1,171
Views
112
CrossRef citations to date
0
Altmetric
Review

Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease

, , , &
Pages 1181-1196 | Received 30 Mar 2016, Accepted 24 Jun 2016, Published online: 14 Jul 2016

References

  • Michell RH. Evolution of the diverse biological roles of inositols. Biochem Soc Symp. 2007;74:223–246.
  • Bizzarri M, Carlomagno G. Inositol: history of an effective therapy for Polycystic Ovary Syndrome. Eur Rev Med Pharmacol Sci. 2014;18(13):1896–1903.
  • Tsui MM, York JD. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul. 2010;50(1):324–337.
  • Thomas MP, Mills SJ, Potter BV. The “other” inositols and their phosphates: synthesis, biology, and medicine (with recent advances in myo- inositol chemistry). Angew Chem Int Ed Engl. 2016;55(5):1614–1650.
  • Clements RS Jr, Darnell B. Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr. 1980;33(9):1954–1967.
  • Stentz R, Osborne S, Horn N, et al. A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut. Cell Rep. 2014;6(4):646–656.
  • Schlemmer U, Frølich W, Prieto RM, et al. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res. 2009;53(Suppl. 2):S330–75.
  • Goodhart RS. Bioflavonoids. In: Goodhart RS, Shils ME, editors. Modern nutrition in health and disease. Philadelphia: Lea & Febiger; 1973. p. 259–267.
  • Chu SH, Hegsted DM. Myo-inositol deficiency in gerbils: changes in phospholipid composition of intestinal microsomes. J Nutr. 1980;110(6):1217–1223.
  • De Grazia S, Carlomagno G, Unfer V, et al. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects. Expert Opin Drug Deliv. 2012;9(9):1033–1039.
  • Harland BF, Morris ER. Phytate: A good or a bad food component? Nutr Res. 1995;15(5):733–754.
  • Shamsuddin AM. Demonizing phytate. Nat Biotechnol. 2008;26(5):496–497.
  • Raboy V. Response to demonizing phytate. Nat Biotechnol. 2008;26(5):497–498.
  • Eisenberg F Jr. D-myo-inositol I-phosphate as product of cyclization of glucose-6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem. 1967;242(7):1375–1382.
  • Caspary WF, Crane RK. Active transport of myo-inositol and its relation to the sugar transport system in hamster small intestine. Biochim Biophys Acta. 1970;203:308–316.
  • Nahapetian A, Young VR. Metabolism of 14C-phytate in rats: effect of low and high dietary calcium intakes. J Nutr. 1980;110(7):1458–1472.
  • Carlomagno G, De Grazia S, Unfer V, et al. Myo-inositol in a new pharmaceutical form: a step forward to a broader clinical use. Expert Opin Drug Deliv. 2012;9(3):267–271.
  • Daughaday WH, Larner J. The renal excretion of inositol in normal and diabetic human beings. J Clin Invest. 1954;33(3):326–332.
  • Holub BJ. 1982 Borden Award lecture. Nutritional, biochemical, and clinical aspects of inositol and phosphatidylinositol metabolism. Can J Physiol Pharmacol. 1984;62(1):1–8.
  • Brusati V, Joźwik M, Joźwik M, et al. Fetal and maternal non-glucose carbohydrates and polyols concentrations in normal human pregnancies at term. Pediatr Res. 2005 Oct;58(4):700–704.
  • Servo C, Pitkänen E. Variation in polyol levels in cerebrospinal fluid and serum in diabetic patients. Diabetologia. 1975;11(6):575–580.
  • Howlett A, Ohlsson A, Plakkal N. Inositol in preterm infants at risk for or having respiratory distress syndrome. Cochrane Database Syst Rev. 2015;2:CD000366.
  • Schneider S. Inositol transport proteins. FEBS Lett. 2015;589(10):1049–1058.
  • Bourgeois F, Coady MJ, Lapointe JY. Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT. J Physiol. 2005;563(Pt 2):333–343.
