370
Views
36
CrossRef citations to date
0
Altmetric
Review

Nano-based strategies to overcome p-glycoprotein-mediated drug resistance

, , , , , & show all
Pages 1021-1033 | Received 03 Jan 2016, Accepted 27 May 2016, Published online: 13 Jun 2016

References

  • Kunjachan S, Rychlik B, Storm G, et al. Multidrug resistance: Physiological principles and nanomedical solutions. Adv Drug Deliv Rev. 2013;65:1852–1865.
  • Zhang P, Ling G, Sun J, et al. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials. 2011;32:5524–5533.
  • Dawar S, Singh N, Kanwar RK, et al. Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discov Today. 2013;18:1292–1300.
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.
  • Patel NR, Pattni BS, Abouzeid AH, et al. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65:1748–1762.
  • Wang Y, Dou L, He H, et al. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol Pharm. 2014;11:885–894.
  • Guo H, Liu Y, Wang Y, et al. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Carbohydr Polym. 2014;111:908–917.
  • Gao Y, Chen L, Zhang Z, et al. Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials. 2011;32:1738–1747.
  • Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer. 2013;2013:15.
  • Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond). 2010;5:597–615.
  • Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos. 2014;42:623–631.
  • Cukierman E, Khan DR. The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol. 2010;80:762–770.
  • Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–627.
  • Gillet J-P, Gottesman M. Mechanisms of multidrug resistance in cancer. Bethesda (MD): Humana Press; 2010. p. 47–76.
  • Fodale V, Pierobon M, Liotta L, et al. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J. 2011;17:89–95.
  • Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev. 2013;65:1716–1730.
  • Markman JL, Rekechenetskiy A, Holler E, et al. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65:1866–1879.
  • Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–234.
  • Xie Z, Cao L, Zhang J. miR21 modulates paclitaxel sensitivity and hypoxiainducible factor1α expression in human ovarian cancer cells. Oncol Lett. 2013;6:795–800.
  • Zhang Q, Li F. Combating P-glycoprotein-mediated multidrug resistance using therapeutic nanoparticles. Curr Pharm Res. 2013;19:6655–6666.
  • Hu CM, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;10:836–841.
  • Wang H, Li F, Du C, et al. Doxorubicin and lapatinib combination nanomedicine for treating resistant breast cancer. Mol Pharm. 2014;11:2600–2611.
  • Chen Z-S, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. Febs J. 2011;278:3226–3245.
  • Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Heidelberg: Springer Berlin Heidelberg; 2011. p. 299–323.
  • Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 2008;9:105–127.
  • Choi C-H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005;5:30.
  • Zakeri-Milani P, Valizadeh H. Intestinal transporters: enhanced absorption through P-glycoprotein-related drug interactions. Expert Opin Drug Metab Toxicol. 2014;10:859–871.
  • Meng Q, Yin Q, Li Y. Nanocarriers for siRNA delivery to overcome cancer multidrug resistance. Chin Sci Bull. 2013;58:4021–4030.
  • Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem. 2011;50:161–178.
  • Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:27–34.
  • Sharom FJ. Multidrug resistance protein: P-glycoprotein. Guelph: Wiley; 2006. p. 223–262.
  • Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release. 2012;162:45–55.
  • Bu H, Gao Y, Li Y. Overcoming multidrug resistance (MDR) in cancer by nanotechnology. Sci China Chem. 2010;53:2226–2232.
  • Nobili S, Landini I, Mazzei T, et al. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev. 2012;32:1220–1262.
  • Vargas JR, Stanzl EG, Teng NNH, et al. Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm. 2014;11:2553–2565.
  • Srivalli KM, Rand Lakshmi P. Overview of P-glycoprotein inhibitors: a rational outlook. Braz J Pharm Sci. 2012;48:353–367.
  • Kapse-Mistry S, Govender T, Srivastava R, et al. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol. 2014;5:1–22.
  • Cianfriglia M. Targeting MDR1-P-glycoprotein (MDR1-Pgp) in immunochemotherapy of acute myeloid leukemia (AML). Ann Ist Super Sanita. 2013;49:190–208.
  • Dinsa H, Melesie G. A literature review on cancer multi drug resistance and its therapy. Int J Pharm Pharm Sci. 2014;4:417–423.
  • Eid SY, El-Readi MZ, Wink M. Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters. Phytomedicine. 2012;19:977–987.
  • Choi J-S, Piao Y-J, Kang K. Effects of quercetin on the bioavailability of Doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharmacal Res. 2011;34:607–613.
  • Wenzel U. Flavonoids as drugs at the small intestinal level. Curr Opin Pharmacol. 2013;13:864–868.
  • Hanley MJ, Cancalon P, Widmer WW, et al. The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol. 2011;7:267–286.
  • Borska S, Chmielewska M, Wysocka T, et al. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol. 2012;50:3375–3383.
  • Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol. 2009;13:235–244.
  • Krasznai ZT, Tóth Á, Mikecz P, et al. Pgp inhibition by UIC2 antibody can be followed in vitro by using tumor-diagnostic radiotracers, 99mTc-MIBI and 18FDG. Eur J Pharm Sci. 2010;41:665–669.
