500
Views
14
CrossRef citations to date
0
Altmetric
Review

PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches

, , &
Pages 711-722 | Received 09 May 2020, Accepted 04 Jun 2020, Published online: 16 Jun 2020

References

  • Navarro VJ, Senior JR. Drug-related hepatotoxicity. N Engl J Med. 2006 Feb 16;354(7):731–739.
  • Andrade RJ, Chalasani N, Bjornsson ES, et al. Drug-induced liver injury. Nat Rev Dis Primers. 2019 Aug 22;5(1):58.
  • Regev A. Drug-induced liver injury and drug development: industry perspective. Semin Liver Dis. 2014 May;34(2):227–239.
  • Shen T, Liu Y, Shang J, et al. Incidence and etiology of drug-induced liver injury in mainland China. Gastroenterology. 2019 Jun;156(8):2230–2241 e11.
  • Suk KT, Kim DJ, Kim CH, et al. A prospective nationwide study of drug-induced liver injury in Korea. Am J Gastroenterol. 2012 Sep;107(9):1380–1387.
  • Vega M, Verma M, Beswick D, et al. The incidence of drug- and herbal and dietary supplement-induced liver injury: preliminary findings from gastroenterologist-based surveillance in the population of the state of delaware. Drug Saf. 2017 Sep;40(9):783–787.
  • Sgro C, Clinard F, Ouazir K, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology. 2002 Aug;36(2):451–455.
  • Reuben A, Tillman H, Fontana RJ, et al. Outcomes in adults with acute liver failure between 1998 and 2013: an observational cohort study. Ann Intern Med. 2016 Jun 7;164(11):724–732.
  • Reuben A, Koch DG, Lee WM, et al. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 2010 Dec;52(6):2065–2076.
  • Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016 Feb 4;14:10.
  • Puls F, Agne C, Klein F, et al. Pathology of flupirtine-induced liver injury: a histological and clinical study of six cases. Virchows Arch. 2011 Jun;458(6):709–716.
  • European Medicines Agency. Withdrawal of pain medicine flupirtine endorsed 2018 [cited 2018 Mar 23]. Available from: https://www.ema.europa.eu/en/news/withdrawal-pain-medicine-flupirtine-endorsed
  • Michel MC, Radziszewski P, Falconer C, et al. Unexpected frequent hepatotoxicity of a prescription drug, flupirtine, marketed for about 30 years. Br J Clin Pharmacol. 2012 May;73(5):821–825.
  • Corsini A, Bortolini M. Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol. 2013 May;53(5):463–474.
  • Stephens C, Andrade RJ, Lucena MI. Mechanisms of drug-induced liver injury. Curr Opin Allergy Clin Immunol. 2014 Aug;14(4):286–292.
  • Adams DH, Ju C, Ramaiah SK, et al. Mechanisms of immune-mediated liver injury. Toxicol Sci. 2010 Jun;115(2):307–321.
  • Uetrecht J. Immune-mediated adverse drug reactions. Chem Res Toxicol. 2009 Jan;22(1):24–34.
  • Moore JT, Moore LB, Maglich JM, et al. Functional and structural comparison of PXR and CAR. Biochim Biophys Acta. 2003 Feb 17;1619(3):235–238.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013 Apr;138(1):103–141.
  • Andrews E, Armstrong M, Tugwood J, et al. A role for the pregnane X receptor in flucloxacillin-induced liver injury. Hepatology. 2010 May;51(5):1656–1664.
  • Li F, Lu J, Cheng J, et al. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. Nat Med. 2013 Apr;19(4):418–420.
  • Abdelhadya DH, El-Magd MA, Elbialy ZI, et al. Bromuconazole-induced hepatotoxicity is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1 gene expression. Toxicol Mech Methods. 2017 Sep;27(7):544–550.
  • Hardy KD, Wahlin MD, Papageorgiou I, et al. Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells. Drug Metab Dispos. 2014 Jan;42(1):162–171.
  • Kutsuno Y, Itoh T, Tukey RH, et al. Glucuronidation of drugs and drug-induced toxicity in humanized UDP-glucuronosyltransferase 1 mice. Drug Metab Dispos. 2014 Jul;42(7):1146–1152.
  • Iida A, Sasaki E, Yano A, et al. Carbamazepine-induced liver injury requires CYP3A-mediated metabolism and glutathione depletion in rats. Drug Metab Dispos. 2015 Jul;43(7):958–968.
