337
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the role of glycogen synthase kinase-3 in L-DOPA-induced dyskinesia in Parkinson’s disease

&
Pages 83-90 | Received 10 Aug 2017, Accepted 11 Dec 2017, Published online: 15 Dec 2017

References

  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.
  • Fehling C. Treatment of Parkinson’s syndrome with L-DOPA. A double blind study. Acta Neurol Scand. 1966;42:367–372.
  • Lee PH, Park HJ. Bone marrow-derived mesenchymal stem cell therapy as a candidate disease-modifying strategy in Parkinson’s disease and multiple system atrophy. J Clin Neurol. 2009;5:1–10.
  • Hauser RA, Rascol O, Korczyn AD, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22:2409–2417.
  • Voon V, Napier TC, Frank MJ, et al. Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol. 2017;16(3):238–250.
  • Evans JR, Mason SL, Williams-Gray CH, et al. The natural history of treated Parkinson’s disease in an incident, community based cohort. J Neurol Neurosurg Psychiatry. 2011;82:1112–1118.
  • Blanchet PJ, Allard P, Grégoire L, et al. Risk factors for peak dose dyskinesia in 100 levodopa-treated parkinsonian patients. Can J Neurol Sci. 1996;23:189–193.
  • Hely MA, Morris JG, Reid WG, et al. Sydney multicenter study of Parkinson’s disease: non-L-DOPA-responsive problems dominate at 15 years. Mov Disord. 2005;20:190–199.
  • Cenci MA, Ohlin KE, Rylander D. Plastic effects of L-DOPA treatment in the basal ganglia and their relevance to the development of dyskinesia. Parkinsonism Relat Disord. 2009;15(Suppl 3):S59–S63.
  • Cenci MA, Konradi C. Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. Prog Brain Res. 2010;183:209–233.
  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–527.
  • Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase‑3. Trends Biochem Sci. 2004;29:95–102.
  • Kockeritz L, Doble B, Patel S, et al. Glycogen synthase kinase‑3 ‑ an overview of an over‑achieving protein kinase. Curr Drug Targets. 2006;7:1377–1388.
  • Medina M, Garrido JJ, Wandosell FG. Modulation of GSK‑3 as a therapeutic strategy on tau pathologies. Front Mol Neurosci. 2011;4:24.
  • Koh SH, Song C, Noh MY, et al. Inhibition of glycogen synthase kinase-3 reduces L-DOPA-induced neurotoxicity. Toxicology. 2008;247:112–118.
  • Chen G, Bower KA, Ma C, et al. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 2004;18:1162–1164.
  • Petit‑Paitel A, Brau F, Cazareth J, et al. Involvment of cytosolic and mitochondrial GSK‑3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP‑treated neurons. PLoS One. 2009;4:e5491.
  • Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem. 2006;99:381–392.
  • Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–455.
  • Zigmond MJ, Abercrombie ED, Berger TW, et al. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci. 1990;13:290–296.
  • Staunton DA, Wolfe BB, Groves PM, et al. Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of a relationship to rotational behavior. Brain Res. 1981;211:315–327.
  • Nutt JG. Levodopa-induced dyskinesia: review, observations, and speculations. Neurology. 1990;40:340–345.
  • Aubert I, Guigoni C, Hakansson K, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57:17–26.
  • Cai G, Wang HY, Friedman E. Increased dopamine receptor signaling and dopamine receptor-G protein coupling in denervated striatum. J Pharmacol Exp Ther. 2002;302:1105–1112.
  • Geurts M, Maloteaux JM, Hermans E. Altered expression of regulators of G-protein signaling (RGS) mRNAs in the striatum of rats undergoing dopamine depletion. Biochem Pharmacol. 2003;66:1163–1170.
  • Harrison LM, LaHoste GJ. Rhes, the Ras homolog enriched in striatum, is reduced under conditions of dopamine supersensitivity. Neuroscience. 2006;137:483–492.
  • Guigoni C, Doudnikoff E, Li Q, et al. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic nonhuman primates. Neurobiol Dis. 2007;26:452–463.
  • Berthet A, Porras G, Doudnikoff E, et al. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci. 2009;29:4829–4835.
  • Hallett PJ, Dunah AW, Ravenscroft P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48:503–516.
  • Fiorentini C, Rizzetti MC, Busi C, et al. Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat. Mol Pharmacol. 2006;69:805–812.
  • Silverdale MA, Kobylecki C, Hallett PJ, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse. 2010;64:177–180.
  • Picconi B, Centonze D, Hakansson K, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci. 2003;6:501–506.
  • Dunah AW, Wang Y, Yasuda RP, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol. 2000;57:342–352.
  • Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci. 2007;27:6995–7005.
  • Westin JE, Vercammen L, Strome EM, et al. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry. 2007;62:800–810.
  • Santini E, Heiman M, Greengard P, et al. Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2009;2:ra36.
  • Xie CL, Lin JY, Wang MH, et al. Inhibition of glycogen synthase kinase-3β (GSK-3β) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA Parkinsonian rats. Sci Rep. 2016;6:23527.
  • Morissette M, Samadi P, Hadj Tahar A, et al. Striatal Akt/GSK3 signaling pathway in the development of L-DOPA-induced dyskinesias in MPTP monkeys. Prog Neuropsychopharmacol Biol Psychiatry. 2010;16(34):446–454.
  • Cole RL, Konradi C, Douglass J, et al. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron. 1995;14:813–823.
  • Konradi C, Cole RL, Heckers S, et al. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci. 1994;14:5623–5634.
  • Aubert I, Guigoni C, Li Q, et al. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry. 2007;61:836–844.
  • Lundblad M, Picconi B, Lindgren H, et al. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2004;16:110–123.
  • Andersson M, Konradi C, Cenci MA. cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci. 2001;21:9930–9943.
  • Andersson M, Hilbertson A, Cenci MA. Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis. 1999;6:461–474.
  • Valastro B, Dekundy A, Krogh M, et al. Proteomic analysis of striatal proteins in the rat model of L-DOPA-induced dyskinesia. J Neurochem. 2007;102:1395–1409.
  • Konradi C, Westin JE, Carta M, et al. Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis. 2004;17:219–236.
  • El Atifi-Borel M, Buggia-Prevot V, Platet N, et al. De novo and long-term L-DOPA induce both common and distinct striatal gene profiles in the hemiparkinsonian rat. Neurobiol Dis. 2009;34:340–350.
  • Kumer SC, Vrana KE. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem. 1996;67:443–462.
  • Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56:331–349.
  • Lane EL, Soulet D, Vercammen L, et al. Neuroinflammation in the generation of post-transplantation dyskinesia in Parkinson’s disease. Neurobiol Dis. 2008;32:220–228.
  • Padovan-Neto FE, Echeverry MB, Chiavegatto S, et al. Nitric oxide synthase inhibitor improves de novo and long-term L-DOPA-induced dyskinesia in hemiparkinsonian rats. Front Syst Neurosci. 2011;10(5):40.
  • Chalimoniuk M, Langfort J. The effect of subchronic, intermittent L-DOPA treatment on neuronal nitric oxide synthase and soluble guanylylcyclase expression and activity in the striatum and midbrain of normal and MPTP-treated mice. Neurochem Int. 2004;50:821–833.
  • Sanchez JJ, Abreu P, Gonzalez MC. Sodium nitroprusside stimulates L-DOPA release from striatal tissue through nitric oxide and cGMP. Eur J Pharmacol. 2002;438:79–83.
  • Boje KM. Nitric oxide neurotoxicity in neurodegenerative diseases. Front Biosci. 2004;9:763–776.
  • Mena MA, Pardo B, Casarejos MJ, et al. Neurotoxicity of levodopa on catecholamine-rich neurons. Mov Disord. 1992;7:23–31.
  • Maharaj H, Sukhdev Maharaj D, Scheepers M, et al. L-DOPA administration enhances 6-hydroxydopamine generation. Brain Res. 2005;1063:180–186.
  • Grunblatt E, Mandel S, Youdim MB. Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann NY Acad Sci. 2000;899:262–273.
  • Spina MB, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA. 1989;86:1398–1400.
  • Ogawa N, Edamatsu R, Mizukawa K, et al. Degeneration of dopaminergic neurons and free radicals possible participation of levodopa. Adv Neurol. 1993;60:242–250.
  • Miyazaki I, Asanuma M. Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med Okayama. 2008;62:141–150.
  • Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1976;14:633–643.
  • Tse DC, McCreery RL, Adams RN. Potential oxidative pathways of brain catecholamines. J Med Chem. 1976;19:37–40.
  • Miyazaki I, Asanuma M. Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res. 2009;34:698–706.
  • Fornstedt B, Rosengren E, Carlsson A. Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology. 1986;25:451–454.
  • Ito S, Fujita K. Conjugation of dopa and 5-S-cysteinyldopa with cysteine mediated by superoxide radical. Biochem Pharmacol. 1982;31:2887–2889.
  • Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem. 1999;73:1127–1137.
  • Przedborski S, Jackson-Lewis V, Muthane U, et al. Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol. 1993;34:715–723.