  • Szalóki G, Krasznai ZT, Tóth Á, et al. The strong in vivo anti-tumor effect of the UIC2 monoclonal antibody is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity. Plos One. 2014;9:e107875.
  • Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014:12.
  • Oh K, Baik H, Lee A, et al. The reversal of drug-resistance in tumors using a drug-carrying nanoparticular system. Int J Mol Sci. 2009;10:3776–3792.
  • Blanco E, Hsiao A, Mann AP, et al. Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Sci. 2011;102:1247–1252.
  • Gowda R, Jones NR, Banerjee S, et al. Use of nanotechnology to develop multi-drug inhibitors for cancer therapy. J Nanomed Nanotechnol. 2013;4:1000184.
  • Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4:1000164.
  • Nieto Montesinos R, Béduneau A, Pellequer Y, et al. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release. 2012;161:50–61.
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–664.
  • Wang C, Feng L, Yang X, et al. Folic acid-conjugated liposomal vincristine for multidrug resistant cancer therapy. Asian J Pharm Sci. 2013;8:118–127.
  • Chen Y, Bathula SR, Li J, et al. Multifunctional nanoparticles delivering small interfering RNA and Doxorubicin overcome drug resistance in cancer. J Biol Chem. 2010;285:22639–22650.
  • Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med. 2010;267:44–53.
  • Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J. 2010;277:4814–4827.
  • Nakamura K, Abu Lila AS, Matsunaga M, et al. A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther. 2011;19:2040–2047.
  • Bhavsar D, Subramanian K, Sethuraman S, et al. Translational siRNA therapeutics using liposomal carriers: prospects & challenges. Curr Gene Ther. 2012;12:315–332.
  • Chen YQ, Min C, Sang M, et al. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides. 2010;31:1504–1510.
  • Jiang J, Yang S-J, Wang J-C, et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or Doxorubicin. Eur J Pharm Biopharm. 2010;76:170–178.
  • Samal SK, Dash M, Van Vlierberghe S, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev. 2012;41:7147–7194.
  • Meng H, Liong M, Xia T, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4:4539–4550.
  • Meng H, Mai WX, Zhang H, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7:994–1005.
  • Han L, Zhao J, Zhang X, et al. Enhanced siRNA delivery and silencing gold–chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS Nano. 2012;6:7340–7351.
  • Li YT, Chua MJ, Kunnath AP, et al. Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs. Int J Nanomed. 2012;7:2473–2481.
  • Patil YB, Swaminathan SK, Sadhukha T, et al. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials. 2010;31:358–365.
  • Cheng J, Wang J, Chen B, et al. A promising strategy for overcoming MDR in tumor by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin. Int J Nanomed. 2011;6:2123–2131.
  • Kievit FM, Wang FY, Fang C, et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release. 2011;152:76–83.
  • Gu Y-J, Cheng J, Man CW-Y, et al. Gold-Doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine. 2012;8:204–211.
  • Huang I-P, Sun S-P, Cheng S-H, et al. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein–mediated drug resistance. Mol Cancer Ther. 2011;10:761–769.
  • Chan J, Valencia P, Zhang L, et al. Polymeric nanoparticles for drug delivery. Cambridge (MA): Humana Press; 2010. p. 163–175.
  • Lu X-Y, Wu D-C, Li Z-J, et al. Chpater 7 - polymer nanoparticles. Xi’an : Academic Press; 2011. p. 299–323.
  • Mohammadzadeh R, Baradaran B, Valizadeh H, et al. Reduced ABCB1 expression and activity in the presence of acrylic copolymers. Adv Pharm Bull. 2014;4:219–224.
  • Lei T, Srinivasan S, Tang Y, et al. Comparing cellular uptake and cytotoxicity of targeted drug carriers in cancer cell lines with different drug resistance mechanisms. Nanomedicine. 2011;7:324–332.
  • Zheng C, Xu J, Yao X, et al. Polyphosphazene nanoparticles for cytoplasmic release of Doxorubicin with improved cytotoxicity against Dox-resistant tumor cells. J Colloid Interface Sci. 2011;355:374–382.
  • Iqbal J, Hombach J, Matuszczak B, et al. Design and in vitro evaluation of a novel polymeric P-glycoprotein (P-gp) inhibitor. J Control Release. 2010;147:62–69.
  • Ma P, Mumper RJ. Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. Nano Today. 2013;8:313–331.
  • Pramanik D, Campbell NR, Das S, et al. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates Doxorubicin-associated cardiomyopathy. Oncotarget. 2012;3:640–650.
  • Wang H, Zhao Y, Wu Y, et al. Enhanced anti-tumor efficacy by co-delivery of Doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–8290.
  • Zhao S, Tan S, Guo Y, et al. pH-sensitive docetaxel-loaded d-α-tocopheryl polyethylene glycol succinate–poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules. 2013;14:2636–2646.
  • Wang D, Tang J, Wang Y, et al. Multifunctional nanoparticles based on a single-molecule modification for the treatment of drug-resistant cancer. Mol Pharm. 2013;10:1465–1469.
