6569.
  • O’Rielly DD, Rahman P. Genetics of susceptibility and treatment response in psoriatic arthritis. Nat Rev Rheumatol. 2011;7:718–732.
  • Bender R, Lange S. Adjusting for multiple testing – when and how? J Clin Epidemiol. 2001;54:343–349.
  • Malhotra AK, Zhang JP, Lencz T. Pharmacogenetics in psychiatry: translating research into clinical practice. Mol Psychiatry. 2012;17:760–769.
  • Bluett J, Morgan C, Thurston L, et al. Impact of inadequate adherence on response to subcutaneously administered anti-tumour necrosis factor drugs: results from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate cohort. Rheumatology (Oxford). 2015;54:494–499.
  • Galo JS, Mehat P, Rai SK, et al. What are the effects of medication adherence interventions in rheumatic diseases: a systematic review. Ann Rheum Dis. 2015;75(4):667–673.
  • Vogelzang EH, Kneepkens EL, Nurmohamed MT, et al. Anti-adalimumab antibodies and adalimumab concentrations in psoriatic arthritis; an association with disease activity at 28 and 52 weeks of follow-up. Ann Rheum Dis. 2014;73:2178–2182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.