14,596
Views
88
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients

, , , , , & show all
Pages 1225-1236 | Received 21 Jun 2017, Accepted 18 Oct 2017, Published online: 30 Oct 2017

References

  • Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. New England J Med. 2007 Dec 20;357(25):2562–2575.
  • Kidney disease: improving global outcomes transplant work G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009 Nov;9(Suppl 3):S1–155.
  • Ekberg H, Bernasconi C, Tedesco-Silva H, et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. Am J Transplant. 2009 Aug;9(8):1876–1885.
  • Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. 2011 Mar;11(3):450–462.
  • Nankivell BJ, P’Ng CH, O’Connell PJ, et al. Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras. Transplantation. 2016 Aug;100(8):1723–1731.
  • Nankivell BJ, Alexander SI. Rejection of the kidney allograft. New England J Med. 2010 Oct 07;363(15):1451–1462.
  • Liu J, Farmer JD Jr., Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815.
  • Yano I. Pharmacodynamic monitoring of calcineurin phosphatase activity in transplant patients treated with calcineurin inhibitors. Drug Metab Pharmacokinet. 2008;23(3):150–157.
  • Fruman DA, Klee CB, Bierer BE, et al. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci U S A. 1992 May 01;89(9):3686–3690.
  • De Graav GN, Bergan S, Baan CC, et al. Therapeutic drug monitoring of belatacept in kidney transplantation. Ther Drug Monit. 2015 Oct;37(5):560–567.
  • Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010 Mar;10(3):535–546.
  • Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016 Jan 28;374(4):333–343.
  • Van Gelder T, Hesselink DA. Belatacept: a game changer? Transplantation. 2016 Jul;100(7):1390–1392.
  • De Graav G, Baan CC, Clahsen-Van Groningen MC, et al. A randomized controlled clinical trial comparing belatacept with tacrolimus after de novo kidney transplantation. Transplantation. 2017 Oct;101(10):2571–2581.
  • Gabardi S, Van Gelder T. Causes and consequences of the worldwide belatacept shortage. Transplantation. 2017 Jul;101(7):1520–1521.
  • Roodnat JI, Hilbrands LB, Hene RJ, et al. 15-year follow-up of a multicenter, randomized, calcineurin inhibitor withdrawal study in kidney transplantation. Transplantation. 2014 Jul 15;98(1):47–53.
  • Abramowicz D, Del Carmen Rial M, Vitko S, et al. Cyclosporine withdrawal from a mycophenolate mofetil-containing immunosuppressive regimen: results of a five-year, prospective, randomized study. J Am Soc Nephrol. 2005 Jul;16(7):2234–2240.
  • De Jonge H, Naesens M, Kuypers DR. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit. 2009 Aug;31(4):416–435.
  • Anjum S, Muzaale AD, Massie AB, et al. Patterns of end-stage renal disease caused by diabetes, hypertension, and glomerulonephritis in live kidney donors. Am J Transplant. 2016 Dec;16(12):3540–3547.
  • Sikma MA, Van Maarseveen EM, Van De Graaf EA, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transplant. 2015 Sep;15(9):2301–2313.
  • Bouamar R, Shuker N, Hesselink DA, et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(+). Am J Transplant. 2013 May;13(5):1253–1261.
  • Laskow DA, Vincenti F, Neylan JF, et al. An open-label, concentration-ranging trial of FK506 in primary kidney transplantation: a report of the United States Multicenter FK506 Kidney Transplant Group. Transplantation. 1996 Oct 15;62(7):900–905.
  • Kershner RP, Fitzsimmons WE. Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. Transplantation. 1996 Oct 15;62(7):920–926.
  • Undre NA, Van Hooff J, Christiaans M, et al. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant Proc. 1999 Feb-Mar;31(1–2):296–298.
  • Staatz C, Taylor P, Tett S. Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol Dial Transplant. 2001 Sep;16(9):1905–1909.
  • Borobia AM, Romero I, Jimenez C, et al. Trough tacrolimus concentrations in the first week after kidney transplantation are related to acute rejection. Ther Drug Monit. 2009 Aug;31(4):436–442.
  • Bottiger Y, Brattstrom C, Tyden G, et al. Tacrolimus whole blood concentrations correlate closely to side-effects in renal transplant recipients. Br J Clin Pharmacol. 1999 Sep;48(3):445–448.
