398
Views
14
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic/pharmacodynamic considerations for epilepsy – depression comorbidities

, , , &
Pages 1067-1080 | Received 14 Mar 2016, Accepted 01 Jun 2016, Published online: 17 Jun 2016

References

  • Beghi E, Spagnoli P, Airoldi L, et al. Emotional and affective disturbances in patients with epilepsy. Epilepsy Behav. 2002;3:255–261.
  • Bosak M, Dudek D, Siwek M, et al. Subtypes of interictal depressive disorders according to ICD-10 in patients with epilepsy. Neurol Neurochir Pol. 2015;49:90–94.
  • Hitiris N, Mohanraj R, Norrie J, et al. Predictors of pharmacoresistant epilepsy. Epilepsy Res. 2007;75:192–196.
  • Tellez-Zenteno JF, Patten SB, Jetté N, et al. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia. 2007;48:2336–2344.
  • Wiegartz P, Seidenberg M, Woodard A, et al. Co-morbid psychiatric disorder in chronic epilepsy: recognition and etiology of depression. Neurology. 1999;53:3–8.
  • Christensen J, Vestergaard M, Mortensen PB. Epilepsy and risk of suicide: a population-based case–control study. Lancet Neurol. 2007;6:693–698.
  • Kanner AM, Schachter SC, Barry JJ, et al. Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav. 2012;24:156–168.
  • Kanner AM, Byrne R, Chicharro A, et al. A lifetime psychiatric history predicts a worse seizure outcome following temporal lobectomy. Neurology. 2009;72:793–799.
  • Kanner AM. Depression in epilepsy: a complex relation with unexpected consequences. Curr Opin Neurol. 2008;21:190–194.
  • Alldredge BK. Seizure risk associated with psychotropic drugs: clinical and pharmacokinetic considerations. Neurology. 1999;53:68–75.
  • Grabowska-Grzyb A, Nagańska E, Lechowicz W, et al. Description of mood disorder in patients with epilepsy. Pol Merkur Lek. 2004;16:337–339.
  • Salzberg MR, Vajda FJE. Epilepsy, depression and antidepressant drugs. J Clin Neurosci. 2001;8:209–215.
  • Borowicz KK, Stepień K, Czuczwar SJ. Fluoxetine enhances the anticonvulsant effects of conventional antiepileptic drugs in maximal electroshock seizures in mice. Pharmacol Rep. 2006;58:83–90.
  • Borowicz KK, Furmanek-Karwowska K, Sawicka K, et al. Chronically administered fluoxetine enhances the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Eur J Pharmacol. 2007;567:77–82.
  • Borowicz KK, Furmanek-Karwowska K, Morawska M, et al. Effect of acute and chronic treatment with milnacipran potentiates the anticonvulsant activity of conventional antiepileptic drugs in the maximal electroshock-induced seizures in mice. Psychopharmacology. 2010;207:661–669.
  • Borowicz KK, Gołyska D, Luszczki JJ, et al. Effect of acutely and chronically administered venlafaxine on the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model. Eur J Pharmacol. 2011;670:114–120.
  • Greenblatt DJ, Von Moltke LL, Harmatz JS, et al. Drug interactions with newer antidepressants: role of human cytochromes P450. J Clin Psychiatry. 1998;59:19–27.
  • Tripathi PP, Bozzi Y. The role of dopaminergic and serotonergic systems in neurodevelopmental disorders: a focus on epilepsy and seizure susceptibility. Bioimpacts. 2015;5:97–102.
  • Löscher W, Czuczwar SJ. Studies on the involvement of dopamine D-1 and D-2 receptors in the anticonvulsant effect of dopamine agonists in various rodent models of epilepsy. Eur J Pharmacol. 1986;128:55–65.
  • Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci. 2013;7:1–12.
  • Richerson GB, Buchanan GF. The serotonin axis: shared mechanisms in seizures, depression, and SUDEP. Epilepsia. 2011;52:28–38.
  • Bagdy G, Kecskemeti V, Riba P, et al. Serotonin and epilepsy. J Neurochem. 2007;100:857–873.
  • Igelström KM. Preclinical antiepileptic actions of selective serotonin reuptake inhibitors – implications for clinical trial design. Epilepsia. 2012;53:596–605.
  • Dailey JW, Mishra PK, Ko KH, et al. Serotonergic abnormalities in the central nervous system of seizure-naive genetically epilepsy-prone rats. Life Sci. 1992;50:319–326.
  • Yan QS, Jobe PC, Dailey JW. Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Eur J Pharmacol. 1993;252:105–112.
