694
Views
25
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer’s disease

Pages 673-701 | Received 30 Mar 2020, Accepted 04 Jun 2020, Published online: 23 Jun 2020

References

  • Cacabelos R, Fernández-Novoa L, Lombardi V, et al. Molecular genetics of Alzheimer’s disease and aging. Meth. Find. Exp. Clin. Pharmacol.. 2005;27:1–573.
  • Cacabelos R. Pharmacogenomics in Alzheimer’s disease. Methods Mol Biol. 2008;448:213–357.
  • Cacabelos R, Cacabelos P, Torrellas C, et al. Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol. 2014;1175:323–556.
  • Cacabelos R, Carril JC, Cacabelos P, et al. Pharmacogenomics of Alzheimer’s Disease: genetic determinants of phenotypic variation and therapeutic outcome. J. Genomic Med. Pharmacogenomics.. 2016;1:151–209.
  • Cacabelos R, Carril JC, Cacabelos N, et al. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. Int J Mol Sci. 2019;20(5):E1249.
  • Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: review. JAMA. 2019;322(16):1589–1599.
  • Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2(8000):1403.
  • Bowen DM, Smith CB, White P, et al. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976;99(3):459–496.
  • Whitehouse PJ, Price DL, Struble RG, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982;215:1237–1239.
  • Summers WK, Kaufman KA, Altman F. THA-a review of the literature and its use in treatment of five overdose patients. Clin Toxicol. 1980;16(3):269–281.
  • Summers WK, Majovski LV, Marsh GM, et al. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med. 1986;315(20):1241–1245. 13.
  • Summers WK, Koehler AL, Marsh GM, et al. Long-term hepatotoxicity of tacrine. Lancet. 1989;1(8640):729.
  • Alzheimer Disease Agents. LiverTox: clinical and research information on drug-induced liver injury [internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012-. 2020. p. Jan. 15.
  • Cacabelos R. Have there been improvement in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Discov. 2018;13(6):523–538.
  • Moraes FS, Souza MLC, Lucchetti G, et al. Trends and disparities in the use of cholinesterase inhibitors to treat Alzheimer’s disease dispensed by the Brazilian public health system - 2008 to 2014: a nation-wide analysis. Arq Neuropsiquiatr. 2018;76(7):444–451.
  • Thorpe CT, Fowler NR, Harrigan K, et al. Racial and ethnic differences in initiation and discontinuation of antidementia drugs by medicare beneficiaries. J Am Geriatr Soc. 2016;64(9):1806–1814.
  • Petit AE, Mangeard H, Chazard E, et al. Changes in drug management of Alzheimer’s disease in nursing homes: impact of the media campaign against specific drugs for Alzheimer’s disease. Encephale. 2017;43(1):21–26.
  • Wang JH, Wu YJ, Tee BL, et al. Medical comorbidity in Alzheimer’s disease: a nested case-control study. J Alzheimers Dis. 2018;63(2):773–781.
  • Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol. 2019;12(5):407–442.
  • Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. Expert Rev Precis Med Drug Dev. 2020;5(3):181–234.
  • Valladales-Restrepo LF, Duran-Lengua M, Machado-Alba JE. Potentially inappropriate prescriptions of anticholinergics drugs in Alzheimer’s disease patients. Geriatr Gerontol Int. 2019;19(9):913–917.
  • Schultz BR, Takeshita J, Goebert D, et al. Simultaneous usage of dementia medications and anticholinergics among Asians and Pacific Islanders. Psychogeriatrics. 2017;17(6):423–429.
  • Hernández-Arroyo MJ, Díaz-Madero A. Risk/benefit assessment in the treatment of Alzheimer’s disease. drug interactions]. Rev Esp Geriatr Gerontol. 2016;51(4):191–195.
  • Pirker-Kees A, Dal-Bianco P, Schmidt R. Effects of psychotropic medication on cognition, caregiver burden, and neuropsychiatric symptoms in alzheimer’s disease over 12 months: results from a prospective registry of dementia in Austria (prodem). J Alzheimers Dis. 2019;71(2):623–630.
  • Bravo-José P, Sáez-Lleó CI, Peris-Martí JF. Deprescribing antipsychotics in long term care patients with dementia. Farm Hosp. 2019;43(4):140–145.
  • Mantri S, Fullard M, Gray SL, et al. Patterns of dementia treatment and frank prescribing errors in older adults with Parkinson disease. JAMA Neurol. 2019;76(1):41–49.
  • Zheng WY, Richardson LC, Li L, et al. Drug-drug interactions and their harmful effects in hospitalised patients: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2018;74(1):15–27.
  • Patel RI, Beckett RD. Evaluation of resources for analyzing drug interactions. J Med Libr Assoc. 2016;104(4):290–295.
  • Shoshi A, Müller U, Shoshi A, et al. An ehealth system for biomedical risk analysis of drugs. Stud Health Technol Inform. 2017;236:128–135.
  • Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci U S A. 1995;92(26):12260–12264.
  • Cacabelos R, Fernández-Novoa L, Pichel V, et al. Pharmacogenomic studies with a combination therapy in Alzheimer’s disease. In: Takeda M, Tanaka T, Cacabelos R, editors. Molecular neurobiology of Alzheimer’s disease and related disorders. Basel: Karger; 2004. p. 94–107.
  • Cacabelos R. Pharmacogenomics of cognitive dysfunction and neuropsychiatric disorders in dementia. Int J Mol Sci. 2020;21(9):3059.
  • Cacabelos R. World guide for drug use and pharmacogenomics. Corunna (SP): EuroEspes Publishing; 2012.
  • Cacabelos R. Population-level pharmacogenomics for precision drug development in dementia. Expert Rev Precis Med Drug Dev. 2018;3(3):163–188.
  • Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res. 2014;75(6):348–365.
  • Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med. 2017;19(1):20–29.
  • Zhou ZW, Chen XW, Sneed KB, et al. Clinical association between pharmacogenomics and adverse drug reactions. Drugs. 2015;75(6):589–631.
  • Marcath LA, Pasternak AL, Hertz DL. Challenges to assess substrate-dependent allelic effects in CYP450 enzymes and the potential clinical implications. Pharmacogenomics J. 2019;19(6):501–515.
  • Lesche D, Mostafa S, Everall I, et al. Impact of CYP1A2, CYP2C19, and CYP2D6 genotype- and phenoconversion-predicted enzyme activity on clozapine exposure and symptom severity. Pharmacogenomics J. 2020;20(2):192–201.
  • Mesulam M. Cholinergic pathology of aging-mild cognitive impairment-Alzheimer’s disease continuum: functional and therapeutic implications. In: Giacobini E, Pepeu G, editors. The Brain Cholinergic System. Abindon (UK): Informa Healthcare; 2006. p. 47–58.
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, et al. Alzheimer’s disease: targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101–115.
  • Blusztajn JK, Berse B. The cholinergic neuronal phenotype in Alzheimer’s disease. Metab Brain Dis. 2000;15(1):45–64.
  • Gau JT, Steinhilb ML, Kao TC, et al. Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol. 2002;160(2):731–738.
  • Erickson JD, Varoqui H, Schafer MKH, et al. Functional identification of a vesicular acetylcholine transporter and its expression from a ‘cholinergic’ gene locus. J Biol Chem. 1994;269(35):21929–21932.
  • Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int. 1999;49(11):921–937.
  • Ohno K, Tsujino A, Brengman JM, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Nat Acad Sci. 2001;98(4):2017–2022.
  • Kraner S, Laufenberg I, Strassburg HM, et al. Congenital myasthenic syndrome with episodic apnea in patients homozygous for a CHAT missense mutation. Arch Neurol. 2003;60(5):761–763.
  • Harold D, Peirce T, Moskvina V, et al. Sequence variation in the CHAT locus shows no association with late-onset Alzheimer’s disease. Hum Genet. 2003;113(3):258–267.
  • Rigby MJ, Ding Y, Farrugia MA, et al. The endoplasmic reticulum acetyltransferases ATase1/NAT8B and ATase2/NAT8 are differentially regulated to adjust engagement of the secretory pathway. J Neurochem. 2020;e14958. DOI:10.1111/jnc.14958.
  • Soreq H, Ben-Aziz R, Prody CA, et al. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G+C-rich attenuating structure. Proc Nat Acad Sci. 1990;87(24):9688–9692.
  • Xie HQ, Liang D, Leung KW, et al. Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons. J Biol Chem. 2010;285(15):11537–11546.
  • Karpel R, Ben Aziz-Alova R, Sternfeld M, et al. Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins. Exp Cell Res. 1994;210(2):268–277.