  • Metushi IG, Sanders C, Acute Liver Study G, et al.. Detection of anti-isoniazid and anti-cytochrome P450 antibodies in patients with isoniazid-induced liver failure. Hepatology. 2014 Mar;59(3):1084–1093.
  • Michaut A, Moreau C, Robin MA, et al. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int. 2014 Aug;34(7):e171–9.
  • Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev. 2010 Oct 30; 62(13):1238–1249.
  • Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003 Dec;55(4):649–673.
  • Willson TM, Kliewer SAPXR. CAR and drug metabolism. Nat Rev Drug Discov. 2002 Apr;1(4):259–266.
  • Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005 Mar;28(3):249–268.
  • Smith MT. Mechanisms of troglitazone hepatotoxicity. Chem Res Toxicol. 2003 Jun;16(6):679–687.
  • Li Y, Slatter JG, Zhang Z, et al. In vitro metabolic activation of lumiracoxib in rat and human liver preparations. Drug Metab Dispos. 2008 Feb;36(2):469–473.
  • Bolton JL, Trush MA, Penning TM, et al. Role of quinones in toxicology. Chem Res Toxicol. 2000 Mar;13(3):135–160.
  • James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos. 2003 Dec;31(12):1499–1506.
  • Boelsterli U. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol. 2003;192(3):307–322.
  • Komatsu T, Yamazaki H, Asahi S, et al. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos. 2000 Nov;28(11):1361–1368.
  • Sugatani J, Nishitani S, Yamakawa K, et al. Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptor-interacting protein 1. Mol Pharmacol. 2005 Mar;67(3):845–855.
  • Sonoda J, Xie W, Rosenfeld JM, et al. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13801–13806.
  • Echchgadda I, Song CS, Oh TS, et al. Gene regulation for the senescence marker protein DHEA-sulfotransferase by the xenobiotic-activated nuclear pregnane X receptor (PXR). Mech Ageing Dev. 2004 Oct-Nov;125(10–11):733–745.
  • Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev. 2013 Nov;45(4):441–449.
  • Falkner KC, Pinaire JA, Xiao GH, et al. Regulation of the rat glutathione S-transferase A2 gene by glucocorticoids: involvement of both the glucocorticoid and pregnane X receptors. Mol Pharmacol. 2001 Sep;60(3):611–619.
  • Sugatani J, Uchida T, Kurosawa M, et al. Regulation of pregnane X receptor (PXR) function and UGT1A1 gene expression by posttranslational modification of PXR protein. Drug Metab Dispos. 2012 Oct;40(10):2031–2040.
  • Bailey MJ, Dickinson RG. Acyl glucuronide reactivity in perspective: biological consequences. Chem Biol Interact. 2003;145(2):117–137.
  • Mitsugi R, Sumida K, Fujie Y, et al. Acyl-glucuronide as a possible cause of trovafloxacin-induced liver toxicity: induction of chemokine (CXC motif) ligand 2 by trovafloxacin acyl-glucuronide. Biol Pharm Bull. 2016;39(10):1604–1610.
  • Van Vleet TR, Liu H, Lee A, et al. Acyl glucuronide metabolites: implications for drug safety assessment. Toxicol Lett. 2017 Apr;15(272):1–7.
  • Ramappa V, Aithal GP. Hepatotoxicity related to anti-tuberculosis drugs: mechanisms and management. J Clin Exp Hepatol. 2013. 3. Mar(1):37–49.
  • McIlleron H, Meintjes G, Burman WJ, et al. Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis. 2007 Aug 15;196(Suppl 1):S63–75.
  • Aristoff PA, Garcia GA, Kirchhoff PD, et al. Rifamycins–obstacles and opportunities. Tuberculosis (Edinb). 2010 Mar;90(2):94–118.
  • CDC. Managing drug interactions in the treatment of HIV-related tuberculosis [online]. USA: Department of Health and Human Services. 2013.
  • Schmitt C, Riek M, Winters K, et al. Unexpected hepatotoxicity of rifampin and saquinavir/ritonavir in healthy male volunteers. Arch Drug Inf. 2009 Mar;2(1):8–16.
  • Jamois C, Riek M, Schmitt C. Potential hepatotoxicity of efavirenz and saquinavir/ritonavir coadministration in healthy volunteers. Arch Drug Inf. 2009 Mar;2(1):1–7.