  • Trabert W, Hohagen F, Winkelmann G, et al. A seizure, and electroencephalographic signs of a lowered seizure threshold, associated with fluvoxamine treatment of obsessive-compulsive disorder. Pharmacopsychiatry. 1995;28:95–97.
  • Clinckers R, Zgavc T, Vermoesen K, et al. Pharmacological and neurochemical characterization of the involvement of hippocampal adrenoreceptor subtypes in the modulation of acute limbic seizures. J Neurochem. 2010;115:1595–1607.
  • Szot P, Weinshenker D, White SS, et al. Norepinephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. J Neurosci. 1999;19:10985–10992.
  • Hieble JP. Subclassification and nomenclature of alpha- and beta-adrenoceptors. Curr Top Med Chem. 2007;7:129–134.
  • Gellman RL, Kallianos JA, McNamara JO. Alpha-2 receptors mediate an endogenous noradrenergic suppression of kindling development. J Pharmacol Exp Ther. 1987;241:891–898.
  • Epps SA, Weinshenker D. Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem Pharmacol. 2013;85:135–146.
  • Jope RS, Simonato M, Lally K. Acetylcholine content in rat brain is elevated by status epilepticus induced by lithium and pilocarpine. J Neurochem. 1987;49:944–951.
  • Laird HE 2nd, Hadjiconstantinou M, Neff NH. Abnormalities in the central cholinergic transmitter system of the genetically epilepsy-prone rat. Life Sci. 1986;39:783–787.
  • Berdiev RK, van Luijtelaar G. Cholinergic stimulation of the nucleus basalis of Meynert and reticular thalamic nucleus affects spike-and-wave discharges in WAG/Rij rats. Neurosci Lett. 2009;463:249–253.
  • Ali A, Ahmad FJ, Pillai KK, et al. Evidence of the antiepileptic potential of amiloride with neuropharmacological benefits in rodent models of epilepsy and behavior. Epilepsy Behav. 2004;5:322–328.
  • Foreman MM, Hanania T, Stratton SC, et al. In vivo pharmacological effects of JZP-4, a novel anticonvulsant, in models for anticonvulsant, antimania and antidepressant activity. Pharmacol Biochem Behav. 2008;89:523–534.
  • Sarkisova KY, Kuznetsova GD, Kulikov MA, et al. Spike-wave discharges are necessary for the expression of behavioral depression-like symptoms. Epilepsia. 2010;51:146–160.
  • Verma-Ahuja S, Evans MS, Pencek TL. Evidence for decreased calcium dependent potassium conductance in hippocampal CA3 neurons of genetically epilepsy-prone rats. Epilepsy Res. 1995;22:137–144.
  • Gotter AL, Santarelli VP, Doran SM, et al. TASK-3 as a potential antidepressant target. Brain Res. 2011;1416:69–79.
  • Miladinovic T, Nashed MG, Singh G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules. 2015;5:3112–3141.
  • Fang Y, Wang X. Ketamine for the treatment of refractory status epilepticus. Seizure. 2015;30:14–20.
  • Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–95.
  • Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004;61:705–713.
  • Russo E, Citraro R, Scicchitano F, et al. Vigabatrin has antiepileptogenic and antidepressant effects in an animal model of epilepsy and depression comorbidity. Behav Brain Res. 2011;225:373–376.
  • Varga V, Sik A, Freund TF, et al. GABA(B) receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience. 2002;109:119–132.
  • Mazarati AM, Pineda E, Shin D, et al. Comorbidity between epilepsy and depression: role of hippocampal interleukin-1beta. Neurobiol Dis. 2010;37:461–467.
  • Sayyah M, Beheshti S, Shokrgozar MA, et al. Antiepileptogenic and anticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Exp Neurol. 2005;191:145–153.
  • Paradiso B, Zucchini S, Su T, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia. 2011;52:572–578.
  • Ugale RR, Mittal N, Hirani K, et al. Essentiality of central GABAergic neuroactive steroid allopregnanolone for anticonvulsant action of fluoxetine against pentylenetetrazole-induced seizures in mice. Brain Res. 2004;1023:102–111.
  • Payandemehr B, Bahremand A, Rahimian R, et al. 5-HT(3) receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: involvement of nitric oxide. Epilepsy Res. 2012;101:217–227.
  • Hughes IE, Radwan S. The relative toxicity of amitriptyline, imipramine, maprotiline and mianserin in rabbits in vivo. Br J Pharmacol. 1979;65:331–338.