  • Li H, Dryhurst G. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3, 4-dihydro-5-hydroxy-2H-1, 4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease. J Neurochem. 1997;69:1530–1541.
  • Spencer JP, Jenner A, Aruoma OI, et al. Intense oxidative DNA damage promoted by L-DOPA and its metabolites implications for neurodegenerative disease. FEBS Lett. 1994;353:246–250.
  • Wick MM. Levodopa/dopamine analogs as inhibitors of DNA synthesis in human melanoma cells. J Invest Dermatol. 1989;92:329S–31S.
  • Goldberg MS, Lansbury PT Jr, Helfand SL. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol. 2000;2:E115–E119.
  • Conway KA, Rochet JC, Bieganski RM, et al. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science. 2001;294:1346–1349.
  • Mazzulli JR, Mishizen AJ, Giasson BI, et al. Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci. 2006;26:10068–10078.
  • Cooper AA, Gitler AD, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313:324–328.
  • Agil A, Duran R, Barrero F, et al. Plasma lipid peroxidation in sporadic Parkinson’s disease. Role of the L-DOPA. J Neurol Sci. 2006;240:31–36.
  • Mytilineou C, Han SK, Cohen G. Toxic and protective effects of L-DOPA on mesencephalic cell cultures. J Neurochem. 1993;61:1470–1478.
  • Woodgett JR. cDNA cloning and properties of glycogen synthase kinase-3. Methods Enzymol. 1991;200:564–577.
  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9:2431–2438.
  • Guha S, Cullen JP, Morrow D, et al. Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival. Basic Res Cardiol. 2011;106:773–785.
  • Watcharasit P, Bijur GN, Song L, et al. Glycogen synthasekinase-3beta binds to and promotes the actions of p53. J Biol Chem. 2003;278:48872–48879.
  • Kim WY, Wang X, Wu Y, et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci. 2009;12:1390–1397.
  • Wei J, Liu W, Yan Z. Regulation of AMPA receptor trafficking and function by glycogen synthase kinase 3. J Biol Chem. 2010;285:26369–26376.
  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426.
  • Koh SH, Kim SH, Kwon H, et al. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res. 2003;118:72–81.
  • Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–1657.
  • Huelsken J, Behrens J. The WNT signaling pathway. J Cell Sci. 2002;115:3977–3978.
  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104:1433–1439.
  • Yan J, Liu XH, Han MZ, et al. Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer’s disease. Neurobiol Aging. 2015;36:211–227.
  • Sugai F, Yamamoto Y, Miyaguchi K, et al. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci. 2004;20:3179–3183.
  • Koh SH, Yoo AR, Chang DI, et al. Inhibition of GSK-3 reduces infarct volume and improves neurobehavioral functions. Biochem Biophys Res Commun. 2008;371:894–899.
  • Romagnani P, Lasagni L, Mazzinghi B, et al. Pharmacological modulation of stem cell function. Curr Med Chem. 2007;14:1129–1139.
  • Duka T, Rusnak M, Drolet RE, et al. Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism. FASEB J. 2006;20:2302–2312.
  • Beaulieu JM, Sotnikova TD, Marion S, et al. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell. 2005;122(2):261–273.
  • Bijurand GN, Jope RS. Glycogen synthase kinase-3 beta is highly activatedin nuclei and mitochondria. Neuroreport. 2003;14:2415–2419.
  • King TD, Clodfelder-Miller B, Barksdale KA, et al. Unregulated mito-chondrial GSK3 β activity results in NADH: ubiquinone oxidoreductase deficiency. Neurotox Res. 2008;14:367–382.
  • Goers J, Manning-Bog AB, McCormack AL, et al. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry. 2003;42:8465–8471.
  • Park KH, Choi NY, Koh SH, et al. L-DOPA neurotoxicity is prevented by neuroprotective effects of erythropoietin. Neurotoxicology. 2011;32:879–887.
  • Jang W, Park HH, Koh SH, et al. 1,25-dyhydroxyvitamin D3 attenuates L-DOPA-induced neurotoxicity in neural stem cells. Mol Neurobiol. 2015;51:558–570.
  • Lee KY, Koh SH, Noh MY, et al. Glycogen synthase kinase-3beta activity plays very important roles in determining the fate of oxidative stress-inflicted neuronal cells. Brain Res. 2007;1129:89–99.
  • Benoit YD, Guezguez B, Boyd AL, et al. Molecular pathways: epigenetic modulation of WNT-glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res. 2014;20:5372–5378.
  • Koh SH, Kim SH, Kim HT. Role of glycogen synthase kinase-3 in l-DOPA-induced neurotoxicity. Expert Opin Drug Metab Toxicol. 2009;5:1359–1368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.