  • Nijland HM, L’Homme RF, Rongen GA, et al. High incidence of adverse events in healthy volunteers receiving rifampicin and adjusted doses of lopinavir/ritonavir tablets. Aids. 2008 May 11;22(8):931–935.
  • Haas DW, Koletar SL, Laughlin L, et al. Hepatotoxicity and gastrointestinal intolerance when healthy volunteers taking rifampin add twice-daily atazanavir and ritonavir. J Acquir Immune Defic Syndr. 2009 Mar 1;50(3):290–293.
  • Shehu AI, Lu J, Wang P, et al. Pregnane X receptor activation potentiates ritonavir hepatotoxicity. J Clin Invest. 2019 Apr 30;129(7):2898–2903.
  • Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer. Acta Pharm Sin B. 2020 Feb;10(2):197–206.
  • Fraser DJ, Zumsteg A, Meyer UA. Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene. J Biol Chem. 2003 Oct 10;278(41):39392–39401.
  • Sachar M, Li F, Liu K, et al. Chronic treatment with isoniazid causes protoporphyrin IX accumulation in mouse liver. Chem Res Toxicol. 2016 Aug 15;29(8):1293–1297.
  • Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16(23):3041–3053.
  • Guo GL, Moffit JS, Nicol CJ, et al. Enhanced acetaminophen toxicity by activation of the pregnane X receptor. Toxicol Sci. 2004 Dec;82(2):374–380.
  • Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev. 2012 FEB 01;44(1):88–106.
  • Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010 Jul 9;39(1):8–24.
  • Wang C, Xu W, Zhang Y, et al. Poly(ADP-ribosyl)ated PXR is a critical regulator of acetaminophen-induced hepatotoxicity. Cell Death Dis. 2018 Jul 26;9(8):819.
  • Bitter A, Rummele P, Klein K, et al. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Arch Toxicol. 2015 Nov;89(11):2089–2103.
  • Shehu AI, Ma X. Pregnane X receptor in drug-induced liver injury: friend or foe? Liver Res. 2018;2(4):173–179.
  • Helsley RN, Sui Y, Ai N, et al. Pregnane X receptor mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol. 2013 Jun;83(6):1190–1199.
  • Barretto SA, Lasserre F, Fougerat A, et al. Gene Expression profiling reveals that PXR activation inhibits hepatic PPARalpha activity and decreases FGF21 secretion in male C57Bl6/J mice. Int J Mol Sci. 2019 Aug 1;20(15):3767.
  • Wang YM, Chai SC, Brewer CT, et al. Pregnane X receptor and drug-induced liver injury. Expert Opin Drug Metab Toxicol. 2014 Nov;10(11):1521–1532.
  • Sulkowski MS. Drug-induced liver injury associated with antiretroviral therapy that includes HIV-1 protease inhibitors. Clin Infect Dis. 2004 Mar 1;38(Suppl 2):S90–7.
  • Sulkowski MS. Hepatotoxicity associated with antiretroviral therapy containing HIV-1 protease inhibitors. Semin Liver Dis. 2003 May;23(2):183–194.
  • Orenstein R, LeGall-Salmon E. HIV treatment-associated hepatitis. AIDS Read. 1999 Aug;9(5):339–346.
  • Gisolf EH, Dreezen C, Danner SA, et al. Risk factors for hepatotoxicity in HIV-1-infected patients receiving ritonavir and saquinavir with or without stavudine. prometheus study group. Clin Infect Dis. 2000 Nov;31(5):1234–1239.
  • Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997 Aug;44(2):190–194.
  • Fellay J, Marzolini C, Decosterd L, et al. Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol. 2005 Feb;60(12):865–873.
  • Faucette SR, Wang H, Hamilton GA, et al. Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos. 2004 Mar;32(3):348–358.
  • Kharasch ED, Mitchell D, Coles R, et al. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother. 2008 May;52(5):1663–1669.
  • Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002 Jul;30(7):795–804.
  • Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interactions between two human immunodeficiency virus protease inhibitors, ritonavir and saquinavir. Clin Pharmacol Ther. 1998 Apr;63(4):453–464.
  • Terelius Y, Figler RA, Marukian S, et al. Transcriptional profiling suggests that nevirapine and ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact. 2016 Aug;5(255):31–44.