  • Preston AS, Yamauchi A, Kwon HM, et al. Activators of protein kinase A and of protein kinase C inhibit MDCK cell myo-inositol and betaine uptake. J Am Soc Nephrol. 1995;6(6):1559–1564.
  • Prpić V, Blackmore PF, Exton JH. myo-Inositol uptake and metabolism in isolated rat liver cells. J Biol Chem. 1982;257(19):11315–11322.
  • Kollros PE, Goldstein GW, Betz AL. Myo-inositol transport into endothelial cells derived from nervous system microvessels. Brain Res. 1990;511(2):259–264.
  • Greene DA, Lattimer SA. Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect. J Clin Invest. 1982;70(5):1009–1018.
  • Uldry M, Ibberson M, Horisberger JD, et al. Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. Embo J. 2001;20(16):4467–4477.
  • Uldry M, Steiner P, Zurich MG, et al. Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. Embo J. 2004;23(3):531–540.
  • Di Daniel E, Mok MH, Mead E, et al. Evaluation of expression and function of the H+/myo-inositol transporter HMIT. BMC Cell Biol. 2009;10:54.
  • Dawson RM, Freinkel N. The distribution of free meso-inositol in mammalian tissues, including some observations on the lactating rat. Biochem J. 1961;78(3):606–610.
  • Lewin LM, Beer R. Prostatic secretion as the source of myo-inositol in human seminal fluid. Fertil Steril. 1973;24(9):666–670.
  • Hinton BT, White RW, Setchell BP. Concentrations of myo-inositol in the luminal fluid of the mammalian testis and epididymis. J Reprod Fertil. 1980;58(2):395–399.
  • Spector R, Lorenzo AV. The origin of myo-inositol in brain, cerebrospinal fluid and choroid plexus. J Neurochem. 1975 Sep;25(3):353–354.
  • The vitamins: fundamental aspects in nutrition and health. 3rd ed. Combs GF Jr, editor. New York: Elsevier Academic Press; 2007. p. 411.
  • Burton LE, Ray RE, Bradford JR, et al. myo-Inositol metabolism in the neonatal and developing rat fed a myo-inositol-free diet. J Nutr. 1976;106(11):1610–1616.
  • Loewus MW, Loewus FA, Brillinger GU, et al. Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J Biol Chem. 1980;255(24):11710–11712.
  • Murray M, Greenberg ML. Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Mol Microbiol. 2000;36(3):651–661.
  • Ju S, Greenberg ML. 1D-myo-inositol 3-phosphate synthase: conservation, regulation, and putative target of mood stabilizers. Clin Neurosci Res. 2004;4(3–4):181–187.
  • Hasegawa R, Eisenberg F Jr. Selective hormonal control of myo-inositol biosynthesis in reproductive organs and liver of the male rat. Proc Natl Acad Sci U S A. 1981;78(8):4863–4866.
  • Azab AN, He Q, Ju S, et al. Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol Microbiol. 2007;63(4):1248–1258.
  • Whiting PH, Palmano KP, Hawthorne JN. Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem J. 1979;179(3):549–553.
  • Ye C, Greenberg ML. Inositol synthesis regulates the activation of GSK-3α in neuronal cells. J Neurochem. 2015;133(2):273–283.
  • Spector R. Inositol accumulation by brain slices in vitro. J Neurochem. 1976;27(5):1273–1276.
  • Stokes CE, Gillon KR, Hawthorne JN. Free and total lipid myo-inositol concentrations decrease with age in human brain. Biochim Biophys Acta. 1983;753(1):136–138.
  • Pitkänen E. Changes in serum and urinary myo-inositol levels in chronic glomerulonephritis. Clin Chim Acta. 1976;71(3):461–468.
  • Carlomagno G, Unfer V. Inositol safety: clinical evidences. Eur Rev Med Pharmacol Sci. 2011;15(8):931–936.
  • Papaleo E, Unfer V, Baillargeon JP, et al. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril. 2009;91(5):1750–1754.
  • Barak Y, Levine J, Glasman A, et al. Inositol treatment of Alzheimer’s disease: a double blind, cross-over placebo controlled trial. Prog Neuropsychopharmacol Biol Psychiatry. 1996;20(4):729–735.