  • Yin Q, Shen J, Zhang Z, et al. Multifunctional nanoparticles improve therapeutic effect for breast cancer by simultaneously antagonizing multiple mechanisms of multidrug resistance. Biomacromolecules. 2013;14:2242–2252.
  • Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv. 2013;2013:1–32.
  • Zhao Y-Z, Dai -D-D, Lu C-T, et al. Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. Cancer Lett. 2013;330:74–83.
  • Liu Y, Fang J, Joo K-I, et al. Codelivery of chemotherapeutics via crosslinked multilamellar liposomal vesicles to overcome multidrug resistance in tumor. Plos One. 2014;9:e110611.
  • Riganti C, Voena C, Kopecka J, et al. Liposome-encapsulated doxorubicin reverses drug resistance by inhibiting P-glycoprotein in human cancer cells. Mol Pharm. 2011;8:683–700.
  • Patel NR, Rathi A, Mongayt D, et al. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm Sci. 2011;416:296–299.
  • Song CK, Balakrishnan P, Shim C-K, et al. Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells. J Microencapsul. 2011;28:575–581.
  • Chen CH, Cuong NV, Chen YT, et al. Overcoming multidrug resistance of breast cancer cells by the micellar Doxorubicin nanoparticles of mPEG-PCL-graft-cellulose. J Nanosci Nanotechnol. 2011;11:53–60.
  • Fan L, Li F, Zhang H, et al. Co-delivery of PDTC and Doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials. 2010;31:5634–5642.
  • Wang F, Zhang D, Zhang Q, et al. Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials. 2011;32:9444–9456.
  • Sarisozen C, Vural I, Levchenko T, et al. Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance. Drug Deliv. 2012;19:363–370.
  • Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;71:161–172.
  • Kang KW, Chun M-K, Kim O, et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine. 2010;6:210–213.
  • Ma P, Dong X, Swadley CL, et al. Development of Idarubicin and Doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol. 2009;5:151–161.
  • Dong X, Mattingly CA, Tseng MT, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 2009;69:3918–3926.
  • Munyendo WL, Lv H, Benza-Ingoula H, et al. Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules. 2012;2:187–202.
  • Mäe M, Rautsi O, Enbäck J, et al. Tumour targeting with rationally modified cell-penetrating peptides. Int J Pept Res Ther. 2012;18:361–371.
  • Holm T. Cell-penetrating peptides: uptake, stability and biological activity [dissertation]. Stockholm: Stockholm University; 2011.
  • Johnson R, Harrison S, Maclean D. Therapeutic applications of cell-penetrating peptides. San Francisco (CA): Humana Press; 2011. p. 535–551.
  • Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18:385–393.
  • Trabulo S, Cardoso AL, Mano M, et al. Cell-penetrating peptides—mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals. 2010;3:961–993.
  • Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. BBA-Rev Cancer. 2011;1816:232–246.
  • Regberg J, Srimanee A, Langel Ü. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals. 2012;5:991–1007.
  • Said Hassane F, Saleh AF, Abes R, et al. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci. 2010;67:715–726.
  • Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702.
  • Madani F, Lindberg S, Langel Ü, et al. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011;2011:1–10.
  • Stewart KM, Horton KL, Kelley SO. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem. 2008;6:2242–2255.
  • Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 2009;61:953–964.
  • Lindgren M, Langel Ü. Classes and prediction of cell-penetrating peptides. Stockholm: Springer; 2011. p. 3–19.
  • Ragaseema VM, Unnikrishnan S, Kalliyana Krishnan V, et al. The antithrombotic and antimicrobial properties of PEG-protected silver nanoparticle coated surfaces. Biomaterials. 2012;33:3083–3092.
  • Sriram MI, Kanth SBM, Kalishwaralal K, et al. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed. 2010;5:753.
  • Foldbjerg R, Dang D and Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85:743–750.
  • Liu J, Zhao Y, Guo Q, et al. TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials. 2012;33:6155–6161.
  • Fonseca SB, Kelley SO. Peptide-chlorambucil conjugates combat Pgp-dependent drug efflux. ACS Med Chem Lett. 2011;2:419–423.
  • Banković J, Andrä J, Todorović N, et al. The elimination of P-glycoprotein over-expressing cancer cells by antimicrobial cationic peptide NK-2: the unique way of multi-drug resistance modulation. Exp Cell Res. 2013;319:1013–1027.
  • Pan L, Liu J, He Q, et al. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials. 2013;34:2719–2730.
  • Zheng Z, Aojula H, Clarke D. Reduction of Doxorubicin resistance in P-glycoprotein overexpressing cells by hybrid cell-penetrating and drug-binding peptide. J Drug Target. 2010;18:477–487.
  • Lee J-Y, Choi Y-S, Suh J-S, et al. Cell-penetrating chitosan/Doxorubicin/TAT conjugates for efficient cancer therapy. Int J Cancer. 2011;128:2470–2480.
  • Nakase I, Konishi Y, Ueda M, et al. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release. 2012;159:181–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.