1,347
Views
37
CrossRef citations to date
0
Altmetric
Review

Albumin-based drug designs for pharmacokinetic modulation

&
Pages 783-795 | Received 24 Apr 2020, Accepted 10 Jul 2020, Published online: 02 Sep 2020

References

  • Peters T Jr. All about albumin: biochemistry, genetics, and medical applications. San Diego (CA): Academic press; 1996.
  • YS D, DG M. Characterizing a drug’s primary binding site on albumin. J Pharm Sci. 2003 Feb;92(2):333–343.
  • Vorum H, Honore B. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy. J Pharm Pharmacol. 1996 Aug;48(8):870–875.
  • Mao H, Hajduk PJ, Craig R, et al. Rational design of diflunisal analogues with reduced affinity for human serum albumin. J Am Chem Soc. 2001;123(43):10429–10435.
  • Piroli RJ, Passananti GT, Shively CA, et al. Antipyrine and warfarin disposition in a patient with idiopathic hypoalbuminemia. Clin Pharmacol Ther. 1981 Dec;30(6):810–816.
  • Greenblatt DJ, Koch-Weser J. Clinical toxicity of chlordiazepoxide and diazepam in relation to serum albumin concentration: a report from the Boston collaborative drug surveillance program. Eur J Clin Pharmacol. 1974 Jul 26;7(4):259–262.
  • Sudlow G, Birkett DJ, Wade DN. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975 Nov;11(6):824–832.
  • Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976 Nov;12(6):1052–1061.
  • He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215.
  • Curry S, Mandelkow H, Brick P, et al. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998 Sep;5(9):827–835.
  • Ghuman J, Zunszain PA, Petitpas I, et al. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005 Oct 14;353(1):38–52.
  • Simard JR, Zunszain PA, Hamilton JA, et al. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J Mol Biol. 2006 Aug 11;361(2):336–351.
  • Petitpas I, Bhattacharya AA, Twine S, et al. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J Biol Chem. 2001 Jun 22;276(25):22804–22809.
  • Al-Harthi S, Lachowicz JI, Nowakowski ME, et al. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J Inorg Biochem. 2019 Sep;198:110716.
  • Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med. 2016;9:229–255.
  • Plouin PF, Degoulet P, Menard D, et al. IgG versus albumin for measurement of plasma volume in normal and hypertensive men. Eur J Nucl Med. 1978 Jul 1;3(3):183–186.
  • Rothschild MA, Bauman A, Yalow RS, et al. Tissue distribution of I131 labeled human serum albumin following intravenous administration. J Clin Invest. 1955 Sep;34(9):1354–1358.
  • Fleck A, Raines G, Hawker F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985 Apr 6;1(8432):781–784.
  • Rossing N. Intra- and extravascular distribution of albumin and immunoglobulin in man. Lymphology. 1978 Dec;11(4):138–142.
  • Katz J, Bonorris G, Sellers AL. Extravascular albumin in human tissues. Clin Sci. 1970 Dec;39(6):725–729.
  • Bert JL, Pearce RH, Mathieson JM. Concentration of plasma albumin in its accessible space in postmortem human dermis. Microvasc Res. 1986 Sep;32(2):211–223.
  • Wiig H, Gyenge C, Iversen PO, et al. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: potential therapeutic consequences. Microcirculation. 2008 May;15(4):283–296.
  • Rabilloud T, Asselineau D, Darmon M. Presence of serum albumin in normal human epidermis: possible implications for the nutrition and physiology of stratified epithelia. Presence of albumin in epidermis. Mol Biol Rep. 1988;13(4):213–219.
  • Larsen MT, Kuhlmann M, Hvam ML, et al. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3.
  • Sleep D. Albumin and its application in drug delivery. Expert Opin Drug Deliv. 2015 May;12(5):793–812.
  • Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta. 2013 Dec;1830(12):5526–5534.
  • Hermansen K, Fontaine P, Kukolja KK, et al. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basal-bolus therapy for patients with type 1 diabetes. Diabetologia. 2004 Apr;47(4):622–629.
