594
Views
39
CrossRef citations to date
0
Altmetric
Review

An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease

, , &
Pages 439-448 | Received 26 Apr 2016, Accepted 16 Nov 2016, Published online: 28 Nov 2016

References

  • Tiso M, Schechter AN, Jourd’heuil D. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One. 2015;10(3):e0119712.
  • Nurjhan N, Bucci A, Perriello G, et al. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J Clin Invest. 1995;95(1):272–277.
  • Biolo G, Zorat F, Antonione R, et al. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol. 2005;37(10):2169–2179.
  • Watford M, Smith EM. Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem J. 1990;267(1):265–267.
  • Hankard RG, Haymond MW, Darmaun D. Role of glutamine as a glucose precursor in fasting humans. Diabetes. 1997;46(10):1535–1541.
  • Perriello G, Nurjhan N, Stumvoll M, et al. Regulation of gluconeogenesis by glutamine in normal postabsorptive humans. Am J Physiol. 1997;272(3 Pt 1):E437–E445.
  • Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011;34(1):17–32.
  • Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr. 2002;22:87–105.
  • Bachmann C. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr. 2003;162(6):410–416.
  • Picca S, Dionisi-Vici C, Abeni D, et al. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol. 2001;16(11):862–867.
  • Lewis HB. Studies in the synthesis of hippuric acid in the animal organims: II. The synthesis and rate of elimination of hippuruc acid after benzoate ingestion in man. J Biol Chem. 1914;18:2.
  • Sherwin C, Kennard K. Toxicity of phenylacetic acid. J Biol Chem. 1919;40:5.
  • Batshaw ML, Brusilow S, Waber L, et al. Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med. 1982;306(23):1387–1392.
  • Brusilow S, Tinker J, Batshaw ML. Amino acid acylation: a mechanism of nitrogen excretion in inborn errors of urea synthesis. Science. 1980;207(4431):659–661.
  • Brusilow SW. Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion. Pediatr Res. 1991;29(2):147–150.
  • Bridges JW, French MR, Smith RL, et al. The fate of benzoic acid in various species. Biochem J. 1970;118(1):47–51.
  • Brusilow SW, Valle DL, Batshaw M. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet. 1979;2(8140):452–454.
  • Webster LT, Siddiqui UA, Lucas SV, et al. Identification of separate acyl- CoA: glycineand acyl-CoA:L-glutamine N-acyltransferase activities in mitochondrial fractions from liver of rhesus monkey and man. J Biol Chem. 1976;251(11):3352–3358.
  • Kasumov T, Brunengraber LL, Comte B, et al. New secondary metabolites of phenylbutyrate in humans and rats. Drug Metab Dispos. 2004;32(1):10–19.
  • Comte B, Kasumov T, Pierce BA, et al. Identification of phenylbutyrylglutamine, a new metabolite of phenylbutyrate metabolism in humans. J Mass Spectrom. 2002;37(6):581–590.
  • Mokhtarani M, Diaz GA, Rhead W, et al. Urinary phenylacetylglutamine as dosing biomarker for patients with urea cycle disorders. Mol Genet Metab. 2012;107(3):308–314.
  • Summar ML, Dasouki MJ, Schofield PJ, et al. Physical and linkage mapping of human carbamyl phosphate synthetase I (CPS1) and reassignment from 2p to 2q35. Cytogenet Cell Genet. 1995;71(3):266–267.
  • Choi J-H, Lee BH, Kim JH, et al. Clinical outcomes and the mutation spectrum of the OTC gene in patients with ornithine transcarbamylase deficiency. J Hum Genet. 2015;60(9):501–507.
  • Engel K, Höhne W, Häberle J. Mutations and polymorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum Mutat. 2009;30(3):300–307.
  • Erez A, Nagamani SC, Lee B. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am J Med Genet C Semin Med Genet. 2011;157C(1):45–53.
  • Sin, Y.Y., Baron, G., Schulze, A. et al. Arginase-1 deficiency. J Mol Med (Berl). 2015;93(12):1287–1296.
  • Brusilow SW, Horwich AL. Urea cycle enzymes. In: The metabolic & molecular bases of inherited disease. C.R. Driver, A.L. Beaded, W.S. Sly and D. Valle (eds). New York (NY): McGraw-Hill; 2001. p. 1909–1963.
