772
Views
10
CrossRef citations to date
0
Altmetric
Review

Transporter–enzyme interplay and the hepatic drug clearance: what have we learned so far?

, &
Pages 387-401 | Received 22 Jan 2020, Accepted 27 Mar 2020, Published online: 12 Apr 2020

References

  • Vildhede A, Kimoto E, Pelis RM, et al. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin Pharmacol Ther. 2019 Oct 20. DOI:10.1002/cpt.1699
  • Jamei M, Bajot F, Neuhoff S, et al. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine. Clin Pharmacokinet. 2014 Jan;53(1):73–87.
  • Jones HM, Chen Y, Gibson C, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015 Mar;97(3):247–262.
  • Bergman A, Bi YA, Mathialagan S, et al. Effect of hepatic organic anion-transporting polypeptide 1B inhibition and chronic kidney disease on the pharmacokinetics of a liver-targeted glucokinase activator: a model-based evaluation. Clin Pharmacol Ther. 2019 Oct;106(4):792–802.
  • Tan ML, Zhao P, Zhang L, et al. Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates. Clin Pharmacol Ther. 2019 Mar;105(3):719–729.
  • Taskar KS, Pilla Reddy V, Burt H, et al. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: current capabilities, case studies, future opportunities, and recommendations. Clin Pharmacol Ther. 2019. DOI:10.1002/cpt.1693
  • Li R, Barton HA, Maurer TS. Toward prospective prediction of pharmacokinetics in OATP1B1 genetic variant populations. CPT Pharmacometrics Syst Pharmacol. 2014 Dec 10;3(12):e151.
  • Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998 Nov;35(5):361–390.
  • Derungs A, Donzelli M, Berger B, et al. Effects of cytochrome P450 inhibition and induction on the phenotyping metrics of the basel cocktail: a randomized crossover study. Clin Pharmacokinet. 2016 Jan;55(1):79–91.
  • Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013 June;45(6):1121–1132.
  • Zhang N, Liu Y, Jeong H. Drug-drug interaction potentials of tyrosine kinase inhibitors via inhibition of UDP-glucuronosyltransferases. Sci Rep. 2015 Dec;8(5):17778.
  • Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010 Mar;9(3):215–236.
  • Muller M, Jansen PL. Molecular aspects of hepatobiliary transport. Am J Physiol. 1997 June;272(6 Pt 1):G1285–303.
  • Chandra P, Brouwer KL. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res. 2004 May;21(5):719–735.
  • Pfeifer ND, Hardwick RN, Brouwer KL. Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol. 2014;54:509–535.
  • Shitara Y, Maeda K, Ikejiri K, et al. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34(1):45–78.
  • Varma MV, Steyn SJ, Allerton C, et al. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res. 2015 Dec;32(12):3785–3802.
  • Li R, Barton HA, Varma MV. Prediction of pharmacokinetics and drug-drug interactions when hepatic transporters are involved. Clin Pharmacokinet. 2014 Aug;53(8):659–678.
  • Sirianni GL, Pang KS. Organ clearance concepts: new perspectives on old principles. J Pharmacokinet Biopharm. 1997 Aug;25(4):449–470.
  • Yoshida K, Maeda K, Sugiyama Y. Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol. 2013;53:581–612.
  • Watanabe T, Kusuhara H, Maeda K, et al. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos. 2010 Feb;38(2):215–222.
  • Camenisch G, Umehara K. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions. Biopharm Drug Dispos. 2012 May;33(4):179–194.
  • Menochet K, Kenworthy KE, Houston JB, et al. Use of mechanistic modeling to assess interindividual variability and interspecies differences in active uptake in human and rat hepatocytes. Drug Metab Dispos. 2012 Sept;40(9):1744–1756.
  • Jones HM, Barton HA, Lai Y, et al. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos. 2012 May;40(5):1007–1017.
  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005 Jan;22(1):11–23.
  • Varma MV, Chang G, Lai Y, et al. Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion. Drug Metab Dispos. 2012 Aug;40(8):1527–1537.
  • Varma MV, Gardner I, Steyn SJ, et al. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012 May 7;9(5):1199–1212.
  • Di L, Whitney‐Pickett C, Umland JP, et al. Development of a new permeability assay using low‐efflux MDCKII cells. J Pharm Sci. 2011;100(11):4974–4985.