  • Ehrlich G, Viegas-Pequignot E, Ginzberg D, et al. Mapping the human acetylcholinesterase gene to chromosome 7q22 by fluorescent in situ hybridization coupled with selective PCR amplification from a somatic hybrid cell panel and chromosome-sorted DNA libraries. Genomics. 1992;13(4):1192–1197.
  • Santos SCR, Vala I, Miguel C, et al. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein. J Biol Chem. 2007;282(35):25597–25603.
  • Shapira M, Tur-Kaspa I, Bosgraaf L, et al. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet. 2000;9(9):1273–1281.
  • Kuhl DE, Koeppe RA, Minoshima S, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology. 1999;52(4):691–699.
  • Hicks DA, Makova NZ, Gough M, et al. The amyloid precursor protein represses expression of acetylcholinesterase in neuronal cell lines. J Biol Chem. 2013;288(36):26039–26051.
  • Beeri R, Le Novère N, Mervis R, et al. Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J Neurochem. 1997;69(6):2441–2451.
  • Gaughan G, Park H, Priddle J, et al. Refinement of the localization of human butyrylcholinesterase to chromosome 3q26.1-q26.2 using a PCR-derived probe. Genomics. 1991;11(2):455–458.
  • Garcia DF, Oliviera TG, Molfetta GA, et al. Biochemical and genetic analysis of butyrylcholinesterase (BChE) in a family, due to prolonged neuromuscular blockade after the use of succinylcholine. Genet Molec Biol. 2011;34(1):40–44.
  • Delacour H, Lushchekina S, Mabboux I, et al. Characterization of a novel butyrylcholinesterase point mutation (p.Ala34Val), ‘silent’ with mivacurium. Biochem Pharmacol. 2014;92(3):476–483.
  • Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharm Ther. 2015;148:34–46.
  • Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Canad J Biochem Physiol. 1957;35(1):1305–1320.
  • Bartels CF, James K, La Du BN. DNA mutations associated with the human butyrylcholinesterase J-variant. Am J Hum Genet. 1992;50(5):1104–1114.
  • Rubinstein HM, Dietz AA, Lubrano T. E1(k), another quantitative variant at cholinesterase locus 1. J Med Genet. 1978;15(1):27–29.
  • Whittaker M, Britten JJ. Recognition of two new phenotypes segregating the E1k Allele For Plasma Cholinesterase. Hum Hered. 1988;38(4):233–239.
  • Evans RT, Wardell J. On the identification and frequency of the J and K cholinesterase phenotypes in a caucasian population. J Med Genet. 1984;21(2):99–102.
  • Lehmann DJ, Johnston C, Smith AD. Synergy between the genes for butyrylcholinesterase K variant and apolipoprotein E4 in late-onset confirmed Alzheimer’s disease. Hum Mol Genet. 1997;6(11):1933–1936.
  • Wiebusch H, Poirier J, Sevigny P, et al. Further evidence for a synergistic association between APOE-4 and BCHE -K in confirmed Alzheimer’s disease. Hum Genet. 1999;104(2):158–163.
  • McIlroy SP, Crawford VLS, Dynan KB, et al. Butyrylcholinesterase K variant is genetically associated with late onset Alzheimer’s disease in Northern Ireland. J Med Genet. 2000;37(3):182–185.
  • O’Brien KK, Saxby BK, Ballard CG, et al. Regulation of attention and response to therapy in dementia by butyrylcholinesterase. Pharmacogenetics. 2003;13(4):231–239.
  • Mikami LR, Wieseler S, Souza RL, et al. Expression of three naturally occurring genetic variants (G75R, E90D, I99M) of the BCHE gene of human butyrylcholinesterase. Pharmacogenet Genomics. 2007;17(9):681–685.
  • Lando G, Mosca A, Bonora R, et al. Frequency of butyrylcholinesterase gene mutations in individuals with abnormal inhibition numbers: an Italian-population study. Pharmacogenetics. 2003;13(5):265–270.
  • Lane R, Feldman HH, Meyer J, et al. Synergistic effect of apolipoprotein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmacogenet Genomics. 2008;18(4):289–928.
  • Darreh-Shori T, Siawesh M, Mousavi M, et al. Apolipoprotein ε4 modulates phenotype of butyrylcholinesterase in CSF of patients with Alzheimer’s disease. J Alzheimers Dis. 2012;28(2):443–458.
  • Apparsundaram S, Ferguson SM, George AL, et al. Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Biochem Biophys Res Commun. 2000;276(3):862–867.
  • Okuda T, Haga T. Functional characterization of the human high-affinity choline transporter 1. FEBS Lett. 2000;484(2):92–97.
  • Okuda T, Okamura M, Kaitsuka C, et al. Single nucleotide polymorphism of the human high affinity choline transporter alters transport rate. J Biol Chem. 2002;277(47):45315–45322.
  • Barwick KES, Wright J, Al-Turki S, et al. Defective presynaptic choline transport underlies hereditary motor neuropathy. Am J Hum Genet. 2012;91(6):1103–1107.
  • Bauche S, O’Regan S, Azuma Y, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet. 2016;99(3):753–761.
  • Lockman PR, Allen DD. The transport of choline. Drug Dev Ind Pharm. 2002;28(7):749–771.
  • Hassel B, Solyga V, Lossius A. High-affinity choline uptake and acetylcholine-metabolizing enzymes in CNS white matter. a quantitative study. Neurochem Int. 2008;53(6–8):193–198.
  • Kristofiková Z, Kopecký V, Hofbauerová K, et al. Complex of amyloid beta peptides with 24-hydroxycholesterol and its effect on hemicholinium-3 sensitive carriers. Neurochem Res. 2008;33(3):412–421.
  • Bissette G, Seidler FJ, Nemeroff CB, et al. High affinity choline transporter status in Alzheimer’s disease tissue from rapid autopsy. Ann N Y Acad Sci. 1996;777(1):197–204.
  • Slotkin TA, Nemeroff CB, Bissette G, et al. Overexpression of the high affinity choline transporter in cortical regions affected by Alzheimer’s diseaseEvidence from rapid autopsy studies. J Clin Invest.. 1994;94(2):696–702.
  • Cuddy LK, Seah C, Pasternak SH, et al. Amino-terminal β-amyloid antibody blocks β-amyloid-mediated inhibition of the high-affinity choline transporter CHT. Front Mol Neurosci. 2017;10:361.
  • Wang B, Yang L, Wang Z, et al. Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc Natl Acad Sci USA. 2007;104(35):14140–14145.
  • Cuddy LK, Seah C, Pasternak SH, et al. Differential regulation of the high-affinity choline transporter by wild-type and Swedish mutant amyloid precursor protein. J Neurochem. 2015;134(4):769–782.
  • Payette DJ, Xie J, Guo Q. Reduction in CHT1-mediated choline uptake in primary neurons from presenilin-1 M146V mutant knock-in mice. Brain Res. 2007;1135(1):12–21.
  • Del Pino J, Moyano P, Díaz GG, et al. Primary hippocampal neuronal cell death induction after acute and repeated paraquat exposures mediated by AChE variants alteration and cholinergic and glutamatergic transmission disruption. Toxicology. 2017;390:88–99.
  • Del Pino J, Moyano P, Anadon MJ, et al. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration. Toxicology. 2015;336:1–9.
  • Chen BH, Park JH, Kim DW, et al. Melatonin improves cognitive deficits via restoration of cholinergic dysfunction in a mouse model of scopolamine-induced Amnesia. ACS Chem Neurosci. 2018;9(8):2016–2024.
  • Kristofikova Z, Ricny J, Soukup O, et al. Inhibitors of Acetylcholinesterase derived from 7-methoxytacrine and their effects on the choline transporter CHT1. Dement Geriatr Cogn Disord. 2017;43(1–2):45–58.
  • Volpicelli-Daley LA, Hrabovska A, Duysen EG, et al. Altered striatal function and muscarinic cholinergic receptors in acetylcholinesterase knockout mice. Mol Pharmacol. 2003;64(6):1309–1316.
  • Yamada H, Imajoh-Ohmi S, Haga T. The high-affinity choline transporter CHT1 is regulated by the ubiquitin ligase Nedd4-2. Biomed Res. 2012;33(1):1–8.
  • Fishwick KJ, Rylett RJ, Kanzaki M. Insulin regulates the activity of the high-affinity choline transporter CHT. PLoS One. 2015;10(7):e0132934.
  • Tomassoni D, Catalani A, Cinque C, et al. Effects of cholinergic enhancing drugs on cholinergic transporters in the brain and peripheral blood lymphocytes of spontaneously hypertensive rats. Curr Alzheimer Res. 2012;9(1):120–127.