  • Leonard JV, Morris AA. Urea cycle disorders. Semin Neonatol. 2002;7(1):27–35.
  • Haberle, J., Boddaert, N, Burlina, A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.
  • Summar ML, Koelker S, Freedenberg D, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110(1–2):179–180.
  • Nassogne MC, Héron B, Touati G, et al. Urea cycle defects: management and outcome. J Inherit Metab Dis. 2005;28(3):407–414.
  • Msall M, Batshaw ML, Suss R, et al. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N Engl J Med. 1984;310(23):1500–1505.
  • Berry GT, Steiner RD. Long-term management of patients with urea cycle disorders. J Pediatr. 2001;138(1 Suppl):SS56-1.
  • Brusilow SW, Maestri NE. Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr. 1996;43:127–170.
  • The Urea Cycle Disorders Conference Group. Urea Cycle Disorders Conference, g., Consensus statement from a conference for the management of patients with urea cycle disorders. J Pediatr. 2001;138(1 Suppl):S1–S5.
  • Lefkowitch JH. The pathology of acute liver failure. Adv Anat Pathol. 2016;23(3):144–158.
  • Ytrebø LM, Kristiansen RG, Maehre H, et al. L-ornithine phenylacetate attenuates increased arterial and extracellular brain ammonia and prevents intracranial hypertension in pigs with acute liver failure. Hepatology. 2009;50(1):165–174.
  • Woo Baidal JA, Lavine JE. The intersection of nonalcoholic fatty liver disease and obesity. Sci Transl Med. 2016;8(323): 323rv1.
  • Pacana T, Cazanave S, Verdianelli A, et al. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS One. 2015;10(8):e0136822.
  • Romero-Gomez M, Montagnese S, Jalan R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J Hepatol. 2015;62(2):437–447.
  • Vierling, J.M., Mokhtarani, M., Brown, R. S et al. Fasting blood ammonia predicts risk and frequency of hepatic encephalopathy episodes in patients with cirrhosis. Clin Gastroenterol Hepatol. 2016;14(16):903–906.
  • Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31(1):14–20.
  • Maier KP, Talke H, Gerok W. Activities of urea-cycle enzymes in chronic liver disease. Klin Wochenschr. 1979;57(13):661–665.
  • Romero-Gómez M, Jover M, Del Campo JA, et al. Variations in the promoter region of the glutaminase gene and the development of hepatic encephalopathy in patients with cirrhosis: a cohort study. Ann Intern Med. 2010;153(5):281–288.
  • Rockey DC, Vierling JM, Mantry P, et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology. 2014;59(3):1073–1083.
  • Misel ML, Gish RG, Patton H, et al. Sodium benzoate for treatment of hepatic encephalopathy. Gastroenterol Hepatol (N Y). 2013;9(4):219–227.
  • Jalan R, Wright G, Davies NA, et al. L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses. 2007;69(5):1064–1069.
  • Franco OE, Onishi T, Umeda Y, et al. Phenylacetate inhibits growth and modulates cell cycle gene expression in renal cancer cell lines. Anticancer Res. 2003;23(2B):1637–1642.
  • Samid D, Shack S, Sherman LT. Phenylacetate: a novel nontoxic inducer of tumor cell differentiation. Cancer Res. 1992;52(7):1988–1992.
  • Carducci MA, Nelson JB, Chan-Tack KM, et al. Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin Cancer Res. 1996;2(2):379–387.
  • Huang Y, Horvath CM, Waxman S. Regrowth of 5-fluorouracil-treated human colon cancer cells is prevented by the combination of interferon gamma, indomethacin, and phenylbutyrate. Cancer Res. 2000;60(12):3200–3206.
  • Phuphanich S, Baker SD, Grossman SA, et al. Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: a dose escalation and pharmacologic study. Neuro Oncol. 2005;7(2):177–182.
  • Camacho LH, Olson J, Tong WP, et al. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs. 2007;25(2):131–138.
  • Baker MJ, Brem S, Daniels S, et al. Complete response of a recurrent, multicentric malignant glioma in a patient treated with phenylbutyrate. J Neurooncol. 2002;59(3):239–242.
  • Chang SM, Kuhn JG, Robins HI, et al. Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American brain tumor consortium report. J Clin Oncol. 1999;17(3):984–990.