  • Yu H, Wang Q, Sun Y, et al. A new PAMPA model proposed on the basis of a synthetic phospholipid membrane. PloS One. 2015;10(2):e0116502.
  • Fredlund L, Winiwarter S, Hilgendorf C. In vitro intrinsic permeability: a transporter-independent measure of Caco-2 cell permeability in drug design and development. Mol Pharm. 2017;14(5):1601–1609.
  • El-Kattan AF, Varma MV, Steyn SJ, et al. Projecting ADME behavior and drug-drug interactions in early discovery and development: application of the extended clearance classification system. Pharm Res. 2016 Dec;33(12):3021–3030.
  • Varma M, El‐Kattan A, Feng B, et al. Extended clearance classification system (ECCS) informed approach for evaluating investigational drugs as substrates of drug transporters. Clin Pharmacol Ther. 2017;102:33–36.
  • Muck W, Mai I, Fritsche L, et al. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin Pharmacol Ther. 1999 Mar;65(3):251–261.
  • Backman JT, Kyrklund C, Neuvonen M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther. 2002 Dec;72(6):685–691.
  • Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005 June;77(6):468–478.
  • Kajosaari LI, Niemi M, Neuvonen M, et al. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin Pharmacol Ther. 2005 Oct;78(4):388–399.
  • Niemi M, Backman JT, Neuvonen M, et al. Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia. 2003 Mar;46(3):347–351.
  • Varma MV, Scialis RJ, Lin J, et al. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. Aaps J. 2014 July;16(4):736–748.
  • Zheng HX, Huang Y, Frassetto LA, et al. Elucidating rifampin’s inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin Pharmacol Ther. 2009;85(1):78–85.
  • Pasanen MK, Fredrikson H, Neuvonen PJ, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007 Dec;82(6):726–733.
  • Lee YJ, Lee MG, Lim LA, et al. Effects of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of atorvastatin and 2-hydroxyatorvastatin in healthy Korean subjects. Int J Clin Pharmacol Ther. 2010 Jan;48(1):36–45.
  • Lau YY, Huang Y, Frassetto L, et al. effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 2007 Feb;81(2):194–204.
  • Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther. 2000 Oct;68(4):391–400.
  • van Giersbergen PL, Treiber A, Schneiter R, et al. Inhibitory and inductive effects of rifampin on the pharmacokinetics of bosentan in healthy subjects. Clin Pharmacol Ther. 2007 Mar;81(3):414–419.
  • Tornio A, Vakkilainen J, Neuvonen M, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of lovastatin acid. Pharmacogenet Genomics. 2015 Aug;25(8):382–387.
  • Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther. 1996 July;60(1):54–61.
  • Snoeys J, Beumont M, Monshouwer M, et al. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: a PBPK-guided drug development approach. Clin Pharmacol Ther. 2016;99(2):224–234.
  • Chiney MS, Ng J, Gibbs JP, et al. Quantitative assessment of elagolix enzyme-transporter interplay and drug-drug interactions using physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2019. DOI:10.1007/s40262-019-00833-6
  • Siccardi M, D’Avolio A, Nozza S, et al. Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet Genomics. 2010 Dec;20(12):759–765.
  • Vourvahis M, Plotka A, Kantaridis C, et al. The effects of boceprevir and telaprevir on the pharmacokinetics of maraviroc: an open-label, fixed-sequence study in healthy volunteers. J Acquir Immune Defic Syndr. 2014 Apr 15;65(5):564–570.
  • Abel S, Russell D, Taylor-Worth RJ, et al. Effects of CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers. Br J Clin Pharmacol. 2008 Apr;65(Suppl 1):27–37.
  • Lu Y, Fuchs EJ, Hendrix CW, et al. CYP3A5 genotype impacts maraviroc concentrations in healthy volunteers. Drug Metab Dispos. 2014 Nov;42(11):1796–1802.
  • Vourvahis M, McFadyen L, Nepal S, et al. No clinical impact of CYP3A5 gene polymorphisms on the pharmacokinetics and/or efficacy of maraviroc in healthy volunteers and HIV-1-infected subjects. J Clin Pharmacol. 2019 Jan;59(1):139–152.
  • Miners J. CYP2C9 polymorphism: impact on tolbutamide pharmacokinetics and response. Pharmacogenetics. 2002 Mar;12(2):91–92.