  • Luo D, Chen L, Yu B. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis. Biochem Biophys Res Commun. 2017;488(1):204–210.
  • Ennis EA, Wright J, Retzlaff CL, et al. Identification and characterization of ML352: a novel, noncompetitive inhibitor of the presynaptic choline transporter. ACS Chem Neurosci. 2015;6(3):417–427.
  • Kang YS, Lee KE, Lee NY, et al. Donepezil, tacrine and alpha-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB). Arch Pharm Res. 2005;28(4):443–450.
  • O’Grady GL, Verschuuren C, Yuen M, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology. 2016;87(14):1442–1448.
  • Wang Y, Zhou Z, Tan H, et al. Nitrosylation of Vesicular Transporters in Brain of Amyloid Precursor Protein/Presenilin 1 Double Transgenic Mice. J Alzheimers Dis. 2017;55(4):1683–1692.
  • Nagy PM, Aubert I. Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience. 2012;218:1–11.
  • Nagy PM, Aubert I. B6eGFPChAT mice overexpressing the vesicular acetylcholine transporter exhibit spontaneous hypoactivity and enhanced exploration in novel environments. Brain Behav. 2013;3(4):367–383.
  • de Castro BM, Pereira GS, Magalhães V, et al. Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. Genes Brain Behav. 2009;8(1):23–35.
  • Kolisnyk B, Al-Onaizi MA, Xu J, et al. Cholinergic regulation of hnRNPA2/B1 translation by M1 muscarinic receptors. J Neurosci. 2016;36(23):6287–6296.
  • Hu L, Wong TP, Côté SL, et al. The impact of Abeta-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer’s disease-like transgenic mice. Neuroscience. 2003;121(2):421–432.
  • Dolejší E, Liraz O, Rudajev V, et al. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice. J Neurochem. 2016;136(3):503–509.
  • Mazère J, Prunier C, Barret O, et al. In vivo SPECT imaging of vesicular acetylcholine transporter using [(123)I]-IBVM in early Alzheimer’s disease. Neuroimage. 2008;40(1):280–288.
  • Efange SM, Garland EM, Staley JK, et al. Vesicular acetylcholine transporter density and Alzheimer’s disease. Neurobiol Aging. 1997;18(4):407–413.
  • Gilmor ML, Erickson JD, Varoqui H, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol. 1999;411(4):693–704.
  • Parent MJ, Bedard MA, Aliaga A, et al. Cholinergic depletion in Alzheimer’s disease shown by [(18) F]FEOBV autoradiography. Int J Mol Imaging. 2013;2013:205045.
  • Kovac M, Mavel S, Deuther-Conrad W, et al. 3D QSAR study, synthesis, and in vitro evaluation of (+)-5-FBVM as potential PET radioligand for the vesicular acetylcholine transporter (VAChT). Bioorg Med Chem. 2010;18(21):7659–7667.
  • Giboureau N, Som IM, Boucher-Arnold A, et al. PET radioligands for the vesicular acetylcholine transporter (VAChT). Curr Top Med Chem. 2010;10(15):1569–1583.
  • Albin RL, Bohnen NI, Muller MLTM, et al. Regional vesicular acetylcholine transporter distribution in human brain: A [18 F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol. 2018;526(17):2884–2897.
  • Aghourian M, Legault-Denis C, Soucy JP, et al. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol Psychiatry. 2017;22(11):1531–1538.
  • Higashida H, Yokoyama S, Tsuji C, et al. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson’s, Alzheimer’s, and psychiatric diseases. J Physiol Sci. 2017;67(1):11–17.
  • Wallace TL, Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol. 2013;85(12):1713–1720.
  • Weng PH, Chen JH, Chen TF, et al. CHRNA7 polymorphisms and dementia risk: interactions with apolipoprotein ε4 and cigarette smoking. Sci Rep. 2016;6(1):27231.
  • Russo P, Kisialiou A, Moroni R, et al. Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer’s disease. Curr Drug Targets. 2017;18(10):1179–1190.
  • Yang WN, Ma KG, Chen XL, et al. Mitogen-activated protein kinase signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor-mediated amyloid-β uptake in SH-SY5Y cells. Neuroscience. 2014;278:276–290.
  • Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides. 2019;73:96–106.
  • Sinkus ML, Graw S, Freedman R, et al. The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology. 2015;96(Pt B):274–288.
  • Jiang Y, Yuan H, Huang L, et al. Global proteomic profiling of the uniquely human CHRFAM7A gene in transgenic mouse brain. Gene. 2019;714:143996.
  • Liu Q, Xie X, Emadi S, et al. A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity. Neuropharmacology. 2015;97:457–463.
  • Sadigh-Eteghad S, Talebi M, Mahmoudi J, et al. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice. Neuroscience. 2015;298:81–93.
  • Li L, Liu Z, Jiang YY, et al. Acetylcholine suppresses microglial inflammatory response via α7nAChR to protect hippocampal neurons. J Integr Neurosci. 2019;18(1):51–56.
  • Chang KW, Zong HF, Ma KG, et al. Activation of α7 nicotinic acetylcholine receptor alleviates Aβ1-42-induced neurotoxicity via downregulation of p38 and JNK MAPK signaling pathways. Neurochem Int. 2018;120:238–250.
  • Shi S, Liang D, Bao M, et al. Gx-50 inhibits neuroinflammation via α7 nAChR activation of the JAK2/STAT3 and PI3K/AKT pathways. J Alzheimers Dis. 2016;50(3):859–871.
  • Yin J, Chen W, Yang H, et al. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes. Sci Rep. 2017;7(1):39941.
  • Schaaf CP. Nicotinic acetylcholine receptors in human genetic disease. Genet Med. 2014;16(9):649–656.
  • Darreh-Shori T, Rezaeianyazdi S, Lana E, et al. Increased active OMI/HTRA2 serine protease displays a positive correlation with cholinergic alterations in the Alzheimer’s disease brain. Mol Neurobiol. 2019;56(7):4601–4619.
  • McKeever PM, Kim T, Hesketh AR, et al. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2017;57:104–119.
  • Kolisnyk B, Al-Onaizi M, Soreq L, et al. Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer’s-like pathology. Cereb Cortex. 2017;27(7):3553–3567.
  • Cacabelos R, Tellado I, Cacabelos P. The epigenetic machinery in the life cycle and pharmacoepigenetics. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford (UK): Academic Press/Elsevier; 2019. p. 1–100.
  • Cacabelos R, Carril JC, Sanmartín A, et al. Pharmacoepigenetic processors: epigenetic drugs, drug resistance, toxicoepigenetics, and nutriepigenetics. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford (UK): Academic Press/Elsevier; 2019. p. 191–424.
  • Apostolova LG, Risacher SL, Duran T, et al. Alzheimer’s disease neuroimaging initiative. associations of the Top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol. 2018;75(3):328–341.
  • Cacabelos R, Meyyazhagan A, Carril JC, et al. Pharmacogenetics of vascular risk factors in Alzheimer’s disease. J Pers Med. 2018;8(1):E3.
  • Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci. 2015;16(12):30483–30543.
  • Cacabelos R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related risk factors. Future Neurol. 2018;13(2):2.
  • Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer’s disease. Expert Opin Drug Discov. 2014;9(9):1059–1086.
  • Cacabelos R, Torrellas C. Pharmacogenomics of antidepressants. HSOA J Psychiatry Depression Anxiety. 2015;1(1):001.
  • Foraker J, Millard SP, Leong L. The APOE gene is differentially methylated in Alzheimer’s disease. J Alzheimers Dis. 2015;48(3):745–755.
  • Liu J, Zhao W, Ware EB, et al. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med Genomics. 2018;11(1):43.
  • Dresselhaus E, Duerr JM, Vincent F, et al. Class I HDAC inhibition is a novel pathway for regulating astrocytic apoE secretion. PLoS One. 2018;13(3):e0194661.
  • Shao Y, Shaw M, Todd K, et al. DNA methylation of TOMM40-APOE-APOC2 in Alzheimer’s disease. J Hum Genet. 2018;63(4):459–471.
  • Ghanbari M, Ikram MA, de Looper HWJ, et al. Genome-wide identification of microRNA-related variants associated with risk of Alzheimer’s disease. Sci Rep. 2016;6(1):28387.
  • Dorszewska J, Prendecki M, Oczkowska A, et al. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res. 2016;13(9):952–963.
  • Driscoll I, Snively BM, Espeland MA, et al. A candidate gene study of risk for dementia in older, postmenopausal women: results from the women’s health initiative memory study. Int J Geriatr Psychiatry. 2019;34(5):692–699.