  • Kusaczuk M, Krętowski R, Bartoszewicz M, et al. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol. 2016;37(1):931–942.
  • Baffy G. Hepatocellular carcinoma in non-alcoholic fatty liver disease: epidemiology, pathogenesis, and prevention. J Clin Transl Hepatol. 2013;1(2):131–137.
  • Tsunedomi R, Iizuka N, Harada S, et al. Susceptibility of hepatoma-derived cells to histone deacetylase inhibitors is associated with ID2 expression. Int J Oncol. 2013;42(4):1159–1166.
  • Svechnikova I, Gray SG, Kundrotiene J, et al. Apoptosis and tumor remission in liver tumor xenografts by 4-phenylbutyrate. Int J Oncol. 2003;22(3):579–588.
  • Lu Y-S, Kashida Y, Kulp SK, et al. Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology. 2007;46(4):1119–1130.
  • Lu Y-S, Chou C-H, Tzen K-Y, et al. Radiosensitizing effect of a phenylbutyrate-derived histone deacetylase inhibitor in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2012;83(2):e181–9.
  • Yoshida M, Furumai R, Nishiyama M, et al. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol. 2001;48 Suppl 1(Suppl 1):S20–S26.
  • Spira AI, Carducci MA. Differentiation therapy. Curr Opin Pharmacol. 2003;3(4):338–343.
  • Shapiro DJ, Livezey M, Yu L, et al. Anticipatory UPR activation: a protective pathway and target in cancer. Trends Endocrinol Metab. 2016;27:731–741.
  • Basseri S, Lhoták S, Sharma AM, et al. The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J Lipid Res. 2009;50(12):2486–2501.
  • Longo M, Spinelli R, D’Esposito V, et al. Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype. Biochim Biophys Acta. 2016;1863(6 Pt A):1146–1156.
  • Kim D-S, Li B, Rhew KY, et al. The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts. Arch Pharm Res. 2012;35(7):1269–1278.
  • Mahadevan NR, Rodvold J, Almanza G, et al. ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-kappaB-dependent manner. BMC Cancer. 2011;11:229.
  • Capece D, Fischietti M, Verzella D, et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int. 2013;2013:1–15.
  • Xiu F, Catapano M, Diao L, et al. Prolonged endoplasmic reticulum-stressed hepatocytes drive an alternative macrophage polarization. Shock. 2015;44(1):44–51.
  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.
  • Raina PN, Ramakrishnan CV. Comparative metabolic studies on normal and neoplastic rat liver. 3. changes in the composition of the culture medium with regard to arginine, glutamine, glutamic acid and alanine during cultivation of normal, neoplastic, newborn and regenerating liver. Oncology. 1964;18:9–13.
  • Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532.
  • Matés JM, Segura JA, Martín-Rufián M, et al. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med. 2013;13(4):514–534.
  • Yuneva MO, Fan TWM, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157–170.
  • Yu D, Shi X, Meng G, et al. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget. 2015;6(10):7619–7631. .
  • Lu P, Ma D, Chen Y, et al. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 2013;23(5):635–644.
  • Ko KS, Tomasi ML, Iglesias-Ara A, et al. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology. 2010;52(6):2096–2108.
  • Martínez-Chantar ML, Vázquez-Chantada M, Ariz U, et al. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology. 2008;47(4):1191–1199.
  • Bode BP, Fuchs BC, Hurley BP, et al. Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(5):G1062–73.
  • Wu C, Roberts EH, Bauer JM. Enzymes related to glutamine metabolism in tumor-bearing rats. Cancer Res. 1965;25:677–684.
  • Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr. 2001;131(9 Suppl):2515S-22S; discussion 2523S-4S.
  • Bode JG, Peters-Regehr T, Kubitz R, et al. Expression of glutamine synthetase in macrophages. J Histochem Cytochem. 2000;48(3):415–422.
  • Tardito S, Chiu M, Uggeri J, et al. L-Asparaginase and inhibitors of glutamine synthetase disclose glutamine addiction of beta-catenin-mutated human hepatocellular carcinoma cells. Curr Cancer Drug Targets. 2011;11(8):929–943.
  • Tanaka K, Sasayama T, Kohmura E. Targeting glutaminase and mTOR. Oncotarget. 2015;6(29):26544–26545.