  • Niinuma Y, Saito T, Takahashi M, et al. Functional characterization of 32 CYP2C9 allelic variants. Pharmacogenomics J. 2014 Apr;14(2):107–114.
  • Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis. 1990 Mar-Apr;12(Suppl 3):S327–S333.
  • Flora DR, Rettie AE, Brundage RC, et al. CYP2C9 genotype-dependent warfarin pharmacokinetics: impact of CYP2C9 genotype on R- and S-warfarin and their oxidative metabolites. J Clin Pharmacol. 2017 Mar;57(3):382–393.
  • Hynninen VV, Olkkola KT, Bertilsson L, et al. Voriconazole increases while itraconazole decreases plasma meloxicam concentrations. Antimicrob Agents Chemother. 2009 Feb;53(2):587–592.
  • Emoto C, Johnson TN, Neuhoff S, et al. PBPK model of morphine incorporating developmental changes in hepatic OCT1 and UGT2B7 proteins to explain the variability in clearances in neonates and small infants. CPT Pharmacometrics Syst Pharmacol. 2018 July;7(7):464–473.
  • Emoto C, Fukuda T, Johnson TN, et al. Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT Pharmacometrics Syst Pharmacol. 2017 Feb;6(2):110–119.
  • Fukuda T, Chidambaran V, Mizuno T, et al. OCT1 genetic variants influence the pharmacokinetics of morphine in children. Pharmacogenomics. 2013 July;14(10):1141–1151.
  • Stamer UM, Musshoff F, Stuber F, et al. Loss-of-function polymorphisms in the organic cation transporter OCT1 are associated with reduced postoperative tramadol consumption. Pain. 2016 Nov;157(11):2467–2475.
  • Kalliokoski A, Neuvonen M, Neuvonen PJ, et al. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br J Clin Pharmacol. 2008 Dec;66(6):818–825.
  • Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011 Mar;63(1):157–181.
  • Kivisto KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res. 2007 Feb;24(2):239–247.
  • Maeda K, Ikeda Y, Fujita T, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011 Oct;90(4):575–581.
  • Varma MV, Lin J, Bi YA, et al. Quantitative rationalization of gemfibrozil drug interactions: consideration of transporters-enzyme interplay and the role of circulating metabolite gemfibrozil 1-O-beta-glucuronide. Drug Metab Dispos. 2015 July;43(7):1108–1118.
  • Varma MV, Kimoto E, Scialis R, et al. Transporter-mediated hepatic uptake plays an important role in the pharmacokinetics and drug-drug interactions of montelukast. Clin Pharmacol Ther. 2017 Mar;101(3):406–415.
  • Varma MV, Bi YA, Kimoto E, et al. Quantitative prediction of transporter- and enzyme-mediated clinical drug-drug interactions of organic anion-transporting polypeptide 1B1 substrates using a mechanistic net-effect model. J Pharmacol Exp Ther. 2014 Oct;351(1):214–223.
  • Kimoto E, Vourvahis M, Scialis RJ, et al. Mechanistic evaluation of the complex drug-drug interactions of maraviroc: contribution of cytochrome P450 3A, P-glycoprotein and organic anion transporting polypeptide 1B1. Drug Metab Dispos. 2019 May;47(5):493–503.
  • Shen H, Lai Y, Rodrigues AD. Organic anion transporter 2: an enigmatic human solute carrier. Drug Metab Dispos. 2017 Feb;45(2):228–236.
  • Bi Y, Lin J, Mathialagan S, et al. Role of hepatic organic anion transporter 2 in the pharmacokinetics of R- and S-warfarin: in vitro studies and mechanistic evaluation. Mol Pharm. 2018 Mar 5;15(3):1284–1295.
  • Bi Y, Mathialagan S, Tylaska L, et al. Organic anion transporter 2 mediates hepatic uptake of tolbutamide, a CYP2C9 probe drug. J Pharmacol Exp Ther. 2018 Mar;364(3):390–398.
  • Shon J-H, Yoon Y-R, Kim K-A, et al. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenet Genomics. 2002;12(2):111–119.
  • Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenet Genomics. 2002;12(2):101–109.
  • Scott J, Poffenbarger PL. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes. 1978;28(1):41–51.
  • Kimoto E, Mathialagan S, Tylaska L, et al. Organic anion transporter 2-mediated hepatic uptake contributes to the clearance of high-permeability-low-molecular-weight acid and zwitterion drugs: evaluation using 25 drugs. J Pharmacol Exp Ther. 2018 Nov;367(2):322–334.