  • Ryan CT. New black box warning for ritonavir-boosted tipranavir. AIDS Clin Care. 2006 Aug;18(8):72.
  • Denissen JF, Grabowski BA, Johnson MK, et al. Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab Dispos. 1997 Apr;25(4):489–501.
  • Gangl E, Utkin I, Gerber N, et al. Structural elucidation of metabolites of ritonavir and indinavir by liquid chromatography-mass spectrometry. J Chromatogr A. 2002 Oct 18;974(1–2):91–101.
  • Kumar GN, Rodrigues AD, Buko AM, et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther. 1996 Apr;277(1):423–431.
  • Zhou H, Pandak WM Jr., Lyall V, et al. HIV protease inhibitors activate the unfolded protein response in macrophages: implication for atherosclerosis and cardiovascular disease. Mol Pharmacol. 2005 Sep;68(3):690–700.
  • Zhou H, Gurley EC, Jarujaron S, et al. HIV protease inhibitors activate the unfolded protein response and disrupt lipid metabolism in primary hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2006 Dec;291(6):G1071–80.
  • Terelius Y, Figler RA, Marukian S, et al. Transcriptional profiling suggests that nevirapine and ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact. 2016;255:31–44.
  • Authority EFS. Conclusion on the peer review of the pesticide risk assessment of the active substance bromuconazole. Efsa J. 2010;8(8):1704.
  • Elshama S. Toxicological and Pathological evaluation of prolonged bromuconazole fungicide exposure in male rats. Med J Cairo Univ. 2011 Dec 01;79:555–564.
  • Mazur CS, Kenneke JF, Tebes-Stevens C, et al. In vitro metabolism of the fungicide and environmental contaminant trans-bromuconazole and implications for risk assessment. J Toxicol Environ Health A. 2007 Jul;70(14):1241–1250.
  • Szelenyi I. Flupirtine, a re-discovered drug, revisited. Inflamm Res. 2013 Mar;62(3):251–258.
  • Teschke R. Idiosyncratic DILI: analysis of 46,266 cases assessed for causality by RUCAM and published from 2014 to early 2019. Front Pharmacol. 2019;10:730.
  • Teschke R. Top-ranking drugs out of 3312 drug-induced liver injury cases evaluated by the roussel uclaf causality assessment method. Expert Opin Drug Metab Toxicol. 2018 Nov;14(11):1169–1187.
  • Siegmund W, Modess C, Scheuch E, et al. Metabolic activation and analgesic effect of flupirtine in healthy subjects, influence of the polymorphic NAT2, UGT1A1 and GSTP1. Br J Clin Pharmacol. 2015 Mar;79(3):501–513.
  • Konishi K, Fukami T, Ogiso T, et al. In vitro approach to elucidate the relevance of carboxylesterase 2 and N-acetyltransferase 2 to flupirtine-induced liver injury. Biochem Pharmacol. 2018;155:242–251.
  • Methling K, Reszka P, Lalk M, et al. Investigation of the in vitro metabolism of the analgesic flupirtine. Drug Metab Dispos. 2009 Mar;37(3):479–493.
  • Monckton CP, Khetani SR. Engineered human liver cocultures for investigating drug-induced liver injury. In: Chen M, Will Y, editors. Drug-induced liver toxicity. New York: Springer New York; 2018. p. 213–248.
  • Houston H Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. 2004.
  • Hutzler JM, Ring BJ, Anderson SR. Low-turnover drug molecules: a current challenge for drug metabolism scientists. Drug Metab Dispos. 2015 Dec;43(12):1917–1928.
  • Donato MT, Lahoz A, Castell JV, et al. Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab. 2008 Jan;9(1):1–11.
  • Donato MT, Jover R, Gómez-Lechón MJ. Hepatic cell lines for drug hepatotoxicity testing: limitations and strategies to upgrade their metabolic competence by gene engineering. Curr Drug Metab. 2013 Nov;14(9):946–968.
  • Marion MJ, Hantz O, Durantel D. The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies. Methods Mol Biol. 2010;640:261–272.
  • Meseguer-Ripolles J, Khetani SR, Blanco JG, et al. Pluripotent stem cell-derived human tissue: platforms to evaluate drug metabolism and safety. Aaps J. 2017 Dec 21;20(1):20.
  • Lin C, Shi J, Moore A, et al. Prediction of drug clearance and drug-drug interactions in microscale cultures of human hepatocytes. Drug Metab Dispos. 2016 Jan;44(1):127–136.