  • FDA: U.S. Food and Drug Administration. Select Committee on GRAS Substances (SCOGS) Opinion: Inositol; [ cited 2015 Nov 16]. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm260436.htm.
  • Irvine RF, Schell MJ. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001;2(5):327–338.
  • Pak Y, Huang LC, Lilley KJ, et al. In vivo conversion of [3H]myoinositol to [3H]chiroinositol in rat tissues. J Biol Chem. 1992;267(24):16904–16910.
  • Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208(Pt 15):2819–2830.
  • McLaurin J, Golomb R, Jurewicz A, et al. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J Biol Chem. 2000;275(24):18495–18502.
  • Pak Y, Paule CR, Bao YD, et al. Insulin stimulates the biosynthesis of chiro-inositol-containing phospholipids in a rat fibroblast line expressing the human insulin receptor. Proc Natl Acad Sci USA. 1993;90(16):7759–7763.
  • Holub BJ. The Mn2+-activated incorporation of inositol into molecular species of phosphatidylinositol in rat liver microsomes. BiochimBiophysActa. 1974;369(1):111–122.
  • Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999;11(2):219–225.
  • Bulley SJ, Clarke JH, Droubi A, et al. Exploring phosphatidylinositol 5-phosphate 4-kinase function. Adv Biol Regul. 2015;57:193–202.
  • Rameh LE, Tolias KF, Duckworth BC, et al. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390(6656):192–196.
  • Pettitt TR, Dove SK, Lubben A, et al. Analysis of intact phosphoinositides in biological samples. J Lipid Res. 2006;47(7):1588–1596.
  • Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–1101.
  • Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–279.
  • Taylor V, Wong M, Brandts C, et al. 5ʹ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol. 2000;20(18):6860–6871.
  • Choi Y I, Zhang J, Murga C, et al. PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene. 2002;21(34):5289–5300.
  • English PD, Dietz M, Albersheim P. Myoinositol kinase: partial purification and identification of product. Science. 1966;151(3707):198–199.
  • Stephens LR, Kay RR, Irvine RF. A myo-inositol D-3 hydroxykinase activity in Dictyostelium. Biochem J. 1990;272(1):201–210.
  • Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986;233(4761):305–312.
  • Berridge MJ. Inositol trisphosphate and calcium signaling mechanisms. Biochim Biophys Acta. 2009;1793(6):933–940.
  • Irvine RF. ‘Quanta’ Ca2+ release and the control of Ca2+ entry by inositol phosphates - a possible mechanism. FEBS Lett. 1990;263(1):5–9.
  • Michell RH. The multiplying roles of inositol lipids and phosphates in cell control processes. Essays Biochem. 1997;32:31–47.
  • Irvine RF, Letcher AJ, Heslop JP, et al. The inositol tris/tetrakisphosphate pathway—demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues. Nature. 1986;320:631–634.
  • Shears SB. The versatility of inositol phosphates as cellular signals. Biochim Biophys Acta. 1998;1436(1–2):49–67.
  • Irvine RF. 20 years of Ins(1,4,5)P3, and 40 years before. Nat Rev Mol Cell Biol. 2003;4(7):586–590.
  • Livermore TM, Azevedo C, Kolozsvari B, et al. Phosphate, inositol and polyphosphates. Biochem Soc Trans. 2016;44(1):253–259.
  • Downes CP, Macphee CH. myo-Inositol metabolites as cellular signals. Eur J Biochem. 1990;193(1):1–18.
  • Hallcher LM, Sherman WR. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem. 1980;255(22):10896–10901.
  • Grases F, Simonet BM, Prieto RM, et al. Variation of InsP4,InsP5 and InsP6 levels in tissues and biological fluids depending on dietary phytate. J Nutr Biochem. 2001;12(10):595–601.
  • Lakin-Thomas PL. Effects of inositol starvation on the levels of inositol phosphates and inositol lipids in Neurospora crassa. Biochem J. 1993;292(Pt 3):805–811.
  • Shears SB. Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. Adv Enzyme Regul. 2009;49(1):87–96.
  • Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013;95(10):1811–1827.
  • Goel M, Azev VN, d’Alarcao M. The biological activity of structurally defined inositol glycans. Future Med Chem. 2009;1(1):95–118.
  • Illies C, Gromada J, Fiume R, et al. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science. 2007;318(5854):1299–1302.
  • Sbrissa D, Ikonomov OC, Strakova J, et al. Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology. 2004;145(11):4853–4865.
  • Grasberger H, Van Sande J, Hag-Dahood Mahameed A, et al. A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis. J Clin Endocrinol Metab. 2007;92(7):2816–2820.
  • Hakim S, Bertucci MC, Conduit SE, et al. Inositol polyphosphate phosphatases in human disease. Curr Top Microbiol Immunol. 2012;362:247–314.
  • Santamaria A, Giordano D, Corrado F, et al. One-year effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome. Climacteric. 2012;15(5):490–495.
  • D’Anna R, Di Benedetto A, Scilipoti A, et al. Myo-inositol supplementation for prevention of gestational diabetes in obese pregnant women: A randomized controlled trial. Obstet Gynecol. 2015;126(2):310–315.
  • Chau JF, Lee MK, Law JW, et al. Combined treatment with Myo-inositol and selenium ensures euthyroidism in subclinical hypothyroidism patients with autoimmune thyroiditis. Faseb J. 2005;19(13):1887–1889.
  • Beemster P, Groenen P, Steegers-Theunissen R. Involvement of inositol in reproduction. Nutr Rev. 2002;60(3):80–87.
  • Baillargeon JP, Nestler JE, Ostlund RE, et al. Greek hyperinsulinemic women, with or without polycystic ovary syndrome, display altered inositols metabolism. Hum Reprod. 2008;23(6):1439–1446.
  • Heimark D, McAllister J, Larner J. Decreased myo-inositol to chiro-inositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr J. 2014;61(2):111–117.
  • Facchinetti F, Bizzarri M, Benvenga S, et al. Results from the international consensus conference on myo-inositol and d-chiro-inositol in obstetrics and gynecology: the link between metabolic syndrome and PCOS. Eur J Obstet Gynecol Reprod Biol. 2015;195:72–76.
  • Matsuda M, Tsutsumi K, Kanematsu T, et al. Involvement of phospholipase C-related inactive protein in the mouse reproductive system through the regulation of gonadotropin levels. Biol Reprod. 2009;81(4):681–689.
  • Janovick JA, Conn PM. Gonadotropin-releasing hormone (GnRH)-receptor coupling to inositol phosphate and prolactin production in GH3 cells stably transfected with rat GnRH receptor complementary deoxyribonucleic acid. Endocrinology. 1994;135(5):2214–2219.
  • Carlomagno G, Unfer V, Roseff S. The D-chiro-inositol paradox in the ovary. Fertil Steril. 2011;95(8):2515–2516.
  • Baillargeon JP, Iuorno MJ, Apridonidze T, et al. Uncoupling between insulin and release of a D-Chiro-Inositol-Containing Inositol phosphoglycan mediator of insulin action in obese women with Polycystic Ovary Syndrome. Metab Syndr Relat Disord. 2010;8(2):127–135.
  • Nestler JE, Jakubowicz DJ, Reamer P, et al. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med. 1999;340(17):1314–1320.
  • Chiu TT, Rogers MS, Law EL, et al. Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality. Hum Reprod. 2002;17(6):1591–1596.
  • Goud PT, Goud AP, Van Oostveldt P, et al. Presence and dynamic redistribution of type I inositol 1,4,5-trisphosphate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions. Mol Hum Reprod. 1999;5(5):441–451.
  • Stachecki JJ, Armant DR. Transient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse preimplantation development. Development. 1996;122(8):2485–2496.
  • Kane MT, Norris M, Harrison RA. Uptake and incorporation of inositol by preimplantation mouse embryos. J Reprod Fertil. 1992;96(2):617–625.