  • Patilea‐Vrana G, Unadkat JD. Transport vs. metabolism: what determines the pharmacokinetics and pharmacodynamics of drugs? Insights from the extended clearance model. Clin Pharmacol Ther. 2016;100(5):413–418.
  • van Montfoort JE, Muller M, Groothuis GM, et al. Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 July;298(1):110–115.
  • Christensen MM, Brasch-Andersen C, Green H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011 Dec;21(12):837–850.
  • Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther. 2008 Feb;83(2):273–280.
  • Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007 May;117(5):1422–1431.
  • Tzvetkov MV, Saadatmand AR, Bokelmann K, et al. Effects of OCT1 polymorphisms on the cellular uptake, plasma concentrations and efficacy of the 5-HT(3) antagonists tropisetron and ondansetron. Pharmacogenomics J. 2012 Feb;12(1):22–29.
  • Matthaei J, Kuron D, Faltraco F, et al. OCT1 mediates hepatic uptake of sumatriptan and loss-of-function OCT1 polymorphisms affect sumatriptan pharmacokinetics. Clin Pharmacol Ther. 2016 June;99(6):633–641.
  • Ellawatty WEA, Masuo Y, Fujita KI, et al. Organic cation transporter 1 is responsible for hepatocellular uptake of the tyrosine kinase inhibitor pazopanib. Drug Metab Dispos. 2018 Jan;46(1):33–40.
  • Watanabe T, Kusuhara H, Maeda K, et al. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther. 2009 Feb;328(2):652–662.
  • Varma MV, Lai Y, Feng B, et al. Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug-drug interactions. Pharm Res. 2012 Oct;29(10):2860–2873.
  • Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005 June;94(6):1259–1276.
  • Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006 June;95(6):1238–1257.
  • Li R, Ghosh A, Maurer TS, et al. Physiologically based pharmacokinetic prediction of telmisartan in human. Drug Metab Dispos. 2014 Oct;42(10):1646–1655.
  • Yoshikado T, Yoshida K, Kotani N, et al. Quantitative analyses of hepatic OATP-mediated interactions between statins and inhibitors using PBPK Modeling with a parameter optimization method. Clin Pharmacol Ther. 2016 Nov;100(5):513–523.
  • Li R, Barton HA. Explaining ethnic variability of transporter substrate pharmacokinetics in healthy Asian and caucasian subjects with allele frequencies of OATP1B1 and BCRP: a mechanistic modeling analysis. Clin Pharmacokinet. 2018 Apr;57(4):491–503.
  • Guo Y, Chu X, Parrott NJ, et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin Pharmacol Ther. 2018 Nov;104(5):865–889.
  • Di L, Feng B, Goosen TC, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013 Dec;41(12):1975–1993.
  • Kimoto E, Bi YA, Kosa RE, et al. Hepatobiliary clearance prediction: species scaling from monkey, dog, and rat, and in vitro-in vivo extrapolation of sandwich-cultured human hepatocytes using 17 drugs. J Pharm Sci. 2017 Sept;106(9):2795–2804.
  • Swift B, Pfeifer ND, Brouwer KL. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev. 2010 Aug;42(3):446–471.
  • Ghibellini G, Vasist LS, Leslie EM, et al. In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther. 2007 Mar;81(3):406–413.
  • Li R, Barton HA, Yates PD, et al. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn. 2014 June;41(3):197–209.
  • Prasad B, Evers R, Gupta A, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014 Jan;42(1):78–88.
  • Kimoto E, Yoshida K, Balogh LM, et al. Characterization of organic anion transporting polypeptide (OATP) expression and its functional contribution to the uptake of substrates in human hepatocytes. Mol Pharm. 2012;9(12):3535–3542.
  • Bosgra S, van de Steeg E, Vlaming ML, et al. Predicting carrier-mediated hepatic disposition of rosuvastatin in man by scaling from individual transfected cell-lines in vitro using absolute transporter protein quantification and PBPK modeling. Eur J Pharm Sci. 2014 Dec;18(65):156–166.
  • Kitamura S, Maeda K, Wang Y, et al. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos. 2008 Oct;36(10):2014–2023.
  • Bi YA, Scialis RJ, Lazzaro S, et al. Reliable rate measurements for active and passive hepatic uptake using plated human hepatocytes. Aaps J. 2017 May;19(3):787–796.