  • Gatault P, Kamar N, Buchler M, et al. Reduction of extended-release tacrolimus dose in low-immunological-risk kidney transplant recipients increases risk of rejection and appearance of donor-specific antibodies: a randomized study. Am J Transplant. 2017 May;17(5):1370–1379.
  • Japanese study of FK 506 on kidney transplantation: the benefit of monitoring the whole blood FK 506 concentration. Japanese FK 506 Study Group. Transplant Proc. 1991 Dec;23(6):3085–3088.
  • Vanrenterghem Y, Van Hooff JP, Squifflet JP, et al. Minimization of immunosuppressive therapy after renal transplantation: results of a randomized controlled trial. Am J Transplant. 2005 Jan;5(1):87–95.
  • Winkler M, Christians U. A risk-benefit assessment of tacrolimus in transplantation. Drug Saf. 1995 May;12(5):348–357.
  • Andrews LM, De Winter BC, Tang JT, et al. Overweight kidney transplant recipients are at risk of being overdosed following standard bodyweight-based tacrolimus starting dose. Transplant Direct. 2017;3(2:e129.
  • Scholten EM, Cremers SC, Schoemaker RC, et al. AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int. 2005 Jun;67(6):2440–2447.
  • Saint-Marcoux F, Debord J, Parant F, et al. Development and evaluation of a simulation procedure to take into account various assays for the Bayesian dose adjustment of tacrolimus. Ther Drug Monit. 2011 Apr;33(2):171–177.
  • Squifflet JP, Backman L, Claesson K, et al. Dose optimization of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. Transplantation. 2001 Jul 15;72(1):63–69.
  • Wallemacq P, Armstrong VW, Brunet M, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit. 2009 Apr;31(2):139–152.
  • Jusko WJ. Analysis of tacrolimus (FK 506) in relation to therapeutic drug monitoring. Ther Drug Monit. 1995 Dec;17(6):596–601.
  • Iwasaki K, Shiraga T, Nagase K, et al. Isolation, identification, and biological activities of oxidative metabolites of FK506, a potent immunosuppressive macrolide lactone. Drug Metab Dispos. 1993 Nov-Dec;21(6):971–977.
  • Tempestilli M, Di Stasio E, Basile MR, et al. Low plasma concentrations of albumin influence the affinity column-mediated immunoassay method for the measurement of tacrolimus in blood during the early period after liver transplantation. Ther Drug Monit. 2013 Feb;35(1):96–100.
  • Miura M, Masuda S, Egawa H, et al. Inter-laboratory variability of current immunoassay methods for tacrolimus among Japanese hospitals. Biol Pharm Bull. 2016 Aug 01;39(8):1331–1337.
  • Hoogtanders K, Van Der Heijden J, Christiaans M, et al. Therapeutic drug monitoring of tacrolimus with the dried blood spot method. J Pharm Biomed Anal. 2007 Jul 27;44(3):658–664.
  • Edelbroek PM, Van Der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit. 2009 Jun;31(3):327–336.
  • Nakano M, Uemura O, Honda M, et al. Development of tandem mass spectrometry-based creatinine measurement using dried blood spot for newborn mass screening. Pediatr Res. 2017 Aug;82(2):237–243.
  • Koster RA, Greijdanus B, Alffenaar JW, et al. Dried blood spot analysis of creatinine with LC-MS/MS in addition to immunosuppressants analysis. Anal Bioanal Chem. 2015 Feb;407(6):1585–1594.
  • Shuker N, De Man FM, De Weerd AE, et al. Pre-transplant tacrolimus dose requirements predict early post-transplant dose requirements in blood group Ab0 incompatible kidney transplant recipients. Ther Drug Monit. 2016 Apr;38(2):217–222.
  • Lieber SR, Volk ML. Non-adherence and graft failure in adult liver transplant recipients. Dig Dis Sci. 2013 Mar;58(3):824–834.
  • Gallagher HM, Sarwar G, Tse T, et al. Erratic tacrolimus exposure, assessed using the standard deviation of trough blood levels, predicts chronic lung allograft dysfunction and survival. J Heart Lung Transplant. 2015 Nov;34(11):1442–1448.
  • Borra LC, Roodnat JI, Kal JA, et al. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol Dial Transplant. 2010 Aug;25(8):2757–2763.
  • Ro H, Min SI, Yang J, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit. 2012 Dec;34(6):680–685.