  • Bi R, Zhang W, Zhang DF, et al. Genetic association of the cytochrome c oxidase-related genes with Alzheimer’s disease in Han Chinese. Neuropsychopharmacology. 2018;43(11):2264–2276.
  • Holstege H, van der Lee S, Hulsman M, et al. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet. 2017;25(8):973–981.
  • Lefterov I, Wolfe CM, Fitz NF, et al. APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain. Alzheimers Res Ther. 2019;11(1):113.
  • Zhou L, Li HY, Wang JH, et al. Correlation of gene polymorphisms of CD36 and ApoE with susceptibility of Alzheimer disease: a case-control study. Medicine (Baltimore). 2018;97(38):e12470.
  • Broer L, Buchman AS, Deelen J, et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol A Biol Sci Med Sci. 2015;70(1):110–118.
  • Lyall DM, Royle NA, Harris SE, et al. Alzheimer’s disease susceptibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936. PLoS One. 2013;8(11):e80513.
  • Reitz C, Jun G, Naj A, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483–1492.
  • Davies G, Harris SE, Reynolds CA, et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol Psychiatry. 2014;19(1):76–87.
  • Bronfman FC, Tesseur I, Hofker MH, et al. No evidence for cholinergic problems in apolipoprotein E knockout and apolipoprotein E4 transgenic mice. Neuroscience. 2000;97(3):411–418.
  • Lee WJ, Liao YC, Wang YF, et al. Summative effects of vascular risk factors on the progression of Alzheimer disease. J Am Geriatr Soc. 2020;68(1):129–136.
  • Vogelgesang S, Cascorbi I, Schroeder E, et al. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics. 2002;12(7):535–541.
  • Szablewski L. Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis. 2017;55(4):1307–1320.
  • Cacabelos R, López-Muñoz F. The ABCB1 transporter in Alzheimer’s disease. Clin Exp Pharmacol. 2014;4(2):e128.
  • Cacabelos R, Cacabelos P, Carril JC. Epigenetics and pharmacoepigenetics of age-related neurodegenerative disorders. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford (UK): Academic Press/Elsevier; 2019. p. 903–950.
  • Berg CN, Sinha N, Gluck MA. The Effects of APOE and ABCA7 on cognitive function and Alzheimer’s disease risk in African Americans: a focused mini review. Front Hum Neurosci. 2019;13:38.
  • Pereira CD, Martins F, Wiltfang J, et al. ABC transporters are key players in Alzheimer’s disease. J Alzheimers Dis. 2018;61(2):463–485.
  • Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets. 2011;12(5):600–620.
  • Haufroid V. Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr Drug Targets. 2011;12(5):631–646.
  • Chai AB, Leung GKF, Callaghan R, et al. P-glycoprotein: a role in the export of amyloid-β in Alzheimer’s disease? Febs J. 2020;287(4):612–625.
  • Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. 2013;4:45.
  • Alharbi HA, Alcorn J, Al-Mousa A, et al. Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein. J Appl Toxicol. 2017;37(5):591–601.
  • Bruckmann S, Brenn A, Grube M, et al. Lack of P-glycoprotein results in impairment of removal of beta-amyloid and increased intraparenchymal cerebral amyloid angiopathy after active immunization in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2017;14(6):656–667.
  • Fehér Á, Juhász A, Pákáski M, et al. ABCB1 C3435T polymorphism influences the risk for Alzheimer’s disease. J Mol Neurosci. 2014;54(4):826–829.
  • Alam MA, Datta PK. Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front Pharmacol. 2019;10:1510.
  • Sharma A, Kazim SF, Larson CS, et al. Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures. Proc Natl Acad Sci USA. 2019;116(43):21800–21811.
  • Pang R, Wang X, Du Z, et al. The distribution and density of monocarboxylate transporter 2 in cerebral cortex, hippocampus and cerebellum of wild-type mice. J Anat. 2020;236(2):370–377.
  • Shubbar MH, Penny JI. Effect of amyloid beta on ATP-binding cassette transporter expression and activity in porcine brain microvascular endothelial cells. Biochim Biophys Acta Gen Subj. 2018;1862(10):2314–2322.
  • Vauthier V, Housset C, Falguières T. Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol. 2017;136:1–11.
  • Fan J, Zareyan S, Zhao W, et al. Identification of a Chrysanthemic Ester as an Apolipoprotein E Inducer in astrocytes. PLoS One. 2016;11(9):e0162384.
  • Padala AK, Wani A, Vishwakarma RA, et al. Functional induction of P-glycoprotein efflux pump by phenyl benzenesulfonamides: synthesis and biological evaluation of T0901317 analogs. Eur J Med Chem. 2016;122:744–755.
  • Li DD, Zhang YH, Zhang W, et al. Meta-analysis of randomized controlled trials on the efficacy and safety of Donepezil, Galantamine, Rivastigmine, and Memantine for the treatment of Alzheimer’s disease. Front Neurosci. 2019;13:472.
  • Dekker MJHJ, Bouvy JC, O’Rourke D, et al. Alignment of european regulatory and health technology assessments: a review of licensed products for Alzheimer’s disease. Front Med. 2019;6:73.
  • Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res. 2007;4(4):479–500.
  • Cacabelos R. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat. 2007;3(3):303–333.
  • Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer’s disease. Int J Geriat Psychiatry. 1999;14(1):3–47.
  • Sumirtanurdin R, Thalib AY, Cantona K, et al. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: an update. Clin Interv Aging. 2019;14:631–642.
  • Ma SL, Tang NLS, Wat KHY, et al. Effect of CYP2D6 and CYP3A4 genotypes on the efficacy of cholinesterase inhibitors in Southern Chinese patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2019;34(5):302–307.
  • Zhang N, Gordon ML. Clinical efficacy and safety of donepezil in the treatment of Alzheimer’s disease in Chinese patients. Clin Interv Aging. 2018;13:1963–1970.
  • Zhao Q, Brett M, Van Osselaer N, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42(9):1002–1010.
  • Farlow MR. Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383–1392.
  • Clarke JA, Cutler M, Gong I, et al. Cytochrome P450 2D6 phenotyping in an elderly population with dementia and response to galantamine in dementia: a pilot study. Am J Geriatr Pharmacother. 2011;9(4):224–233.
  • Hays CC, Zlatar ZZ, Meloy MJ, et al. Anterior cingulate structure and perfusion is associated with cerebrospinal fluid tau among cognitively normal older adult APOEɛ4 carriers. J Alzheimers Dis. 2020;73(1):87–101.
  • Weintraub S, Teylan M, Rader B, et al. APOE is a correlate of phenotypic heterogeneity in Alzheimer disease in a national cohort. Neurology. 2020;94(6):e607–e612.
  • Suwa A, Nishida K, Utsunomiya K, et al. Neuropsychological evaluation and cerebral blood flow effects of apolipoprotein E4 in Alzheimer’s disease patients after one year of treatment: an exploratory study. Dement Geriatr Cogn Dis Extra. 2015;5(3):414–423.
  • Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer’s disease: polygenic-related effects of multifactorial treatments on cognition, anxiety and depression. Methods Find Exp Clin Pharmacol. 2007;29:1–91.
  • Cacabelos R, Martínez R, Fernández-Novoa L, et al. Genomics of dementia: APOE- and CYP2D6-related pharmacogenetics. Int J Alzheimers Dis. 2012;518901. DOI:10.1155/2012/518901.
  • Cheng YC, Huang YC, Liu HC. Effect of Apolipoprotein E ɛ4 carrier status on cognitive response to acetylcholinesterase inhibitors in patients with Alzheimer’s Disease: a systematic review and meta-analysis. Dement Geriatr Cogn Disord. 2018;45(5–6):335–352.
  • Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet. 2013;52(4):225–241.
  • Cacabelos R, Goldgaber D, Vostrov A, et al. APOE-TOMM40 in the Pharmacogenomics of demetia. J. Pharmacogenomics Pharmacoproteomics.. 2014;5:135.
  • Wattmo C, Blennow K, Hansson O. Cerebro-spinal fluid biomarker levels: phosphorylated tau (T) and total tau (N) as markers for rate of progression in Alzheimer’s disease. BMC Neurol. 2020;20(1):10.
  • Yoon H, Myung W, Lim SW, et al. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacopsychiatry. 2015;48(3):111–117.
  • Yuan H, Xia Q, Ling K, et al. Association of choline acetyltransferase gene polymorphisms (SNPs rs868750G/A, rs1880676G/A, rs2177369G/A and rs3810950G/A) with Alzheimer’s disease risk: a meta-analysis. PLoS One. 2016;11(7): e0159022.
  • Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(2):75–77.
  • Clarelli F, Mascia E, Santangelo R, et al. CHRNA7 gene and response to cholinesterase inhibitors in an italian cohort of Alzheimer’s disease patients. J Alzheimers Dis. 2016;52(4):1203–1208.
  • Martinelli-Boneschi F, Giacalone G, Magnani G, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol Aging. 2013;34(6):1711.e7-1711.e13.
  • Paroni G, Seripa D, Fontana A, et al. FOXO1 locus and acetylcholinesterase inhibitors in elderly patients with Alzheimer’s disease. Clin Interv Aging. 2014;9:1783–1791.
  • Klimkowicz-Mrowiec A, Marona M, Spisak K, et al. Paraoxonase 1 gene polymorphisms do not influence the response to treatment in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32(1):26–31.
  • Campbell NL, Skaar TC, Perkins AJ, et al. Characterization of hepatic enzyme activity in older adults with dementia: potential impact on personalizing pharmacotherapy. Clin Interv Aging. 2015;10:269–275.
  • Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;6:CD001190.
  • Brewster JT, Dell’Acqua S, Thach DQ, et al. Classics in chemical Neuroscience: donepezil. ACS Chem Neurosci. 2019;10(1):155–167.
  • Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br J Clin Pharmacol. 2014;78(1):135–144.
  • Haug KH, Bogen IL, Osmundsen H, et al. Effects on cholinergic markers in rat brain and blood after short and prolonged administration of donepezil. Neurochem Res. 2005;30(12):1511–1520.
  • Ginestet L, Ferrario JE, Raisman-Vozari R, et al. Donepezil induces a cholinergic sprouting in basocortical degeneration. J Neurochem. 2007;102(2):434–440.
  • Kimura M, Akasofu S, Ogura H, et al. Protective effect of donepezil against Abeta(1-40) neurotoxicity in rat septal neurons. Brain Res. 2005;1047(1):72–84.
  • Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73(10):761–767.
  • Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics. 2011;21(4):225–230.
  • Xiao T, Jiao B, Zhang W, et al. Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: a systematic review and meta-analysis. CNS Drugs. 2016;30(10):899–907.
  • Waring JF, Tang Q, Robieson WZ, et al. APOE-ɛ4 carrier status and donepezil response in patients with Alzheimer’s disease. J Alzheimers Dis. 2015;47(1):137–148.
  • Albani D, Martinelli BF, Biella G, et al. Replication study to confirm the role of CYP2D6 polymorphism rs1080985 on donepezil efficacy in Alzheimer’s disease patients. J Alzheimers Dis. 2012;30(4):745–749.
  • Liu M, Zhang Y, Huo YR, et al. Influence of the rs1080985 single nucleotide polymorphism of the CYP2D6 gene and APOE polymorphism on the response to donepezil treatment in patients with Alzheimer’s disease in China. Dement Geriatr Cogn Dis Extra. 2014;4(3):450–456.
  • Klimkowicz-Mrowiec A, Wolkow P, Sado M, et al. Influence of rs1080985 single nucleotide polymorphism of the CYP2D6 gene on response to treatment with donepezil in patients with alzheimer’s disease. Neuropsychiatr Dis Treat. 2013;9:1029–1033.
  • Choi SH, Kim SY, Na HR, et al. Effect of ApoE genotype on response to donepezil in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25(5):445–450.
  • Zhong Y, Zheng X, Miao Y, et al. Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease. Am J Med Sci. 2013;345(3):222–226.
  • Lu J, Fu J, Zhong Y, et al. The roles of apolipoprotein E3 and CYP2D6 (rs1065852) gene polymorphisms in the predictability of responses to individualized therapy with donepezil in Han Chinese patients with Alzheimer’s disease. Neurosci Lett. 2016;614:43–48.
  • Yaowaluk T, Senanarong V, Limwongse C, et al. Influence of CYP2D6, CYP3A5, ABCB1, APOE polymorphisms and nongenetic factors on donepezil treatment in patients with Alzheimer’s disease and vascular dementia. Pharmgenomics Pers Med. 2019;12:209–224.
  • Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and ketoconazole: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(1):30–34.
  • Lu J, Fu J, Zhong Y, et al. Association between ABCA1 gene polymorphisms and the therapeutic response to donepezil therapy in Han Chinese patients with Alzheimer’s disease. Brain Res Bull. 2018;140:1–4.
  • Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67(1):47–54.
  • Kim JY, Son JY, Lee BM, et al. Aging-related Repositioned Drugs, Donepezil and Sildenafil Citrate, Increase Apoptosis of Anti-mitotic Drug-resistant KBV20C cells through different molecular mechanisms. Anticancer Res. 2018;38(9):5149–5157.
  • Petersen RC, Thomas RG, Grundman M, et al., Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23): 2379–2388.
  • De Beaumont L, Pelleieux S, Lamarre-Théroux L, et al. Butyrylcholinesterase K and Apolipoprotein E-ɛ4 reduce the age of onset of Alzheimer’s Disease, Accelerate Cognitive Decline, and Modulate Donepezil response in mild cognitively impaired subjects. J Alzheimers Dis. 2016;54(3):913–922.
  • Sokolow S, Li X, Chen L, et al. Deleterious effect of butyrylcholinesterase K-variant in Donepezil treatment of mild cognitive impairment. J Alzheimers Dis. 2017;56(1):229–237.
  • Chae YJ, Lee HJ, Jeon JH, et al. Effects of donepezil on hERG potassium channels. Brain Res. 2015;1597:77–85.
  • Imamura O, Arai M, Dateki M, et al. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation. J Neurochem. 2015;135(6):1086–1098.
  • Chang YS, Wu YH, Wang CJ, et al. Higher levels of thyroxine may predict a favorable response to donepezil treatment in patients with Alzheimer disease: a prospective, case-control study. BMC Neurosci. 2018;19(1):36.
  • Borroni B, Colciaghi F, Pastorino L, et al. ApoE genotype influences the biological effect of donepezil on APP metabolism in Alzheimer disease: evidence from a peripheral model. Eur Neuropsychopharmacol. 2002;12(3):195–200.
  • Takeuchi R, Shinozaki K, Nakanishi T, et al. Local drug-drug interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) increases drug accumulation in heart. Drug Metab Dispos. 2016;44(1):68–74.
  • Cummings J, Lai TJ, Hemrungrojn S, et al. Role of Donepezil in the management of Neuropsychiatric Symptoms in Alzheimer’s disease and dementia with lewy bodies. CNS Neurosci Ther. 2016;22(3):159–166.
  • Zhang C, Zang Y, Song Q, et al. The efficacy of a “cocktail therapy” on Parkinson’s disease with dementia. Neuropsychiatr Dis Treat. 2019;15:1639–1647.
  • Malegiannaki AC, Katsarou D, Liolios A, et al. Ageing and Down syndrome: neurocognitive characteristics and pharmacological treatment. Hell J Nucl Med. 2019;22:123–132.
  • Khuanjing T, Palee S, Chattipakorn SC, et al. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: from cells to patient reports. Acta Physiol. 2020;228(2):e13396.
  • Kawashiri T, Shimizu S, Shigematsu N, et al. Donepezil ameliorates oxaliplatin-induced peripheral neuropathy via a neuroprotective effect. J Pharmacol Sci. 2019;140(3):291–294.
  • Wong JC, Thelin JT, Escayg A. Donepezil increases resistance to induced seizures in a mouse model of Dravet syndrome. Ann Clin Transl Neurol. 2019;6(8):1566–1571.
  • Ferrier J, Bayet-Robert M, Dalmann R, et al. Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: key role of muscarinic M2 receptors in donepezil-induced antinociception. J Neurosci. 2015;35(50):16418–16430.
  • Piotrovsky V, Van Peer A, Van Osselaer N, et al. Galantamine population pharmacokinetics in patients with Alzheimer’s disease: modeling and simulations. J Clin Pharmacol. 2003;43(5):514–523.
  • Huang F, Fu Y. A review of clinical pharmacokinetics and pharmacodynamics of galantamine, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease, in healthy subjects and patients. Curr Clin Pharmacol. 2010;5(2):115–124.
  • Tayebati SK, Di Tullio MA, Amenta F. Effect of treatment with the cholinesterase inhibitor rivastigmine on vesicular acetylcholine transporter and choline acetyltransferase in rat brain. Clin Exp Hypertens. 2004;26(4):363–373.
  • Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719–739.
  • Lilienfeld S. Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2002;8(2):159–176.
  • Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos. 2002;30(5):553–563.
  • Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit. 2013;35(2):270–275.
  • Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics. 1999;9(6):661–668.
  • Bentué-Ferrer D, Tribut O, Polard E, et al. Clinically significant drug interactions with cholinesterase inhibitors: A guide for neurologists. CNS Drugs. 2003;17(13):947–963.
  • Lin YT, Chou MC, Wu SJ, et al. Galantamine plasma concentration and cognitive response in Alzheimer’s disease. Peer J. 2019;7:e6887.
  • Zhai XJ, Lu YN. Food-drug interactions: effect of capsaicin on the pharmacokinetics of galantamine in rats. Xenobiotica. 2012;42(11):1151–1155.
  • Wallin AK, Wattmo C, Minthon L. Galantamine treatment in Alzheimer’s disease: response and long-term outcome in a routine clinical setting. Neuropsychiatr Dis Treat. 2011;7:565–576.
  • Suh GH, Jung HY, Lee CU, et al. Effect of the apolipoprotein E epsilon4 allele on the efficacy and tolerability of galantamine in the treatment of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2006;21(1):33–39.
  • Babić T, Mahović Lakusić D, Sertić J, et al. ApoE genotyping and response to galanthamine in Alzheimer’s disease–a real life retrospective study. Coll Antropol. 2004;28(1):199–204.
  • Prins ND, van der Flier WA, Knol DL, et al. The effect of galantamine on brain atrophy rate in subjects with mild cognitive impairment is modified by apolipoprotein E genotype: post-hoc analysis of data from a randomized controlled trial. Alzheimers Res Ther. 2014;6(4):47.
  • Aerssens J, Raeymaekers P, Lilienfeld S, et al. APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2001;12(2):69–77.
  • Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. the galantamine USA-1 study group. Neurology. 2000;54(12):2261–2268.
  • Weng PH, Chen JH, Chen TF, et al. CHRNA7 polymorphisms and response to cholinesterase inhibitors in Alzheimer’s disease. PLoS One. 2013;8(12):e84059.
  • Carroll KM, DeVito EE, Yip SW, et al. Double-blind placebo-controlled trial of galantamine for methadone-maintained individuals with cocaine use disorder: secondary analysis of effects on illicit opioid use. Am J Addict. 2019;28(4):238–245.
  • Sugarman DE, De Aquino JP, Poling J, et al. Feasibility and effects of galantamine on cognition in humans with cannabis use disorder. Pharmacol Biochem Behav. 2019;181:86–92.
  • Njoku I, Radabaugh HL, Nicholas MA, et al. Chronic treatment with galantamine rescues reversal learning in an attentional set-shifting test after experimental brain trauma. Exp Neurol. 2019;315:32–41.
  • Choueiry J, Blais CM, Shah D, et al. Combining CDP-choline and galantamine, an optimized α7 nicotinic strategy, to ameliorate sensory gating to speech stimuli in schizophrenia. Int J Psychophysiol. 2019;145:70–82.
  • Koola MM. Potential role of Antipsychotic-Galantamine-Memantine combination in the treatment of positive, Cognitive, and Negative Symptoms of Schizophrenia. Mol. Neuropsychiatry.. 2018;4(3):134–148.
  • Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 1998;20(4):634–647.
  • Tayebati SK, Di Tullio MA, Amenta F. Vesicular acetylcholine transporter (VAChT) in the brain of spontaneously hypertensive rats (SHR): effect of treatment with an acetylcholinesterase inhibitor. Clin Exp Hypertens. 2008;30(8):732–743.
  • Birks JS, Grimley Evans J. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2015;10:CD001191.
  • Jia J, Ji Y, Feng T, et al. Sixteen-week interventional study to evaluate the clinical effects and safety of Rivastigmine Capsules in Chinese patients with Alzheimer’s disease. J Alzheimers Dis. 2019;72(4):1313–1322. JAD190791.
  • Chen TH, Chou MC, Lai CL, et al. Factors affecting therapeutic response to Rivastigmine in Alzheimer’s disease patients in Taiwan. Kaohsiung J Med Sci. 2017;33(6):277–283.
  • Zamani M, Mehri M, Kollaee A, et al. Pharmacogenetic study on the effect of Rivastigmine on PS2 and APOE genes in Iranian Alzheimer patients. Dement Geriatr Cogn Dis Extra. 2011;1(1):180–189.
  • Sonali N, Tripathi M, Sagar R, et al. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer’s patients. CNS Neurosci Ther. 2013;19(2):91–97.
  • Jasiecki J, Wasąg B. Butyrylcholinesterase protein ends in the pathogenesis of Alzheimer’s disease-could BCHE Genotyping be helpful in Alzheimer’s therapy? Biomolecules. 2019;9(10):E592.
  • Ferris S, Nordberg A, Soininen H, et al. Progression from mild cognitive impairment to Alzheimer’s disease: effects of sex, butyrylcholinesterase genotype, and rivastigmine treatment. Pharmacogenet Genomics. 2009;19(8):635–646.
  • Han HJ, Kwon JC, Kim JE, et al. Effect of rivastigmine or memantine add-on therapy is affected by butyrylcholinesterase genotype in patients with probable Alzheimer’s disease. Eur Neurol. 2015;73(1–2):23–28.
  • Sobow T, Flirski M, Liberski P, et al. Plasma Abeta levels as predictors of response to rivastigmine treatment in Alzheimer’s disease. Acta Neurobiol Exp (Wars). 2007;67(2):131–139.
  • Henderson EJ, Lord SR, Brodie MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):249–258.
  • Kandiah N, Pai M, Senanarong V, et al. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging. 2017;12:697–707.
  • Burgett RN, Farley TM, Beireis LA. Acute treatment of psychotic symptoms in a newly diagnosed Lewy body dementia patient with an accelerated titration schedule of rivastigmine and de-escalation of antipsychotics. BMJ Case Rep. 2019;12(9):e230193.
  • Tsuno N, Mori T, Ishikawa I, et al. Efficacy of rivastigmine transdermal therapy on low food intake in patients with Alzheimer’s disease: the attitude towards food consumption in Alzheimer’s disease patients revive with Rivastigmine effects study. Geriatr Gerontol Int. 2019;19(7):571–576.
  • Zhang HY. New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin. 2012;33(9):1170–1175.
  • Yang H, Du C, Li Q, et al. Discovery, molecular dynamic simulation and biological evaluation of structurally diverse cholinesterase inhibitors with new scaffold through shape-based pharmacophore virtual screening. Bioorg Chem. 2019;92:103294.
  • Gul A, Bakht J, Mehmood F. Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc. 2019;82(1):40–43.
  • Rafii MS, Walsh S, Little JT, et al. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology. 2011;76(16):1389–1394.
  • Gul A, Bakht J, Mehmood F. Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc. 2018;S1726-4901(18):30226.
  • Yang G, Wang Y, Tian J, et al. Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One. 2013;8(9):e74916.
  • Sheng L, Qu Y, Yan J, et al. Population pharmacokinetic modeling and simulation of huperzine A in elderly Chinese subjects. Acta Pharmacol Sin. 2016;37(7):994–1001.
  • Ma XC, Wang HX, Xin J, et al. Identification of cytochrome P450 1A2 as enzyme involved in the microsomal metabolism of Huperzine A. Eur J Pharmacol. 2003;461(2–3):89–92.
  • Ma XC, Wang HX, Xin J, et al. Effects of huperzine A on liver cytochrome P-450 in rats. Acta Pharmacol Sin. 2003;24(8):831–835.
  • Lin PP, Li XN, Yuan F, et al. Evaluation of the in vitro and in vivo metabolic pathway and cytochrome P450 inhibition/induction profile of Huperzine A. Biochem Biophys Res Commun. 2016;480(2):248–253.
  • Sinz MW, Woolf TF. Characterization of the induction of rat microsomal cytochrome P450 by tacrine. Biochem Pharmacol. 1997;54(3):425–427.
  • Gabriele M, Puccini P, Lucchi M, et al. Presence and inter-individual variability of carboxylesterases (CES1 and CES2) in human lung. Biochem Pharmacol. 2018;150:64–71.
  • Li J, Yue M, Zhou D, et al. Abcb1a but not Abcg2 played a predominant role in limiting the brain distribution of Huperzine A in mice. Food Chem Toxicol. 2017;107(Pt A):68–73.
  • Chen Y, Cheng G, Hu R, et al. A nasal temperature and pH dual-responsive in situ gel delivery system based on microemulsion of huperzine a: formulation, evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech. 2019;20(7):301.
  • Mao XY, Zhou HH, Li X, et al. Huperzine a alleviates oxidative glutamate toxicity in Hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway. Cell Mol Neurobiol. 2016;36(6):915–925.