  • Colazingari S, Fiorenza MT, Carlomagno G, et al. Improvement of mouse embryo quality by myo-inositol supplementation of IVF media. J Assist Reprod Genet. 2014;31(4):463–469.
  • Warner SM, Conlon FV, Kane MT. Inositol transport in preimplantation rabbit embryos: effects of embryo stage, sodium, osmolality and metabolic inhibitors. Reproduction. 2003;125(4):479–493. Erratum in: Reproduction 2005;129(1):128.
  • Colone M, Marelli G, Unfer V, et al. Inositol activity in oligoasthenoteratospermia–an in vitro study. Eur Rev Med Pharmacol Sci. 2010;14(10):891–896.
  • Condorelli RA, La Vignera S, Di Bari F, et al. Effects of myo-inositolon sperm mitochondrial function in-vitro. Eur Rev Med Pharmacol Sci. 2011;15(2):129–134.
  • Condorelli RA, La Vignera S, Bellanca S, et al. Myoinositol: does it improve sperm mitochondrial function and sperm motility? Urology. 2012;79(6):1290–1295.
  • Huang C, Liang NC. Increase in cytoskeletal actin induced by inositol 1,4-bisphosphate in saponin-permeated pig platelets. Cell Biol Int. 1994;18(8):797–804.
  • Dai Z, Chung SK, Miao D, et al. Sodium/myo-inositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation. J Bone Miner Res. 2011;26(3):582–590.
  • Chau JF, Lee MK, Law JW, et al. Sodium/myo-inositol cotransporter-1 is essential for the development and function of the peripheral nerves. Faseb J. 2005;19(13):1887–1889.
  • Godfrey DA, Hallcher LM, Laird MH, et al. Distribution of myo-inositol in the cat cochlear nucleus. J Neurochem. 1982;38(4):939–947.
  • Greene ND, Copp AJ. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3(1):60–66.
  • Reece EA, Khandelwal M, Wu YK, et al. Dietary intake of myo-inositol and neural tube defects in offspring of diabetic rats. Am J Obstet Gynecol. 1997;176(3):536–539.
  • Hallman M, Saugstad OD, Porreco RP, et al. Role of myo-inositol in regulation of surfactant phospholipids in the newborn. Early Hum Dev. 1985;10(3–4):245–254.
  • Anceschi MM, Petrelli A, Zaccardo G, et al. Inositol and glucocorticoid in the development of lung stability in male and female rabbit fetuses. Pediatr Res. 1988;24(5):617–621.
  • Hallman M, Pohjavuori M, Bry K. Inositol supplementation in respiratory distress syndrome. Lung. 1990;168(Suppl):877–882.
  • Hallman M, Epstein BL. Role of myo-inositol in the synthesis of phosphatidylglycerol and phosphatidylinositol in the lung. Bioch Biophys Res Comm. 1980;92(4):1151–1159.
  • Dasilva KA, Shaw JE, McLaurin J. Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp Neurol. 2010;223(2):311–321.
  • Teranishi Y, Inoue M, Yamamoto NG, et al. Proton myo-inositol cotransporter is a novel γ-secretase associated protein that regulates Aβ production without affecting Notch cleavage. Febs J. 2015;282(17):3438–3451.
  • Shankar GM, Bloodgood BL, Townsend M, et al. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27(11):2866–2875.
  • Forlenza OV, De-Paula VJ, Diniz BS. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci. 2014;5(6):443–450.
  • Schäfer MK, Pfeiffer A, Jaeckel M, et al. Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia. Cell Tissue Res. 2014;357(2):395–405.
  • Gustafson AM, Soldi R, Anderlind C, et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med. 2010;2(26):26ra25.
  • Hedgepeth CM, Conrad LJ, Zhang J, et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185(1):82–91.
  • Shamsuddin AKM, Vucenik I. IP6 & inositol in cancer prevention and therapy. Curr Cancer Ther Rev. 2005;1(3):259–269.
  • Wattenberg LW, Estensen RD. Chemopreventive effects of myo-inositol and dexamethasone on benzo(a)pyrene and 4-(methyl-nitrosamine)-1-(3-pyridyl)-1-butanone-induced pulmonary carcinogenesis in female A/J mice. Cancer Res. 1996;56(22):5132–5135.