  • Sapir-Pichhadze R, Wang Y, Famure O, et al. Time-dependent variability in tacrolimus trough blood levels is a risk factor for late kidney transplant failure. Kidney Int. 2014 Jun;85(6):1404–1411.
  • Hsiau M, Fernandez HE, Gjertson D, et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. Transplantation. 2011 Oct 27;92(8):918–922.
  • Pollock-Barziv SM, Finkelstein Y, Manlhiot C, et al. Variability in tacrolimus blood levels increases the risk of late rejection and graft loss after solid organ transplantation in older children. Pediatr Transplant. 2010 Dec;14(8):968–975.
  • Christians U, Jacobsen W, Benet LZ, et al. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet. 2002;41(11):813–851.
  • Hochleitner BW, Bosmuller C, Nehoda H, et al. Increased tacrolimus levels during diarrhea. Transpl Int. 2001 Aug;14(4):230–233.
  • Van Boekel GA, Aarnoutse RE, Van Der Heijden JJ, et al. Effect of mild diarrhea on tacrolimus exposure. Transplantation. 2012 Oct 15;94(7):763–767.
  • Neuberger JM, Bechstein WO, Kuypers DR, et al. Practical recommendations for long-term management of modifiable risks in kidney and liver transplant recipients: a guidance report and clinical checklist by the Consensus on Managing Modifiable Risk in Transplantation (COMMIT) Group. Transplantation. 2017 Apr;101(4S Suppl 2):S1–S56.
  • Shuker N, Cadogan M, Van Gelder T, et al. Conversion from twice-daily to once-daily tacrolimus does not reduce intrapatient variability in tacrolimus exposure. Ther Drug Monit. 2015 Apr;37(2):262–269.
  • Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother. 2000 Jan;34(1):27–31.
  • Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther. 1997 Jul;62(1):41–49.
  • Capone D, Gentile A, Imperatore P, et al. Effects of itraconazole on tacrolimus blood concentrations in a renal transplant recipient. Ann Pharmacother. 1999 Oct;33(10):1124–1125.
  • Olyaei AJ, deMattos AM, Norman DJ, et al. Interaction between tacrolimus and nefazodone in a stable renal transplant recipient. Pharmacotherapy. 1998 Nov-Dec;18(6):1356–1359.
  • Yigitaslan S, Erol K, Cengelli C. The effect of P-glycoprotein inhibition and activation on the absorption and serum levels of cyclosporine and tacrolimus in rats. Adv Clin Exp Med. 2016 Mar-Apr;25(2):237–242.
  • Mathis AS, DiRenzo T, Friedman GS, et al. Sex and ethnicity may chiefly influence the interaction of fluconazole with calcineurin inhibitors. Transplantation. 2001 Apr 27;71(8):1069–1075.
  • Baraldo M. Meltdose Tacrolimus Pharmacokinetics. Transplant Proc. 2016 Mar;48(2):420–423.
  • Staatz CE, Tett SE. Clinical pharmacokinetics of once-daily tacrolimus in solid-organ transplant patients. Clin Pharmacokinet. 2015 Oct;54(10):993–1025.
  • Silva HT Jr., Yang HC, Abouljoud M, et al. One-year results with extended-release tacrolimus/MMF, tacrolimus/MMF and cyclosporine/MMF in de novo kidney transplant recipients. Am J Transplant. 2007 Mar;7(3):595–608.
  • Kramer BK, Charpentier B, Backman L, et al. Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. Am J Transplant. 2010 Dec;10(12):2632–2643.
  • Posadas Salas MA, Srinivas TR. Update on the clinical utility of once-daily tacrolimus in the management of transplantation. Drug Des Devel Ther. 2014;8:1183–1194.
  • Adam R, Karam V, Delvart V, et al. Improved survival in liver transplant recipients receiving prolonged-release tacrolimus in the European Liver Transplant Registry. Am J Transplant. 2015 May;15(5):1267–1282.
  • Langone A, Steinberg SM, Gedaly R, et al. Switching study of kidney transplant patients with tremor to LCP-TacrO (STRATO): an open-label, multicenter, prospective phase 3b study. Clin Transplant. 2015 Sep;29(9):796–805.
  • Kuypers DR, Peeters PC, Sennesael JJ, et al. Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. Transplantation. 2013 Jan 27;95(2):333–340.
  • Beckebaum S, Iacob S, Sweid D, et al. Efficacy, safety, and immunosuppressant adherence in stable liver transplant patients converted from a twice-daily tacrolimus-based regimen to once-daily tacrolimus extended-release formulation. Transpl Inter. 2011 Jul;24(7):666–675.