  • Shih CC, Chen PY, Chen MF, et al. Differential blockade by huperzine A and donepezil of sympathetic nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilations in porcine basilar arteries. Eur J Pharmacol. 2020;868:172851.
  • Kang X, Liu C, Shen P, et al. Genomic characterization provides new insights into the biosynthesis of the secondary metabolite huperzine a in the endophyte colletotrichum gloeosporioides Cg01. Front Microbiol. 2019;9:3237.
  • Xu M, Heidmarsson S, Thorsteinsdottir M, et al. Infraspecific variation of huperzine A and B in Icelandic Huperzia selago complex. Planta Med. 2019;85(2):160–168.
  • Zaki AG, El-Shatoury EH, Ahmed AS, et al. Production and enhancement of the acetylcholinesterase inhibitor, huperzine A, from an endophytic Alternaria brassicae AGF041. Appl Microbiol Biotechnol. 2019;103(14):5867–5878.
  • MacGowan SH, Wilcock GK, Scott M. Effect of gender and apolipoprotein E genotype on response to anticholinesterase therapy in Alzheimer’s disease. Int J Geriatr Psychiatry. 1998;13(9):625–630.
  • Farlow MR, Lahiri DK, Poirier J, et al. Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer’s disease. Neurology. 1998;50(3):669–677.
  • Fontana RJ, Turgeon DK, Woolf TF, et al. The caffeine breath test does not identify patients susceptible to tacrine hepatotoxicity. Hepatology. 1996;23(6):1429–1435.
  • Schneider LS, Farlow M. Combined tacrine and estrogen replacement therapy in -patients with Alzheimer’s Disease b. Ann N Y Acad Sci. 1997;826(1):317–322.
  • Sjögren M, Hesse C, Basun H, et al. Tacrine and rate of progression in Alzheimer’s disease–relation to ApoE allele genotype. J Neural Transm (Vienna). 2001;108(4):451–458.
  • Yoon BK, Kim DK, Kang Y, et al. Hormone replacement therapy in postmenopausal women with Alzheimer’s disease: a randomized, prospective study. Fertil Steril. 2003;79(2):274–280.
  • Rigaud AS, Traykov L, Caputo L, et al. The apolipoprotein E epsilon4 allele and the response to tacrine therapy in Alzheimer’s disease. Eur J Neurol. 2000;7(3):255–258.
  • Becquemont L, Le Bot MA, Riche C, et al. Use of heterologously expressed human cytochrome P450 1A2 to predict tacrine-fluvoxamine drug interaction in man. Pharmacogenetics. 1998;8(2):101–108.
  • Alfirevic A, Mills T, Carr D, et al. Tacrine-induced liver damage: an analysis of 19 candidate genes. Pharmacogenet Genomics. 2007;17(12):1091–1100.
  • Simon T, Becquemont L, Mary-Krause M, et al. Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther. 2000;67(4):432–437.
  • Becquemont L, Lecoeur S, Simon T, et al. Glutathione S-transferase theta genetic polymorphism might influence tacrine hepatotoxicity in Alzheimer’s patients. Pharmacogenetics. 1997;7(3):251–253.
  • De Sousa M, Pirmohamed M, Kitteringham NR, et al. No association between tacrine transaminitis and the glutathione transferase theta genotype in patients with Alzheimer’s disease. Pharmacogenetics. 1998;8(4):353–355.
  • Benfante R, Di Lascio S, Cardani S, et al. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res. 2019. DOI:10.1007/s40520-019-01359-4.
  • Hayashi Y, Lin HT, Lee CC, et al. Effects of neural stem cell transplantation in Alzheimer’s disease models. J Biomed Sci. 2020;27(1):29.
  • Cacabelos R. How plausible is an Alzheimer’s disease vaccine? Expert Opin Drug Discov. 2020;151:1–6. Epub 2019 Sep 17.
  • Cacabelos R. Pathoepigenetics: the role of epigenetic biomarkers in disease pathogenesis. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford: Academic Press/ Elsevier; 2019. p. 139–189.
  • Fink HA, Jutkowitz E, McCarten JR, et al. Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and Clinical Alzheimer-type dementia: a systematic review. Ann Intern Med. 2018;168(1):39–51.
  • Folch J, Busquets O 3, Ettcheto M 3, et al. Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimers Dis. 2018;62(3):1223–1240.
  • McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev. 2019;3:CD003154.
  • Blanco-Silvente L, Castells X, Garre-Olmo J, et al. Study of the strength of the evidence and the redundancy of the research on pharmacological treatment for Alzheimer’s disease: a cumulative meta-analysis and trial sequential analysis. Eur J Clin Pharmacol. 2019;75(12):1659–1667.
  • Cui CC, Sun Y, Wang XY, et al. The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment: A network meta-analysis. Medicine (Baltimore). 2019;98(27):e16091.
  • Thancharoen O, Limwattananon C, Waleekhachonloet O, et al. Ginkgo biloba Extract (EGb761), Cholinesterase inhibitors, and memantine for the treatment of mild-to-moderate Alzheimer’s disease: a network meta-analysis. Drugs Aging. 2019;36(5):435–452.
  • Knight R, Khondoker M, Magill N, et al. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45(3–4):131–151.
  • Arai H, Hashimoto N, Sumitomo K, et al. Disease state changes and safety of long-term donepezil hydrochloride administration in patients with Alzheimer’s disease: japan-great outcome of long-term trial with Donepezil (J-GOLD). Psychogeriatrics. 2018;18(5):402–411.
  • Kennedy RE, Cutter GR, Fowler ME, et al. Association of concomitant use of cholinesterase inhibitors or memantine with cognitive decline in Alzheimer clinical trials: a meta-analysis. JAMA Network Open. 2018;1(7):e184080.
  • Glinz D, Gloy VL, Monsch AU, et al. Acetylcholinesterase inhibitors combined with memantine for moderate to severe Alzheimer’s disease: a meta-analysis. Swiss Med Wkly. 2019;149:w20093.
  • Tsoi KK, Chan JY, Chan FC, et al. Monotherapy is good enough for patients with mild-to-moderate Alzheimer’s disease: a network meta-analysis of 76 randomized controlled trials. Clin Pharmacol Ther. 2019;105(1):121–130.
  • Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther. 2018;10(1):126.
  • Huisa BN, Thomas RG, Jin S, et al. Memantine and acetylcholinesterase inhibitor use in Alzheimer’s disease clinical trials: potential for confounding by indication. J Alzheimers Dis. 2019;67(2):707–713.
  • Han JY, Besser LM, Xiong C, et al. Cholinesterase inhibitors may not benefit mild cognitive impairment and mild Alzheimer disease dementia. Alzheimer Dis Assoc Disord. 2019;33(2):87–94.
  • Secnik J, Schwertner E, Alvarsson M, et al. Cholinesterase inhibitors in patients with diabetes mellitus and dementia: an open-cohort study of ~23 000 patients from the Swedish Dementia Registry. BMJ Open Diabetes Res Care. 2020;8(1):e000833.
  • Ku LE, Li CY, Sun Y. Can persistence with cholinesterase inhibitor treatment lower mortality and health-care costs among patients with Alzheimer’s disease? A population-based study in Taiwan. Am J Alzheimers Dis Other Demen. 2018;33(2):86–92.
  • Linna M, Vuoti S, Silander K, et al. Impact of Anti-Dementia medication on the risk of death and causes of death in Alzheimer’s disease. J Alzheimers Dis. 2019;71(4):1297–1308.
  • Noufi P, Khoury R, Jeyakumar S, et al. Use of Cholinesterase inhibitors in non-Alzheimer’s dementias. Drugs Aging. 2019;36(8):719–731.
  • Jin BR, Liu HY. Comparative efficacy and safety of cognitive enhancers for treating vascular cognitive impairment: systematic review and Bayesian network meta-analysis. Neural Regen Res. 2019;14(5):805–816.
  • Eldufani J, Blaise G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. Alzheimers Dement. 2019;5:175–183.
  • Kim JO, Lee SJ, Pyo JS. Effect of acetylcholinesterase inhibitors on post-stroke cognitive impairment and vascular dementia: a meta-analysis. PLoS One. 2020;15(2):e0227820.
  • Tan ECK, Johnell K, Garcia-Ptacek S, et al. Acetylcholinesterase inhibitors and risk of stroke and death in people with dementia. Alzheimers Dement. 2018 Jul;14(7):944–951.
  • Haywood WM, Mukaetova-Ladinska EB. Sex influences on cholinesterase inhibitor treatment in elderly individuals with Alzheimer’s disease. Am J Geriatr Pharmacother. 2006;4(3):273–286.