  • Long TJ, Cosgrove PA, Dunn RT 2nd, et al. Modeling therapeutic antibody-small molecule drug-drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab Dispos. 2016 Dec;44(12):1940–1948.
  • Xu D, Peltz G. Can humanized mice predict drug “behavior” in humans? Annu Rev Pharmacol Toxicol. 2016 Jan 06;56(1):323–338.
  • Ma X, Shah Y, Cheung C, et al. The PREgnane X receptor gene-humanized mouse: a model for investigating drug-drug interactions mediated by cytochromes P450 3A. Drug Metab Dispos. 2007 Feb;35(2):194–200.
  • Gonzalez FJ. CYP3A4 and pregnane X receptor humanized mice. J Biochem Mol Toxicol. 2007 Aug 01;21(4):158–162.
  • Xie W, Barwick JL, Downes M, et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature. 2000 Jul 27;406(6794):435–439.
  • Scheer N, Ross J, Kapelyukh Y, et al. In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice. Drug Metab Dispos. 2010 Jul;38(7):1046–1053.
  • Lee SY, Lee JY, Kim YM, et al. Expression of hepatic cytochrome P450s and UDP-glucuronosyltransferases in PXR and CAR double humanized mice treated with rifampicin. Toxicol Lett. 2015 Jun 1;235(2):107–115.
  • Bissig KD, Han W, Barzi M, et al. P450-humanized and human liver chimeric mouse models for studying xenobiotic metabolism and toxicity. Drug Metab Dispos. 2018 Nov;46(11):1734–1744.
  • Hasegawa M, Kawai K, Mitsui T, et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun. 2011 Feb 18;405(3):405–410.
  • Scheer N, Kapelyukh Y, Rode A, et al. Defining human pathways of drug metabolism in vivo through the development of a multiple humanized mouse model. Drug Metab Dispos. 2015 Nov;43(11):1679–1690.
  • Saini N, Bakshi S, Sharma S. In-silico approach for drug induced liver injury prediction: recent advances. Toxicol Lett. 2018 Oct;1(295):288–295.
  • Thakkar S, Li T, Liu Z, et al. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 2020 Jan;25(1):201–208.
  • Zimmermann K, Wittman MD, Saulnier MG, et al. SAR of PXR transactivation in benzimidazole-based IGF-1R kinase inhibitors. Bioorg Med Chem Lett. 2010 Mar 1;20(5):1744–1748.
  • Watkins RE, Wisely GB, Moore LB, et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science. 2001 Jun 22;292(5525):2329–2333.
  • Buchman CD, Chai SC, Chen T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol. 2018 Jun;14(6):635–647.
  • Lin W, Wang YM, Chai SC, et al. SPA70 is a potent antagonist of human pregnane X receptor. Nat Commun. 2017 Sep 29;8(1):741.
  • Wang H, Huang H, Li H, et al. Activated pregnenolone X-receptor is a target for ketoconazole and its analogs. Clin Cancer Res. 2007 Apr 15;13(8):2488–2495.
  • Huang H, Wang H, Sinz M, et al. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene. 2007 Jan 11;26(2):258–268.
  • Fuchs I, Hafner-Blumenstiel V, Markert C, et al. Effect of the CYP3A inhibitor ketoconazole on the PXR-mediated induction of CYP3A activity. Eur J Clin Pharmacol. 2013 Mar;69(3):507–513.
  • Chen Y, Tang Y, Robbins GT, et al. Camptothecin attenuates cytochrome P450 3A4 induction by blocking the activation of human pregnane X receptor. J Pharmacol Exp Ther. 2010 Sep 1;334(3):999–1008.
  • Huang Q, Wang L, Lu W. Evolution in medicinal chemistry of E-ring-modified Camptothecin analogs as anticancer agents. Eur J Med Chem. 2013 May;63:746–757.
  • Schuetz E, Lan L, Yasuda K, et al. Development of a real-time in vivo transcription assay: application reveals pregnane X receptor-mediated induction of CYP3A4 by cancer chemotherapeutic agents. Mol Pharmacol. 2002 Sep;62(3):439–445.
  • Burk O, Kuzikov M, Kronenberger T, et al. Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch Toxicol. 2018 Apr;92(4):1435–1451.