  • Vildhede A, Karlgren M, Svedberg EK, et al. Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab Dispos. 2014 July;42(7):1210–1218.
  • Poulin P, Haddad S. Albumin and uptake of drugs in cells: additional validation exercises of a recently published equation that quantifies the albumin-facilitated uptake mechanism(s) in physiologically based pharmacokinetic and pharmacodynamic modeling research. J Pharm Sci. 2015 Dec;104(12):4448–4458.
  • Kim SJ, Lee KR, Miyauchi S, et al. Extrapolation of in vivo hepatic clearance from in vitro uptake clearance by suspended human hepatocytes for anionic drugs with high binding to human albumin: improvement of in vitro-to-in vivo extrapolation by considering the “albumin-mediated” hepatic uptake mechanism on the basis of the “facilitated-dissociation model”. Drug Metab Dispos. 2019 Feb;47(2):94–103.
  • Bowman CM, Okochi H, Benet LZ. The presence of a transporter-induced protein binding shift: a new explanation for protein-facilitated uptake and improvement for in vitro-in vivo extrapolation. Drug Metab Dispos 2019 Apr;47(4):358–363.
  • Riccardi KA, Tess DA, Lin J, et al. A novel unified approach to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms using suspended human hepatocytes. Drug Metab Dispos. 2019 May;47(5):484–492.
  • Miyauchi S, Masuda M, Kim SJ, et al. The phenomenon of albumin-mediated hepatic uptake of organic anion transport polypeptide substrates: prediction of the in vivo uptake clearance from the in vitro uptake by isolated hepatocytes using a facilitated-dissociation model. Drug Metab Dispos. 2018 Mar;46(3):259–267.
  • Bteich M, Poulin P, Haddad S. The potential protein-mediated hepatic uptake: discussion on the molecular interactions between albumin and the hepatocyte cell surface and their implications for the in vitro-to-in vivo extrapolations of hepatic clearance of drugs. Expert Opin Drug Metab Toxicol. 2019 Aug;15(8):633–658.
  • US Food and Drug Administration. In vitro metabolism- and transporter-mediated drug-drug interaction studies guidance for industry. In: Administration UFaD, editor; 2017.
  • Mitra P, Weinheimer S, Michalewicz M, et al. Prediction and quantification of hepatic transporter-mediated uptake of pitavastatin utilizing a combination of the relative activity factor approach and mechanistic modeling. Drug Metab Dispos. 2018;dmd. 118:080614.
  • Williamson B, Soars A, Owen A, et al. Dissecting the relative contribution of OATP1B1-mediated uptake of xenobiotics into human hepatocytes using siRNA. Xenobiotica. 2013;43(10):920–931.
  • Kunze A, Huwyler J, Camenisch G, et al. Prediction of organic anion-transporting polypeptide 1B1-and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos. 2014;42(9):1514–1521.
  • Bi YA, Costales C, Mathialagan S, et al. Quantitative contribution of six major transporters to the hepatic uptake of drugs: “SLC-Phenotyping” using primary human hepatocytes. J Pharmacol Exp Ther. 2019 July;370(1):72–83.
  • Wang Q, Zheng M, Leil T. Investigating transporter-mediated drug-drug interactions using a physiologically based pharmacokinetic model of rosuvastatin. CPT Pharmacometrics Syst Pharmacol. 2017 Apr;6(4):228–238.
  • Shen H, Yang Z, Mintier G, et al. Cynomolgus monkey as a potential model to assess drug interactions involving hepatic organic anion transporting polypeptides: in vitro, in vivo, and in vitro-to-in vivo extrapolation. J Pharmacol Exp Ther. 2013 Mar;344(3):673–685.
  • Yoshikado T, Toshimoto K, Maeda K, et al. PBPK modeling of coproporphyrin i as an endogenous biomarker for drug interactions involving inhibition of hepatic OATP1B1 and OATP1B3. CPT Pharmacometrics Syst Pharmacol. 2018 Nov;7(11):739–747.
  • Amundsen R, Christensen H, Zabihyan B, et al. Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin. Drug Metab Dispos. 2010 Sept;38(9):1499–1504.
  • Gertz M, Cartwright CM, Hobbs MJ, et al. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm Res. 2013 Mar;30(3):761–780.