  • Giacobini E, Pepeu G. Sex and gender differences in the brain cholinergic system and in the response to therapy of Alzheimer disease with cholinesterase inhibitors. Curr Alzheimer Res. 2018;15(11):1077–1084.
  • Wallin AK, Blennow K, Andreasen N, et al. CSF biomarkers for Alzheimer’s disease: levels of beta-amyloid, tau, phosphorylated tau related to clinical symptoms and survival. Dement Geriatr Cogn Disord. 2006;21(3):131–138.
  • Stefanova E, Blennow K, Almkvist O, et al. Cerebral glucose metabolism, cerebrospinal fluid-beta-amyloid1-42 (CSF-Abeta42), tau and apolipoprotein E genotype in long-term rivastigmine and tacrine treated Alzheimer disease (AD) patients. Neurosci Lett. 2003;338(2):159–163.
  • Haake A, Nguyen K, Friedman L, et al. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2020;1–11. DOI:10.1080/14740338.2020.1721456.
  • Eshetie TC, Nguyen TA, Gillam MH, et al. Medication Use for Comorbidities in People with Alzheimer’s Disease: an Australian Population-Based Study. Pharmacotherapy. 2019;39(12):1146–1156.
  • Tan ECK, Johnell K, Bell JS, et al. Do acetylcholinesterase inhibitors prevent or delay psychotropic prescribing in people with dementia? Analyses of the swedish dementia registry. Am J Geriatr Psychiatry. 2020;28(1):108–117.
  • Ballard C, Creese B, Corbett A, et al. Atypical antipsychotics for the treatment of behavioral and psychological symptoms in dementia, with a particular focus on longer term outcomes and mortality. Expert Opin Drug Saf. 2011;10(1):35–43.
  • Torrellas C, Carril JC, Cacabelos R. Optimization of antidepressant use with pharmacogenetic strategies. Cur Genomics. 2017;18:442–449.
  • Orsel K, Taipale H, Tolppanen AM, et al. Psychotropic drugs use and psychotropic polypharmacy among persons with Alzheimer’s disease. Eur Neuropsychopharmacol. 2018;28(11):1260–1269.
  • Dalmizrak O, Teralı K, Yetkin O, et al. Computational and experimental studies on the interaction between butyrylcholinesterase and fluoxetine: implications in health and disease. Xenobiotica. 2019;49(7):803–810.
  • Zhang Y, Li S, Wang Y, et al. Potential pharmacokinetic drug⁻drug interaction between harmine, a cholinesterase inhibitor, and memantine, a non-competitive n-methyl-d-aspartate receptor antagonist. Molecules. 2019;24(7):E1430.
  • Winblad B 1, Engedal K, Soininen H, et al. Donepezil nordic study group. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001 Aug 14;57(3):489–495.
  • Lum ZK, Suministrado MSP, Venketasubramanian N, et al. Medication compliance in Singaporean patients with Alzheimer’s disease. Singapore Med J. 2019;60(3):154–160. #.
  • Carney G, Bassett K, Wright JM, et al. Comparison of cholinesterase inhibitor safety in real-world practice. Alzheimers Dement. 2019;5:732–739.
  • Kazmierski J, Messini-Zachou C, Gkioka M, et al. The impact of a long-term rivastigmine and donepezil treatment on all-cause mortality in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2018;33(6):385–393.
  • Fleet JL, McArthur E, Patel A, et al. Risk of rhabdomyolysis with donepezil compared with rivastigmine or galantamine: a population-based cohort study. CMAJ. 2019;191(37):E1018–E1024.
  • Lampela P, Tolppanen AM, Koponen M, et al. Asthma and chronic obstructive pulmonary disease as a comorbidity and association with the choice of antidementia medication among persons with Alzheimer’s disease. J Alzheimers Dis. 2020;73(3):1243–1251.
  • Pu Z, Xu W, Lin Y, et al. Donepezil decreases heart rate in elderly patients with Alzheimer’s disease. Int J Clin Pharmacol Ther. 2019;57(2):94–100.
  • Won DY, Byun SJ, Jeong JS, et al. Association between acetylcholinesterase inhibitors and osteoporotic fractures in older persons with Alzheimer’s disease. J Am Med Dir Assoc. 2020;S1525-8610(19):30841–30842.
  • Tamimi I, Nicolau B, Eimar H, et al. Acetylcholinesterase inhibitors and the risk of osteoporotic fractures: nested case-control study. Osteoporos Int. 2018;29(4):849–857.
  • Yiannopoulou KG, Anastasiou AI, Kyrozis A, et al. Donepezil treatment for Alzheimer’s disease in chronic dialysis patients. Case Rep Nephrol Dial. 2019;9(3):126–136.
  • Renn BN, Asghar-Ali AA, Thielke S, et al. A systematic review of practice guidelines and recommendations for discontinuation of cholinesterase inhibitors in dementia. Am J Geriatr Psychiatry. 2018;26(2):134–147.
  • Ueda K, Katayama S, Arai T, et al. Efficacy, safety, and tolerability of switching from oral cholinesterase inhibitors to rivastigmine transdermal patch with 1-step titration in patients with mild to moderate Alzheimer’s disease: a 24-week, open-label, multicenter study in Japan. Dement Geriatr Cogn Dis Extra. 2019;9(2):302–318.
  • Blesa R, Toriyama K, Ueda K, et al. Strategies for continued successful treatment in patients with alzheimer’s disease: an overview of switching between pharmacological agents. Curr Alzheimer Res. 2018;15(10):964–974.
  • Moss DE. Is Combining an anticholinergic with a cholinesterase inhibitor a good strategy for high-level CNS cholinesterase inhibition? J Alzheimers Dis. 2019;71(4):1099–1103.
  • Işık M. The binding mechanisms and inhibitory effect of intravenous anesthetics on AChE in vitro and in vivo: kinetic analysis and molecular docking. Neurochem Res. 2019;44(9):2147–2155.
  • MacKenzie M, Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anaesth. 2017;64(1):45–64.
  • Zhang X, Jiang X, Huang L, et al. Central cholinergic system mediates working memory deficit induced by anesthesia/surgery in adult mice. Brain Behav. 2018;8(5):e00957.
  • Philpot RM, Ficken M, Johns BE, et al. Spatial memory deficits in mice induced by chemotherapeutic agents are prevented by acetylcholinesterase inhibitors. Cancer Chemother Pharmacol. 2019;84(3):579–589.
  • Giacconi R, Giuli C, Casoli T, et al. Acetylcholinesterase inhibitors in Alzheimer’s disease influence Zinc and Copper homeostasis. J Trace Elem Med Biol. 2019;55:58–63.
  • Stojiljković MP, Škrbić R, Jokanović M, et al. Efficacy of antidotes and their combinations in the treatment of acute carbamate poisoning in rats. Toxicology. 2018;408:113–124.
  • May BH, Feng M, Hyde AJ, et al. Comparisons between traditional medicines and pharmacotherapies for Alzheimer disease: A systematic review and meta-analysis of cognitive outcomes. Int J Geriatr Psychiatry. 2018;33(3):449–458.
  • McEneny-King A, Osman W, Edginton AN, et al. Cytochrome P450 binding studies of novel tacrine derivatives: predicting the risk of hepatotoxicity. Bioorg Med Chem Lett. 2017;27(11):2443–2449.
  • Djalalov S, Yong J, Beca J, et al. Genetic testing in combination with preventive donepezil treatment for patients with amnestic mild cognitive impairment: an exploratory economic evaluation of personalized medicine. Mol Diagn Ther. 2012;16(6):389–399.
  • Whitehair DC, Sherzai A, Emond J, et al. Alzheimer’s Disease Cooperative Study. Influence of apolipoprotein E varepsilon4 on rates of cognitive and functional decline in mild cognitive impairment. Alzheimers Dement. 2010;6(5):412–419.
  • Kanaya K, Abe S, Sakai M, et al. Changes in cognitive functions of patients with dementia of the Alzheimer type following long-term administration of donepezil hydrochloride: relating to changes attributable to differences in apolipoprotein E phenotype. Geriatr Gerontol Int. 2010;10(1):25–31.
  • Jack CR, Petersen RC, Grundman M, et al. Members of the Alzheimer’s disease cooperative study (ADCS). longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI. Neurobiol Aging. 2008;29(9):1285–1295.
  • Tricco AC, Ashoor HM, Soobiah C, et al. Comparative effectiveness and safety of cognitive enhancers for treating alzheimer’s disease: systematic review and network metaanalysis. J Am Geriatr Soc. 2018;66(1):170–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.