  • Koella WP, Glatt A, Klebs K, et al. Epileptic phenomena induced in the cat by the antidepressants maprotiline, imipramine, clomipramine, and amitriptyline. Biol Psychiatry. 1979;14:485–497.
  • Ago J, Ishikawa T, Matsumoto N, et al. Epileptiformic activity induced by antidepressants in amygdala-kindled rats. Eur J Pharmacol. 2007;560:23–28.
  • Krijzer F, Snelder M, Bradford D. Comparison of the (pro)convulsive properties of fluvoxamine and clovoxamine with eight other antidepressants in an animal model. Neuropsychobiology. 1984;12:249–254.
  • Freitas RM, Sousa FCF, Viana GSB, et al. Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neurosci Lett. 2006;408:79–83.
  • Knobloch LC, Goldstein JM, Malick JB. Effects of acute and subacute antidepressant treatment on kindled seizures in rats. Pharmacol Biochem Behav. 1982;17:461–465.
  • Clifford DB, Rutherford JL, Hicks FG, et al. Acute effects of antidepressants on hippocampal seizures. Ann Neurol. 1985;18:692–697.
  • Kleinrok Z, Gustaw J, Czuczwar SJ. Influence of antidepressant drugs on seizure susceptibility and the anticonvulsant activity of valproate in mice. J Neural Transm Suppl. 1991;34:85–90.
  • Raju SS, Noor AR, Gurthu S, et al. Effect of fluoxetine on maximal electroshock seizures in mice: acute vs chronic administration. Pharmacol Res. 1999;39:451–454.
  • Leander JD. Fluoxetine, a selective serotonin-uptake inhibitor, enhances the anticonvulsant effects of phenytoin, carbamazepine, and ameltolide (LY201116). Epilepsia. 1992;33:573–576.
  • Amabeoku GJ. The involvement of noradrenaline, 5-hydroxytryptamine and acetylcholine in imipramine-induced seizures in mice. Experientia. 1993;49:859–864.
  • Trimble MR, Meldrum BS, Anlezark G. Effect of nomifensine on brain amines and epilepsy in photosensitive baboons. Br J Clin Pharmacol. 1977;4:101–107.
  • Ago J, Ishikawa T, Matsumoto N, et al. Mechanism of imipramine-induced seizures in amygdala-kindled rats. Epilepsy Res. 2006;72:1–9.
  • Lange SC, Julien RM, Fowler GW. Biphasic effects of imipramine in experimental models of epilepsy. Epilepsia. 1976;17:183–195.
  • Macêdo DS, Santos RS, Belchior LD, et al. Effect of anxiolytic, antidepressant, and antipsychotic drugs on cocaine-induced seizures and mortality. Epilepsy Behav. 2004;5:852–856.
  • Ahern TH, Javors MA, Eagles DA, et al. The effects of chronic norepinephrine transporter inactivation on seizure susceptibility in mice. Neuropsychopharmacology. 2006;31:730–738.
  • Stach R, Lazarova MB, Kacz D. The effects of antidepressant drugs on the seizures kindled from the rabbit amygdala. Pol J Pharmacol Pharm. 1980;32:505–512.
  • Smolders I, Clinckers R, Meurs A, et al. Direct enhancement of hippocampal dopamine or serotonin levels as a pharmacodynamic measure of combined antidepressant-anticonvulsant action. Neuropharmacology. 2008;54:1017–1028.
  • Peterson SL, Trzeciakowski JP, St Mary JS. Chronic but not acute treatment with antidepressants enhances the electroconvulsive seizure response in rats. Neuropharmacology. 1985;24:941–946.
  • Yan QS, Dailey JW, Steenbergen JL, et al. Anticonvulsant effect of enhancement of noradrenergic transmission in the superior colliculus in genetically epilepsy-prone rats (GEPRs): a microinjection study. Brain Res. 1998;780:199–209.
  • Borowicz KK, Piskorska B, Stępniak B, et al. Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann Agric Environ Med. 2012;19:487–490.
  • Magyar J, Rusznák Z, Harasztosi C, et al. Differential effects of fluoxetine enantiomers in mammalian neural and cardiac tissues. Int J Mol Med. 2003;11:535–542.
  • Ceyhan M, Kayir H, Uzbay IT. Investigation of the effects of tianeptine and fluoxetine on pentylenetetrazole-induced seizures in rats. J Psychiatr Res. 2005;39:191–196.
  • Zienowicz M, Wisłowska A, Lehner M, et al. The effect of fluoxetine in a model of chemically induced seizures – behavioral and immunocytochemical study. Neurosci Lett. 2005;373:226–231.