  • Luddeke HJ, Sreenan S, Aczel S, et al. PREDICTIVE- a global, prospective observational study to evaluate insulin detemir treatment in types 1 and 2 diabetes: baseline characteristics and predictors of hypoglycaemia from the European cohort. Diabetes Obes Metab. 2007 May;9(3):428–434.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016 Jul 28;375(4):311–322.
  • Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009 Mar;26(3):268–278.
  • Elsadek B, Kratz F. Impact of albumin on drug delivery–new applications on the horizon. J Control Release. 2012 Jan 10;157(1):4–28.
  • Gradishar WJ, Krasnojon D, Cheporov S, et al. Significantly longer progression-free survival with nab-paclitaxel compared with docetaxel as first-line therapy for metastatic breast cancer. J Clin Oncol. 2009 Aug 1;27(22):3611–3619.
  • Home PD, Ahren B, Reusch JEB, et al. Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: long-term efficacy with or without rescue therapy. Diabetes Res Clin Pract. 2017 Sep;131:49–60.
  • GlaxoSmithKline. A study to determine the safety, tolerability, and effects of GSK2374697 in healthy volunteers clinicalTrials.gov. [cited 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT01545570
  • Celgene. ABI-008 trial in patients with hormone-refractory prostate cancer clinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT00477529
  • Aadi. A phase 2 study of ABI-009 in patients with advanced malignant PEComa (AMPECT) ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT02494570
  • Celgene. A trial of ABI-010 & ABI-007 in patients with advanced non-hematologic malignancies ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT00820768
  • Teva Pharmaceutical Industries. Neugranin in breast cancer patients receiving doxorubicin/docetaxel (NEUGR-003) (NEUGR-003) ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT01126190
  • Behring CSL. Study of recombinant factor viia fusion protein (rVIIa-FP, CSL689) for on-demand treatment of bleeding episodes in patients with hemophilia A or B with inhibitors ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT02484638
  • Beijing Bio-Fortune Ltd. Recombinant human serum albumin/interferon alpha2a fusion protein phase i study in chinese healthy volunteers ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT01901198
  • Vasgene Therapeutics I. Recombinant albumin fusion protein sEphB4-HSA in treating patients with metastatic or recurrent solid tumors ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT01642342
  • Brodersen R, Andersen S, Jacobsen C, et al. Determination of reserve albumin-equivalent for ligand binding, probing two distinct binding functions of the protein. Anal Biochem. 1982 Apr;121(2):395–408.
  • Ebbesen F, Jacobsen J. Bilirubin-albumin binding affinity and serum albumin concentration during intensive phototherapy (blue double light) in jaundiced newborn infants. Eur J Pediatr. 1980 Sep;134(3):261–263.
  • Adams PA, Berman MC. Kinetics and mechanism of the interaction between human serum albumin and monomeric haemin. Biochem J. 1980 Oct 1;191(1):95–102.
  • Zunszain PA, Ghuman J, Komatsu T, et al. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol. 2003 7; Jul(3): 6.
  • Richieri GV, Anel A, Kleinfeld AM. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993 Jul 27;32(29):7574–7580.
  • Bhattacharya AA, Grune T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol. 2000 Nov 10;303(5):721–732.
  • Yates FE, Urquhart J. Control of plasma concentrations of adrenocortical hormones. Physiol Rev. 1962 Jul;42(3):359–433.
  • Ramsey BL, Westphal U. Steroid-protein interactions. 40. The effect of fatty acids on progesterone binding to human serum albumin. Biochim Biophys Acta. 1978 Apr 28;529(1):115–122.
  • Pearlman WH, Crepy O. Steroid-protein interaction with particular reference to testosterone binding by human serum. J Biol Chem. 1967 Jan 25;242(2):182–189.
  • Richardson KS, Nowaczynski W, Genest J. Specific aldosterone-binding proteins in human plasma: partial characterisation. J Steroid Biochem. 1977 Sep;8(9):951–957.
  • Sugio S, Kashima A, Mochizuki S, et al. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999 Jun;12(6):439–446.
  • Olivieri JR, Craievich AF. The subdomain structure of human serum albumin in solution under different pH conditions studied by small angle X-ray scattering. Eur Biophys J. 1995;24(2):77–84.