  • Asaumi R, Toshimoto K, Tobe Y, et al. Comprehensive PBPK model of rifampicin for quantitative prediction of complex drug-drug interactions: CYP3A/2C9 Induction and OATP inhibition effects. CPT Pharmacometrics Syst Pharmacol. 2018 Mar;7(3):186–196.
  • Li R, Niosi M, Johnson N, et al. A study on pharmacokinetics of bosentan with systems modeling, part 1: translating systemic plasma concentration to liver exposure in healthy subjects. Drug Metab Dispos. 2018 Apr;46(4):346–356.
  • Varma MVS, Bi YA, Lazzaro S, et al. Clopidogrel as a perpetrator of drug-drug interactions: a challenge for quantitative predictions? Clin Pharmacol Ther. 2019 June;105(6):1295–1299.
  • Maeda K, Ohnishi A, Sasaki M, et al. Quantitative investigation of hepatobiliary transport of [(11)C]telmisartan in humans by PET imaging. Drug Metab Pharmacokinet. 2019 Oct;34(5):293–299.
  • Billington S, Shoner S, Lee S, et al. Positron emission tomography imaging of [(11) C]rosuvastatin hepatic concentrations and hepatobiliary transport in humans in the absence and presence of cyclosporin A. Clin Pharmacol Ther. 2019 Nov;106(5):1056–1066.
  • Kaneko K, Tanaka M, Ishii A, et al. A clinical quantitative evaluation of hepatobiliary transport of [(11)C]dehydropravastatin in humans using positron emission tomography. Drug Metab Dispos. 2018 May;46(5):719–728.
  • Gormsen LC, Sundelin EI, Jensen JB, et al. In vivo imaging of human 11C-metformin in peripheral organs: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2016 Dec;57(12):1920–1926.
  • Rose RH, Neuhoff S, Abduljalil K, et al. Application of a physiologically based pharmacokinetic model to predict OATP1B1-related variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst Pharmacol. 2014 July 9;3:e124.
  • Woodhead JL, Yang K, Siler SQ, et al. Exploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury. Front Pharmacol. 2014;5:240.
  • Li R, Maurer TS, Sweeney K, et al. Does the systemic plasma profile inform the liver profile? Analysis using a physiologically based pharmacokinetic model and individual compounds. Aaps J. 2016;18(3):746–756.
  • Takano J, Maeda K, Kusuhara H, et al. Organic anion transporting polypeptide 1a4 is responsible for the hepatic uptake of cardiac glycosides in mice. Drug Metab Dispos. 2018 May;46(5):652–657.
  • Durmus S, van Hoppe S, Schinkel AH. The impact of organic anion-transporting polypeptides (OATPs) on disposition and toxicity of antitumor drugs: insights from knockout and humanized mice. Drug Resist Updat. 2016 July;27:72–88.
  • Higgins JW, Bao JQ, Ke AB, et al. Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos. 2014 Jan;42(1):182–192.
  • van de Steeg E, Wagenaar E, van der Kruijssen CM, et al. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest. 2010 Aug;120(8):2942–2952.
  • Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013 Mar;9(3):237–252.
  • van de Steeg E, van Esch A, Wagenaar E, et al. Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res. 2013 Feb 15;19(4):821–832.
  • Salphati L, Chu X, Chen L, et al. Evaluation of organic anion transporting polypeptide 1B1 and 1B3 humanized mice as a translational model to study the pharmacokinetics of statins. Drug Metab Dispos. 2014 Aug;42(8):1301–1313.
  • Choo EF, Salphati L. Leveraging humanized animal models to understand human drug disposition: opportunities, challenges, and future directions. Clin Pharmacol Ther. 2018 Feb;103(2):188–192.
  • Nishimura T, Hu Y, Wu M, et al. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J Pharmacol Exp Ther. 2013 Feb;344(2):388–396.
  • Hasegawa M, Kawai K, Mitsui T, et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun. 2011 Feb 18;405(3):405–410.
  • Ogawa K, Kato M, Houjo T, et al. A new approach to predicting human hepatic clearance of CYP3A4 substrates using monkey pharmacokinetic data. Xenobiotica. 2013 May;43(5):468–478.
  • Akabane T, Tabata K, Kadono K, et al. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010 Feb;38(2):308–316.
  • Wang L, Prasad B, Salphati L, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015 Mar;43(3):367–374.