  • Jones JG, Garcia P, Barosa C, et al. Hepatic anaplerotic outflow fluxes are redirected from gluconeogenesis to lactate synthesis in patients with Type 1a glycogen storage disease. Metab Eng. 2009;11(3):155–162.
  • Jones JG, Garcia P, Barosa C, et al. Quantification of hepatic transaldolase exchange activity and its effects on tracer measurements of indirect pathway flux in humans. Magn Reson Med. 2008;59(2):423–429.
  • Delgado TC, Silva C, Fernandes I, et al. Sources of hepatic glycogen synthesis during an oral glucose tolerance test: effect of transaldolase exchange on flux estimates. Magn Reson Med. 2009;62(5):1120–1128.
  • Magnusson I, Schumann WC, Bartsch GE, et al. Noninvasive tracing of Krebs cycle metabolism in liver. J Biol Chem. 1991;266(11):6975–6984.
  • Yang D, Previs SF, Fernandez CA, et al. Noninvasive probing of citric acid cycle intermediates in primate liver with phenylacetylglutamine. Am J Physiol. 1996;270(5 Pt 1):E882–9.
  • Sunny NE, Parks EJ, Browning JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14(6):804–810.
  • Ying H, Kimmelman AC, Lyssiotis CA, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–670.
  • Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–105.
  • Cabella C, Karlsson M, Canapè C, et al. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-(13)C]glutamine. J Magn Reson. 2013;232:45–52.
  • Gallagher FA, Kettunen MI, Day SE, et al. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med. 2008;60(2):253–257.
  • Barosa C, Almeida M, Caldeira MM, et al. Contribution of proteolytic and metabolic sources to hepatic glutamine by (2)H NMR analysis of urinary phenylacetylglutamine (2)H-enrichment from (2)H(2)O. Metab Eng. 2010;12(1):53–61.
  • Ji Won Kim SHR, Kim S, Lee HW, et al. Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal Chem. 2013;85(23):8.
  • Ammonul. Drug Approval Package. [cited 2016 Oct 05]. Available from:http://www.accessdat.fda.gov
  • Batshaw ML, MacArthur RB, Tuchman M. Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr. 2001;138(1 Suppl):SS46-5.
  • Shneider BL, Vockley J. Possible phenylacetate hepatotoxicity during 4-phenylbutyrate therapy of byler disease. J Pediatr Gastroenterol Nutr. 2016;62(3): 424-428.
  • Scaglia F, Carter S, O’Brien WE, et al. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Mol Genet Metab. 2004;81(Suppl 1):S79–85.
  • Burrage LC, Jain M, Gandolfo L, et al. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders. Mol Genet Metab. 2014;113(1–2):131–135.
  • US Department of Health and Human Services. Dietary guidelines for Americans. 2005. Available from: http://www.health.gov/DietaryGuidelines/dga2005/document/default.htm.
  • Oishi K, Diaz G. Glycerol phenylbutyrate for the chronic management of urea cycle disorders. Expert Rev Endocrinol Metab. 2014;9(5):427–434.
  • Das AM, Illsinger S, Hartmann H, et al. Prenatal benzoate treatment in urea cycle defects. Arch Dis Child Fetal Neonatal Ed. 2009;94(3):F216–F217.
  • Burrage LC, Nagamani SCS, Campeau PM, et al. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–R8.
  • Brunetti-Pierri N, Lanpher B, Erez A, et al. Phenylbutyrate therapy for maple syrup urine disease. Hum Mol Genet. 2011;20(4):631–640.
  • Zeitlin PL, Diener-West M, Rubenstein RC, et al. Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther. 2002;6(1):119–126.
  • Guffon N, Kibleur Y, Copalu W, et al. Developing a new formulation of sodium phenylbutyrate. Arch Dis Child. 2012;97(12):1081–1085.
  • Kibleur Y, Dobbelaere D, Barth M, et al. Results from a Nationwide Cohort Temporary Utilization Authorization (ATU) survey of patients in france treated with Pheburane((R)) (Sodium Phenylbutyrate) taste-masked granules. Paediatr Drugs. 2014;16(5):407–415.
  • Kibleur Y, Guffon N. Long-term follow-up on a cohort Temporary Utilization Authorization (ATU) survey of patients treated with pheburane (Sodium Phenylbutyrate) taste-masked granules. Paediatr Drugs. 2016;18(2):139–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.