  • Ferrero AJ, Cereseto M, Reinés A, et al. Chronic treatment with fluoxetine decreases seizure threshold in naïve but not in rats exposed to the learned helplessness paradigm: correlation with the hippocampal glutamate release. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:678–686.
  • Hernandez EJ, Williams PA, Dudek FE. Effects of fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine-induced epilepsy. Epilepsia. 2002;43:1337–1345.
  • Cardamone L, Salzberg MR, Koe AS, et al. Chronic antidepressant treatment accelerates kindling epileptogenesis in rats. Neurobiol Dis. 2014;63:194–200.
  • Dailey JW, Yan QS, Mishra PK, et al. Effects of fluoxetine on convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol Exp Ther. 1992;260:533–540.
  • Uzbay IT. Serotonergic anti-depressants and ethanol withdrawal syndrome: a review. Alcohol Alcohol. 2008;43:15–24.
  • Ismaĭlova K, Miadzhidi MB. Study on the effect of selective serotonin reuptake inhibitor fluoxetine on seizures and inborn behavior of rats with different phenotype of the nervous system. Zh Vyssh Nerv Deiat Im I P Pavlova. 2012;62:745–752.
  • Yan QS, Jobe PC, Cheong JH, et al. Role of serotonin in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Naunyn Schmiedeb Arch Pharmacol. 1994;350:149–152.
  • Pericić D, Lazić J, Svob Strac D. Anticonvulsant effects of acute and repeated fluoxetine treatment in unstressed and stressed mice. Brain Res. 2005;1033:90–95.
  • Pasini A, Tortorella A, Gale K. The anticonvulsant action of fluoxetine in substantia nigra is dependent upon endogenous serotonin. Brain Res. 1996;724:84–88.
  • Prendiville S, Gale K. Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia. 1993;34:381–384.
  • Statnick M, Dailey J, Jobe P, et al. Neither intranigral fluoxetine nor 5,7-dihydroxytryptamine alter audiogenic seizures in genetically epilepsy-prone rats. Eur J Pharmacol. 1996;299:93–102.
  • Wada Y, Shiraishi J, Nakamura M, et al. Prolonged but not acute fluoxetine administration produces its inhibitory effect on hippocampal seizures in rats. Psychopharmacology. 1995;118:305–309.
  • Buterbaugh GG. Effect of drugs modifying central serotonergic function on the response of extensor and nonextensor rats to maximal electroshock. Life Sci. 1978;23:2393–2404.
  • Ohno Y, Sofue N, Imaoku T, et al. Serotonergic modulation of absence-like seizures in Groggy rats: a novel rat model of absence epilepsy. J Pharmacol Sci. 2010;114:99–105.
  • Richman A, Heinrichs SC. Seizure prophylaxis in an animal model of epilepsy by dietary fluoxetine supplementation. Epilepsy Res. 2007;74:19–27.
  • Kamal SM. Combination of valproate and paroxetine in mice exposed to picrotoxin. Int J Nanomedicine. 2012;7:2583–2589.
  • Sitges M, Aldana BI, Gómez CD, et al. The antidepressant sertraline prevents the behavioral and EEG changes induced in two animal models of seizures. Epilepsy Behav. 2012;25:511–516.
  • Rizwan AN, Ali A, Dua Y, et al. Effects of gabapentin and antidepressant drug combinations on convulsions and memory in mice. Pol J Pharmacol. 2003;55:965–971.
  • Sağlam E, Uzbay IT, Kayir H, et al. Effects of venlafaxine on ethanol withdrawal syndrome in rats. Fundam Clin Pharmacol. 2004;18:693–698.
  • Santos Junior JG, Do Monte FHM, Russi M, et al. Proconvulsant effects of high doses of venlafaxine in pentylenetetrazole convulsive rats. Braz J Med Biol Res. 2002;35:469–472.
  • Borowicz KK, Zarczuk R, Latalski M, et al. Reboxetine and its influence on the action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep. 2014;66:430–435.
  • Popławska M, Wróblewska D, Borowicz KK. Interactions between an antidepressant reboxetine and four classic antiepileptic drugs in the mouse model of myoclonic seizures. Pharmacol Rep. 2015;67:1141–1146.
  • Barczyński B, Buszewicz G, Łuszczki JJ, et al. Low dose of bupropion significantly enhances the anticonvulsant activity of felbamate, lamotrigine and topiramate in mice. Eur J Pharmacol. 2011;650:550–555.