  • Stifft F, Stolk LM, Undre N, et al. Lower variability in 24-hour exposure during once-daily compared to twice-daily tacrolimus formulation in kidney transplantation. Transplantation. 2014 Apr 15;97(7):775–780.
  • Wu MJ, Cheng CY, Chen CH, et al. Lower variability of tacrolimus trough concentration after conversion from prograf to advagraf in stable kidney transplant recipients. Transplantation. 2011 Sep 27;92(6):648–652.
  • Tsuchiya T, Ishida H, Tanabe T, et al. Comparison of pharmacokinetics and pathology for low-dose tacrolimus once-daily and twice-daily in living kidney transplantation: prospective trial in once-daily versus twice-daily tacrolimus. Transplantation. 2013 Jul 27;96(2):198–204.
  • Wlodarczyk Z, Squifflet JP, Ostrowski M, et al. Pharmacokinetics for once- versus twice-daily tacrolimus formulations in de novo kidney transplantation: a randomized, open-label trial. Am J Transplant. 2009 Nov;9(11):2505–2513.
  • Capron A, Haufroid V, Wallemacq P. Intra-cellular immunosuppressive drugs monitoring: A step forward towards better therapeutic efficacy after organ transplantation? Pharmacol Res. 2016 Sep;111:610–618.
  • Barbari A, Masri M, Stephan A, et al. A novel approach in clinical immunosuppression monitoring: drug lymphocyte level. Exp Clin Transplant. 2007 Dec;5(2):643–648.
  • Capron A, Musuamba F, Latinne D, et al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in peripheral blood mononuclear cells. Ther Drug Monit. 2009 Apr;31(2):178–186.
  • Lemaitre F, Antignac M, Fernandez C. Monitoring of tacrolimus concentrations in peripheral blood mononuclear cells: application to cardiac transplant recipients. Clin Biochem. 2013 Oct;46(15):1538–1541.
  • Pensi D, De Nicolo A, Pinon M, et al. An UPLC-MS/MS method coupled with automated on-line SPE for quantification of tacrolimus in peripheral blood mononuclear cells. J Pharm Biomed Anal. 2015 Mar;25(107):512–517.
  • Capron A, Mourad M, De Meyer M, et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics. 2010 May;11(5):703–714.
  • Capron A, Lerut J, Latinne D, et al. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study. Transpl Int. 2012 Jan;25(1):41–47.
  • Lemaitre F, Blanchet B, Latournerie M, et al. Pharmacokinetics and pharmacodynamics of tacrolimus in liver transplant recipients: inside the white blood cells. Clin Biochem. 2015 Apr;48(6):406–411.
  • Han SS, Yang SH, Kim MC, et al. Monitoring the intracellular tacrolimus concentration in kidney transplant recipients with stable graft function. PLoS One. 2016;11(4):e0153491.
  • Stienstra NA, Sikma MA, Van Dapperen AL, et al. Development of a simple and rapid method to measure the free fraction of tacrolimus in plasma using ultrafiltration and LC-MS/MS. Ther Drug Monit. 2016 Dec;38(6):722–727.
  • Zahir H, McCaughan G, Gleeson M, et al. Factors affecting variability in distribution of tacrolimus in liver transplant recipients. Br J Clin Pharmacol. 2004 Mar;57(3):298–309.
  • Zahir H, McCaughan G, Gleeson M, et al. Changes in tacrolimus distribution in blood and plasma protein binding following liver transplantation. Ther Drug Monit. 2004 Oct;26(5):506–515.
  • De Jonge H, De Loor H, Verbeke K, et al. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin Pharmacol Ther. 2012 Sep;92(3):366–375.
  • Tang JT, Andrews LM, Van Gelder T, et al. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol. 2016 May;12(5):555–565.
  • Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001 Dec;11(9):773–779.
  • Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002 Nov 18;54(10):1271–1294.
  • Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001 Apr;27(4):383–391.
  • Picard N, Bergan S, Marquet P, et al. Pharmacogenetic biomarkers predictive of the pharmacokinetics and pharmacodynamics of immunosuppressive drugs. Ther Drug Monit. 2016 Apr;38(Suppl 1):S57–69.
  • Ruiz J, Herrero MJ, Boso V, et al. Impact of single nucleotide polymorphisms (SNPs) on immunosuppressive therapy in lung transplantation. Int J Mol Sci. 2015 Aug 25;16(9):20168–20182.