  • De Bruyn T, Ufuk A, Cantrill C, et al. Predicting human clearance of organic anion transporting polypeptide substrates using cynomolgus monkey: in vitro-in vivo scaling of hepatic uptake clearance. Drug Metab Dispos. 2018 July;46(7):989–1000.
  • Takahashi T, Ohtsuka T, Yoshikawa T, et al. Pitavastatin as an in vivo probe for studying hepatic organic anion transporting polypeptide-mediated drug-drug interactions in cynomolgus monkeys. Drug Metab Dispos. 2013 Oct;41(10):1875–1882.
  • Ufuk A, Kosa RE, Gao H, et al. In vitro-in vivo extrapolation of OATP1B-mediated drug-drug interactions in cynomolgus monkey. J Pharmacol Exp Ther. 2018 June;365(3):688–699.
  • Prueksaritanont T, Chu X, Evers R, et al. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br J Clin Pharmacol. 2014 Sept;78(3):587–598.
  • Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017 June;22(5):456–472.
  • Vorrink SU, Ullah S, Schmidt S, et al. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. Faseb J. 2017 June;31(6):2696–2708.
  • Foster AJ, Chouhan B, Regan SL, et al. Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch Toxicol. 2019 Apr;93(4):1021–1037.
  • Caetano-Pinto P, Stahl SH. Perspective on the application of microphysiological systems to drug transporter studies. Drug Metab Dispos. 2018 Nov;46(11):1647–1657.
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014 Aug;32(8):760–772.
  • Isoherranen N, Madabushi R, Huang SM. Emerging role of organ-on-a-chip technologies in quantitative clinical pharmacology evaluation. Clin Transl Sci. 2019 Mar;12(2):113–121.
  • Ewart L, Fabre K, Chakilam A, et al. Navigating tissue chips from development to dissemination: a pharmaceutical industry perspective. Exp Biol Med (Maywood). 2017 Oct;242(16):1579–1585.
  • Tsamandouras N, Kostrzewski T, Stokes CL, et al. Quantitative assessment of population variability in hepatic drug metabolism using a perfused three-dimensional human liver microphysiological system. J Pharmacol Exp Ther. 2017 Jan;360(1):95–105.
  • Chang SY, Weber EJ, Ness KV, et al. Liver and Kidney on chips: microphysiological models to understand transporter function. Clin Pharmacol Ther. 2016 Nov;100(5):464–478.
  • Vernetti L, Gough A, Baetz N, et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep. 2017 Feb;8(7):42296.
  • McAleer CW, Pointon A, Long CJ, et al. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci Rep. 2019 July 3;9(1):9619.
  • Sung JH, Wang Y, Shuler ML. Strategies for using mathematical modeling approaches to design and interpret multi-organ microphysiological systems (MPS). APL Bioeng. 2019 June;3(2):021501.
  • Yu J, Cilfone NA, Large EM, et al. Quantitative systems pharmacology approaches applied to microphysiological systems (MPS): data interpretation and multi-MPS integration. CPT Pharmacometrics Syst Pharmacol. 2015 Oct;4(10):585–594.
  • Vernetti LA, Senutovitch N, Boltz R, et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood). 2016 Jan;241(1):101–114.
  • Vivares A, Salle-Lefort S, Arabeyre-Fabre C, et al. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica. 2015 Jan;45(1):29–44.
  • Fukuda Y, Kaishima M, Ohnishi T, et al. Fluid shear stress stimulates MATE2-K expression via Nrf2 pathway activation. Biochem Biophys Res Commun. 2017 Mar 4;484(2):358–364.
  • Ribeiro AJS, Yang X, Patel V, et al. Liver microphysiological systems for predicting and evaluating drug effects. Clin Pharmacol Ther. 2019 July;106(1):139–147.
  • van der Made TK, Fedecostante M, Scotcher D, et al. Quantitative translation of microfluidic transporter in vitro data to in vivo reveals impaired albumin-facilitated indoxyl sulfate secretion in chronic kidney disease. Mol Pharm. 2019 Sept;16:4551–4562.
  • Bell CC, Dankers ACA, Lauschke VM, et al. Comparison of hepatic 2D sandwich cultures and 3d spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci. 2018 Apr 1;162(2):655–666.
  • Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos. 2017 Nov;45(11):1178–1188.
  • Bowman CM, Benet LZ. In vitro-in vivo extrapolation and hepatic clearance-dependent underprediction. J Pharm Sci. 2019 July;108(7):2500–2504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.