  • Hecht SS, Upadhyaya P, Wang M, et al. Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine and myo-inositol, individually and in combination. Carcinogenesis. 2002;23(9):1455–1461.
  • Lam S, McWilliams A, LeRiche J, et al. A phase I study of myo-inositol for lung cancer chemoprevention. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1526–1531.
  • Shafie NH, Mohd Esa N, Ithnin H, et al. Preventive Inositol Hexaphosphate extracted from rice bran inhibits colorectal cancer through involvement of Wnt/β-catenin and COX-2 pathways. Biomed Res Int. 2013;2013:681027.
  • Windhorst S, Lin H, Blechner C, et al. Tumour cells can employ extracellular Ins(1,2,3,4,5,6)P6 and multiple inositol-polyphosphate phosphatase 1 (MINPP1) dephosphorylation to improve their proliferation. Biochem J. 2013;450(1):115–125.
  • Gu M, Raina K, Agarwal C, et al. Inositol hexaphosphate downregulates both constitutive and ligand-induced mitogenic and cell survival signaling, and causes caspase-mediated apoptotic death of human prostate carcinoma PC-3 cells. Mol Carcinog. 2010;49(1):1–12.
  • Djiogue S, Nwabo Kamdje AH, Vecchio L, et al. Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer. 2013;20(1):R1–R17.
  • Izzotti A, Balansky R, D’Agostini F, et al. Relationships between pulmonary micro-RNA and proteome profiles, systemic cytogenetic damage and lung tumors in cigarette smoke-exposed mice treated with chemopreventive agents. Carcinogenesis. 2013;34(10):2322–2329.
  • Kassie F, Kalscheuer S, Matise I, et al. Inhibition of vinyl carbamate-induced pulmonary adenocarcinoma by indole-3-carbinol and myo-inositol in A/J mice. Carcinogenesis. 2010;31(2):239–245.
  • Kassie F, Melkamu T, Endalew A, et al. Inhibition of lung carcinogenesis and critical cancer-related signaling pathways by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-l-cysteine, indole-3-carbinol and myo-inositol, alone and in combination. Carcinogenesis. 2010;31(9):1634–1641.
  • Han W, Gills JJ, Memmott RM, et al. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prev Res (Phila). 2009;2(4):370–376.
  • Gustafson AM I, Soldi R, Anderlind C, et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med. 2010;2(26):26ra25.
  • NIH Clinical Trials. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00783705?sect=X01256#all
  • Dinicola S, Fabrizi G, Masiello MG, et al. Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement. Exp Cell Res. 2016;345(1):37–50.
  • Koguchi T, Tanikawa C, Mori J, et al. Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol. 2016;48(6):2415–2424.
  • Guarner V, Tordet C, Bourbon JR. Effects of maternal protein-calorie malnutrition on the phospholipid composition of surfactant isolated from the fetal and neonatal rat lungs. Compensation by inositol and lipid supplementation. Pediatr Res. 1992;31(6):629–635.
  • Hallman M, Spragg R, Harrell JH, et al. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J Clin Invest. 1982;70(3):673–683.
  • Gilmore AP, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature. 1996;381(6582):531–535.
  • Pereira GR, Baker L, Egler J, et al. Serum myoinositol concentrations in premature infants fed human milk, formula for infants, and parenteral nutrition. Am J Clin Nutr. 1990;51(4):589–593.
  • Dinicola S, Chiu TT, Unfer V, et al. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol. 2014;54(10):1079–1092.
  • Bevilacqua A, Bizzarri M. Physiological role and clinical utility of inositols in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2016. pii: S1521-6934(16)30006-2. [Epub ahead of print]
  • Kamenov Z, Kolarov G, Gateva A, et al. Ovulation induction with myo-inositol alone and in combination with clomiphene citrate in polycystic ovarian syndrome patients with insulin resistance. Gynecol Endocrinol. 2015;31(2):131–135.