  • Yang TH, Chen YK, Xue F, et al. Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation. Int J Clin Pract Suppl. 2015 May;(183):53–62.
  • Birdwell KA, Decker B, Barbarino JM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin Pharmacol Ther. 2015 Jul;98(1):19–24.
  • Shuker N, Bouamar R, Van Schaik RH, et al. A Randomized controlled trial comparing the efficacy of CYP3A5 genotype-based with bodyweight-based tacrolimus dosing after living donor kidney transplantation. Am J Transplant. 2016 Jul;16(7):2085–2096.
  • Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010 Jun;87(6):721–726.
  • Pallet N, Etienne I, Buchler M, et al. Long-Term clinical impact of adaptation of initial tacrolimus dosing to CYP3A5 genotype. Am J Transpl. 2016 Sep;16(9):2670–2675.
  • Sanghavi K, Brundage RC, Miller MB, et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J. 2017 Jan;17(1):61–68.
  • Andrews LM, De Winter BC, Van Gelder T, et al. Consideration of the ethnic prevalence of genotypes in the clinical use of tacrolimus. Pharmacogenomics. 2016 Nov;17(16):1737–1740.
  • Elens L, Van Schaik RH, Panin N, et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics. 2011 Oct;12(10):1383–1396.
  • Werk AN, Lefeldt S, Bruckmueller H, et al. Identification and characterization of a defective CYP3A4 genotype in a kidney transplant patient with severely diminished tacrolimus clearance. Clin Pharmacol Ther. 2014 Apr;95(4):416–422.
  • Elens L, Bouamar R, Hesselink DA, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem. 2011 Nov;57(11):1574–1583.
  • Brooks E, Tett SE, Isbel NM, et al. Population pharmacokinetic modelling and Bayesian estimation of tacrolimus exposure: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2016 Nov;55(11):1295–1335.
  • Andrews LM, Riva N, De Winter BC, et al. Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opin Drug Metab Toxicol. 2015 Jun;11(6):921–936.
  • Passey C, Birnbaum AK, Brundage RC, et al. Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol. 2011 Dec;72(6):948–957.
  • Passey C, Birnbaum AK, Brundage RC, et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics. 2012 Jul;13(10):1141–1147.
  • Boughton O, Borgulya G, Cecconi M, et al. A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients. Br J Clin Pharmacol. 2013 Sep;76(3):425–431.
  • Andreu F, Colom H, Elens L, et al. A new CYP3A5*3 and CYP3A4*22 cluster influencing tacrolimus target concentrations: a population approach. Clin Pharmacokinet. 2017 Jan 03.
  • Andrews LM, Hesselink DA, Van Gelder T, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediaric renal transplantation. Clin Pharmacokinet. 2017. Accepted for publication (May 29th, 2017).
  • Van Rossum HH, Romijn FP, Smit NP, et al. Everolimus and sirolimus antagonize tacrolimus based calcineurin inhibition via competition for FK-binding protein 12. Biochem Pharmacol. 2009 Apr 01;77(7):1206–1212.
  • Van Rossum HH, De Fijter JW, Van Pelt J. Pharmacodynamic monitoring of calcineurin inhibition therapy: principles, performance, and perspectives. Ther Drug Monit. 2010 Feb;32(1):3–10.
  • Bohler T, Nolting J, Kamar N, et al. Validation of immunological biomarkers for the pharmacodynamic monitoring of immunosuppressive drugs in humans. Ther Drug Monit. 2007 Feb;29(1):77–86.
  • Sellar KJ, Van Rossum HH, Romijn FP, et al. Spectrophotometric assay for calcineurin activity in leukocytes isolated from human blood. Anal Biochem. 2006 Nov 01;358(1):104–110.
  • Halloran PF, Helms LM, Kung L, et al. The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation. 1999 Nov 15;68(9):1356–1361.
  • Koefoed-Nielsen PB, Gesualdo MB, Poulsen JH, et al. Blood tacrolimus levels and calcineurin phosphatase activity early after renal transplantation. Am J Transplant. 2002 Feb;2(2):173–178.
  • Mortensen DM, Koefoed-Nielsen PB, Jorgensen KA. Calcineurin activity in tacrolimus-treated renal transplant patients early after and 5 years after transplantation. Transplant Proc. 2006 Oct;38(8):2651–2653.