  • Vermoesen K, Massie A, Smolders I, et al. The antidepressants citalopram and reboxetine reduce seizure frequency in rats with chronic epilepsy. Epilepsia. 2012;53:870–878.
  • Vermoesen K, Serruys ASK, Loyens E, et al. Assessment of the convulsant liability of antidepressants using zebrafish and mouse seizure models. Epilepsy Behav. 2011;22:450–460.
  • Tutka P, Barczynski B, Wielosz M. Convulsant and anticonvulsant effects of bupropion in mice. Eur J Pharmacol. 2004;499:117–120.
  • Tutka P, Mróz T, Klucha K, et al. Bupropion-induced convulsions: preclinical evaluation of antiepileptic drugs. Epilepsy Res. 2005;64:13–22.
  • Lin KC, Wang CC, Wang SJ. Bupropion attenuates kainic acid-induced seizures and neuronal cell death in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:207–214.
  • Borowicz KK, Banach M, Zarczuk R, et al. Acute and chronic treatment with mianserin differentially affects the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Psychopharmacology. 2007;195:167–174.
  • Borowicz KK, Gurdziel E, Czuczwar SJ. Trazodone reduces the anticonvulsant action of certain classical antiepileptics in the mouse maximal electroshock model. Pharmacol Rep. 2012;64:1135–1145.
  • Borowicz KK, Banach M, Piskorska B, et al. Effect of acute and chronic tianeptine on the action of classical antiepileptics in the mouse maximal electroshock model. Pharmacol Rep. 2013;65:379–388.
  • Pericić D, Strac DS, Vlainić J. Zimelidine decreases seizure susceptibility in stressed mice. J Neural Transm. 2006;113:1863–1871.
  • Silvestrini B, Cioli V, Burberi S, et al. Pharmacological properties of AF 1161, a new psychotropic drug. Int J Neuropharmacol. 1968;7:587–599.
  • Uzbay TI, Kayir H, Ceyhan M. Effects of tianeptine on onset time of pentylenetetrazole-induced seizures in mice: possible role of adenosine A1 receptors. Neuropsychopharmacology. 2007;32:412–416.
  • Uzbay T, Kayir H, Celik T, et al. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:478–485.
  • Italiano D, Spina E, De Leon J. Pharmacokinetic and pharmacodynamic interactions between antiepileptics and antidepressants (Review). Exp Opin Drug Metabol Toxicol. 2014;10:1457–1489.
  • Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003;2:347–356.
  • Spina E, Trifirò G, Caraci F. Clinically significant drug interactions with newer antidepressants. CNS Drugs. 2012;26:39–67.
  • Majkowski J. Antiepileptic drugs in non-epileptic health conditions. In: Majkowski J, Bourgeois B, Patsalos P, et al., editors. Antiepileptic drugs. Combination therapy and interactions. Cambridge: Cambridge University Press; 2005. p. 369–391.
  • Miziak B, Błaszczyk B, Chrościńska-Krawczyk M, et al. The problem of osteoporosis in epileptic patients taking antiepileptic drugs. Expert Opin Drug Saf. 2014;13:935–946.
  • Rosenstein DL, Nelson JC, Jacobs SC. Seizures associated with antidepressants; a review. J Clin Psychiatry. 1993;54:289–299.
  • Jobe PC. Common pathogenic mechanisms between depression and epilepsy: an experimental perspective. Epilepsy Behav. 2003;4(Suppl. 3):SS14–S24.
  • Jobe PC, Browning RA. The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav. 2005;7:602–619.
  • Wlaź P, Kasperek R, Wlaź A, et al. NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice. Pharmacol Rep. 2011;63:1526–1532.
  • Deák F, Lasztóczi B, Pacher P, et al. Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. Neuropharmacology. 2000;39:1029–1036.
  • Harden CL, Goldstein MA. Mood disorders in patients with epilepsy: epidemiology and management. CNS Drugs. 2002;16:291–302.
  • Favale E, Rubino V, Mainardi P, et al. Anticonvulsant effect of fluoxetine in humans. Neurology. 1995;45:1926–1927.
  • Mula M, Schmitz B, Sander JW. The pharmacological treatment of depression in adults with epilepsy. Expert Opin Pharmacother. 2008;9:3159–3168.
  • Spina E, Perucca E. Clinical significance of pharmacokinetic interactions between antiepileptic and psychotropic drugs. Epilepsia. 2002;43(Suppl. 2):37–44.
  • Mula M, Sander JW. Suicide and epilepsy: do antiepileptic drugs increase the risk? Expert Opin Drug Saf. 2015;14:553–558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.