  • Hautanen A. Synthesis and regulation of sex hormone-binding globulin in obesity. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S64–70.
  • Bizzarri M, Cucina A, Dinicola S, et al. Does myo-inositol effect on PCOS follicles involve cytoskeleton regulation? Med Hypotheses. 2016;91:1–5.
  • Rondanelli M, Perna S, Faliva M, et al. Focus on metabolic and nutritional correlates of polycystic ovary syndrome and update on nutritional management of these critical phenomena. Arch Gynecol Obstet. 2014;290(6):1079–1092.
  • Sun TH, Heimark DB, Nguygen T, et al. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293(3):1092–1098.
  • Isabella R, Raffone E. Does ovary need D-chiro-inositol? J Ovarian Res. 2012;5(1):14.
  • Nestler JE, Unfer V. Reflections on inositol(s) for PCOS therapy: steps toward success. Gynecol Endocrinol. 2015;31(7):501–505.
  • Cryns K, Shamir A, Van Acker N, et al. IMPA1 is essential for embryonic development and lithium-like pilocarpine sensitivity. Neuropsychopharmacology. 2008;33(3):674–684.
  • Lowther KM, Weitzman VN, Maier D, et al. Maturation, fertilization, and the structure and function of the endoplasmic reticulum in cryopreserved mouse oocytes. Biol Reprod. 2009;81(1):147–154.
  • Chiu TT, Rogers MS, Briton-Jones C, et al. Effects of myo- inositol on the in-vitro maturation and subsequent development of mouse oocytes. Hum Reprod. 2003;18(2):408–416.
  • Quirk JG Jr, Bleasdale JE. Myo-Inositol homeostasis in the human fetus. Obstet Gynecol. 1983;62(1):41–44.
  • Goldman AS, Goto MP. Biochemical basis of the diabetic embryopathy. Isr J Med Sci. 1991;27(8–9):469–477.
  • Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82(4):736–754.
  • Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep. 2010;27(10):1403–1430.
  • Sasakawa N, Sharif M, Hanley MR. Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol. 1995;50(2):137–146.
  • Voevodskaya O, Sundgren PC, Strandberg O, et al. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology. 2016;86(19):1754–1761.
  • Ito E, Oka K, Etcheberrigaray R, et al. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91(2):534–538.
  • LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci. 2002;3(11):862–872.
  • Leissring MA, Murphy MP, Mead TR, et al. A physiologic signaling role for the gamma -secretase-derived intracellular fragment of APP. Proc Natl Acad Sci U S A. 2002;99(7):4697–4702.
  • Cheung KH, Shineman D, Müller M, et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron. 2008;58(6):871–883.
  • Jesch SA, Zhao X, Wells MT, et al. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem. 2005;280(10):9106–9118.
  • Puniya BL, Allen L, Hochfelder C, et al. Systems perturbation analysis of a large-scale signal transduction model reveals potentially influential candidates for cancer therapeutics. Front Bioeng Biotechnol. 2016;4:10. doi:10.3389/fbioe.2016.00010.
  • Shi Y, Azab AN, Thompson MN, et al. Inositol phosphates and phosphoinositides in health and disease. Subcell Biochem. 2006;39:265–292.
  • Macbeth MR, Schubert HL, Vandemark AP, et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. 2005;309(5740):1534–1539.
  • Suzuki T, Hara H. Phytatehydrolysate induces circumferential F-actin ring formation at cell–cell contacts by a Rho-associated kinase dependent mechanism in colorectal cancer HT-29 cells. Mol Nutr Food Res. 2010;54(12):1807–1818.
  • Seeds AM, York JD. Inositol polyphosphate kinases: regulators of nuclear function. Biochem Soc Symp. 2007;74(74):183–197.
  • Odom AR, Stahlberg A, Wente SR, et al. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science. 2000;287(5460):2026–2029.
  • Shen X, Xiao H, Ranallo R, et al. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science. 2003;299(5603):112–114.
  • Meinke P, Makarov AA, LêThành P, et al. Nucleoskeleton dynamics and functions in health and disease. Cell Health Cytoskelet. 2015;7:55–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.