  • Gupta AK, Chow M. Pimecrolimus: a review. J Eur Acad Dermatol Venereol. 2003 Sep;17(5):493–503.
  • Deng R, Xu C, Chen X, et al. Resveratrol suppresses the inducible expression of CYP3A4 through the pregnane X receptor. J Pharmacol Sci. 2014;126(2):146–154.
  • Smutny T, Pavek P. Resveratrol as an inhibitor of pregnane X receptor (PXR): another lesson in PXR antagonism. J Pharmacol Sci. 2014;126(2):177–178.
  • Burns J, Yokota T, Ashihara H, et al. Plant foods and herbal sources of resveratrol. J Agric Food Chem. 2002 May 22;50(11):3337–3340.
  • Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, et al. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res. 2010 Jan;54(1):7–16.
  • Huber AD, Wright WC, Lin W, et al. Mutation of a single amino acid of pregnane X receptor switches an antagonist to agonist by altering AF-2 helix positioning. Cell Mol Life Sci. 2020 Mar 30. DOI:10.1007/s00018-020-03505-y.
  • Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 2001 May;7(5):584–590.
  • Tabb MM, Kholodovych V, Grun F, et al. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environ Health Perspect. 2004 Feb;112(2):163–169.
  • van Kesteren C, de Vooght MM, Lopez-Lazaro L, et al. Yondelis (trabectedin, ET-743): the development of an anticancer agent of marine origin. Anticancer Drugs. 2003 Aug;14(7):487–502.
  • Morris EJ, Geller HM. Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol. 1996 Aug;134(3):757–770.
  • Xie Y, Xu M, Deng M, et al. Activation of pregnane X receptor sensitizes mice to hemorrhagic shock-induced liver injury. Hepatology. 2019 Sep;70(3):995–1010.
  • Corsini A, Bortolini M. Drug‐induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol. 2013;53(5):463–474.
  • Brewer CT, Chen T. PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B. 2016 Sep;6(5):441–449.
  • Liu Y, Ji W, Yin Y, et al. The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions. Clin Chim Acta. 2009 May;403(1–2):142–144.
  • Breuker C, Planque C, Rajabi F, et al. Characterization of a novel PXR isoform with potential dominant-negative properties. J Hepatol. 2014 Sep;61(3):609–616.
  • Uetrecht J. Mechanistic studies of idiosyncratic DILI: clinical implications. Front Pharmacol. 2019;10:837.
  • Ekins S, Kholodovych V, Ai N, et al. Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol. 2008 Sep;74(3):662–672.
  • Ren Z, Chen S, Qing T, et al. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 cells. Toxicology. 2017 Dec 1;392:11–21.
  • Wang H, Li H, Moore LB, et al. The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol Endocrinol. 2008 Apr;22(4):838–857.
  • van Kesteren C, Cvitkovic E, Taamma A, et al. Pharmacokinetics and pharmacodynamics of the novel marine-derived anticancer agent ecteinascidin 743 in a phase I dose-finding study. Clin Cancer Res. 2000 Dec;6(12):4725–4732.
  • Healan-Greenberg C, Waring JF, Kempf DJ, et al. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane X receptor. Drug Metab Dispos. 2008 Mar;36(3):500–507.
  • Lim YP, Ma CY, Liu CL, et al. Sesamin: a naturally occurring lignan inhibits CYP3A4 by antagonizing the pregnane X receptor activation. Evid Based Complement Alternat Med. 2012;2012:242810.
  • Das BC, Madhukumar AV, Anguiano J, et al. Synthesis of novel ketoconazole derivatives as inhibitors of the human pregnane X receptor (PXR; NR1I2; also termed SXR, PAR). Bioorg Med Chem Lett. 2008 Jul 15;18(14):3974–3977.
  • Svecova L, Vrzal R, Burysek L, et al. Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab Dispos. 2008 Feb;36(2):339–348.
  • Krausova L, Stejskalova L, Wang H, et al. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem Pharmacol. 2011 Dec 1;82(11):1771–1780.
  • Kadoda K, Moriwaki T, Tsuda M, et al. Selective cytotoxicity of the anti-diabetic drug, metformin, in glucose-deprived chicken DT40 cells. PLoS One. 2017;12(9):e0185141.
  • Zhou C, Poulton EJ, Grün F, et al. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol. 2007 Jan;71(1):220–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.