  • Brunet M, Crespo M, Millan O, et al. Pharmacokinetics and pharmacodynamics in renal transplant recipients under treatment with cyclosporine and Myfortic. Transplant Proc. 2007 Sep;39(7):2160–2162.
  • Fukudo M, Yano I, Masuda S, et al. Pharmacodynamic analysis of tacrolimus and cyclosporine in living-donor liver transplant patients. Clin Pharmacol Ther. 2005 Aug;78(2):168–181.
  • Fukudo M, Yano I, Katsura T, et al. A transient increase of calcineurin phosphatase activity in living-donor kidney transplant recipients with acute rejection. Drug Metab Pharmacokinet. 2010;25(5):411–417.
  • Van Rossum HH, Press RR, Den Hartigh J, et al. Point: A call for advanced pharmacokinetic and pharmacodynamic monitoring to guide calcineurin inhibitor dosing in renal transplant recipients. Clin Chem. 2010 May;56(5):732–735.
  • Giese T, Zeier M, Meuer S. Analysis of NFAT-regulated gene expression in vivo: a novel perspective for optimal individualized doses of calcineurin inhibitors. Nephrol Dial Transplant. 2004 Jul;19(Suppl 4):iv55–60.
  • Giese T, Zeier M, Schemmer P, et al. Monitoring of NFAT-regulated gene expression in the peripheral blood of allograft recipients: a novel perspective toward individually optimized drug doses of cyclosporine A. Transplantation. 2004 Feb 15;77(3):339–344.
  • Sommerer C, Zeier M, Meuer S, et al. Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. Transplantation. 2010 Jun 15;89(11):1417–1423.
  • Sommerer C, Giese T. Nuclear factor of activated T cells-regulated gene expression as predictive biomarker of personal response to calcineurin inhibitors. Ther Drug Monit. 2016 Apr;38(Suppl 1):S50–6.
  • Steinebrunner N, Sandig C, Sommerer C, et al. Pharmacodynamic monitoring of nuclear factor of activated T cell-regulated gene expression in liver allograft recipients on immunosuppressive therapy with calcineurin inhibitors in the course of time and correlation with acute rejection episodes–a prospective study. Ann Transplant. 2014 Jan;22(19):32–40.
  • Sommerer C, Zeier M, Czock D, et al. Pharmacodynamic disparities in tacrolimus-treated patients developing cytomegalus virus viremia. Ther Drug Monit. 2011 Aug;33(4):373–379.
  • Steinebrunner N, Sandig C, Sommerer C, et al. Reduced residual gene expression of nuclear factor of activated T cells-regulated genes correlates with the risk of cytomegalovirus infection after liver transplantation. Transpl Infect Dis. 2014 Jun;16(3):379–386.
  • Vafadari R, Weimar W, Baan CC. Phosphospecific flow cytometry for pharmacodynamic drug monitoring: analysis of the JAK-STAT signaling pathway. Clin Chim Acta. 2012 Sep 08;413(17–18):1398–1405.
  • Porras DL, Wang Y, Zhou P, et al. Role of T-cell-specific nuclear factor kappaB in islet allograft rejection. Transplantation. 2012 May 27;93(10):976–982.
  • Zhou P, Hwang KW, Palucki DA, et al. Impaired NF-kappaB activation in T cells permits tolerance to primary heart allografts and to secondary donor skin grafts. Am J Transplant. 2003 Feb;3(2):139–147.
  • Vafadari R, Kraaijeveld R, Weimar W, et al. Tacrolimus inhibits NF-kappaB activation in peripheral human T cells. PLoS ONE. 2013;8(4):e60784.
  • Vafadari R, Hesselink DA, Cadogan MM, et al. Inhibitory effect of tacrolimus on p38 mitogen-activated protein kinase signaling in kidney transplant recipients measured by whole-blood phosphospecific flow cytometry. Transplantation. 2012 Jun 27;93(12):1245–1251.
  • Kannegieter NM, Shuker N, Vafadari R, et al. Conversion to once-daily tacrolimus results in increased p38MAPK phosphorylation in T lymphocytes of kidney transplant recipients. Ther Drug Monit. 2016 Apr;38(2):280–284.
  • Kannegieter NM, Hesselink DA, Dieterich M, et al. The effect of tacrolimus and mycophenolic acid on cd14+ monocyte activation and function. PLoS One. 2017;12(1):e0170806.