  • Rothschild MA, Oratz M, Schreiber SS. Serum albumin. Hepatology. 1988 Mar-Apr;8(2):385–401.
  • Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203.
  • Bhattacharya AA, Curry S, Franks NP. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. Biol Chem. 2000 Dec 8;275(49):38731–38738.
  • Yang F, Zhang Y, Liang H. Interactive association of drugs binding to human serum albumin. Int J Mol Sci. 2014 Feb 27;15(3):3580–3595.
  • Simard JR, Zunszain PA, Ha CE, et al. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):17958–17963.
  • van der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24(4):300–307.
  • Ashbrook JD, Spectro AA, Fletcher JE. Medium chain fatty acid binding to human plasma albumin. J Biol Chem. 1972 Nov 10;247(21):7038–7042.
  • Ashbrook JD, Spector AA, Santos EC, et al. Long chain fatty acid binding to human plasma albumin. J Biol Chem. 1975 Mar 25;250(6):2333–2338.
  • Spector AA. Fatty acid binding to plasma albumin. J Lipid Res. 1975 May;16(3):165–179.
  • Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005 Dec;57(12):787–796.
  • Thomas MP, Nelson G, Patonay G, et al. Analysis of drug binding sites on human serum albumin using multidimensional fluorescence measurements. Spectrochim Acta Part B. 1988;43(4–5):651–660.
  • Henry RA, Wosilait WD. Drug displacement of warfarin from human serum albumin: a fluorometric analysis. Toxicol Appl Pharmacol. 1975 Aug;33(2):267–275.
  • Torres MJ, Turell L, Botti H, et al. Modulation of the reactivity of the thiol of human serum albumin and its sulfenic derivative by fatty acids. Arch Biochem Biophys. 2012 May;521(1–2):102–110.
  • Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005 Jun;41(6):1211–1219.
  • Christodoulou J, Sadler PJ, Tucker A. A new structural transition of serum albumin dependent on the state of Cys34. Detection by 1H-NMR spectroscopy. Eur J Biochem. 1994 Oct 1;225(1):363–368.
  • Schmokel J, Voldum A, Tsakiridou G, et al. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding. Nanotechnology. 2017 May 19;28(20):204004.
  • Petersen SS, Klaning E, Ebbesen MF, et al. Neonatal Fc receptor binding tolerance toward the covalent conjugation of payloads to cysteine 34 of human albumin variants. Mol Pharm. 2016 Feb 1;13(2):677–682.
  • Martin WL, West AP Jr., Gan L, et al. Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell. 2001 Apr;7(4):867–877.
  • Schmidt MM, Townson SA, Andreucci AJ, et al. Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure. 2013 Nov 5;21(11):1966–1978.
  • Israel EJ, Taylor S, Wu Z, et al. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology. 1997 Sep;92(1):69–74.
  • Fan YY, Farrokhi V, Caiazzo T, et al. Human FcRn tissue expression profile and half-life in PBMCs. Biomolecules. 2019 Aug 15;9(8). DOI:10.3390/biom9080373.
  • Latvala S, Jacobsen B, Otteneder MB, et al. Distribution of FcRn across species and tissues. J Histochem Cytochem. 2017 Jun;65(6):321–333.
  • Li T, Balthasar JP. FcRn expression in wildtype mice, transgenic mice, and in human tissues. Biomolecules. 2018 Oct 15;8(4):115.
  • Sand KM, Bern M, Nilsen J, et al. Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol. 2014;5:682.
  • Chaudhury C, Mehnaz S, Robinson JM, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003 Feb 3;197(3):315–322.
  • Schmidt EGW, Hvam ML, Antunes F, et al. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J Biol Chem. 2017 Aug 11;292(32):13312–13322.
  • Larsen MT, Rawsthorne H, Schelde KK, et al. Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. J Control Release. 2018 Oct 10;287:132–141.
  • Andersen JT, Dalhus B, Cameron J, et al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat Commun. 2012 Jan 3;3:610.
  • Sand KM, Dalhus B, Christianson GJ, et al. Dissection of the neonatal Fc receptor (FcRn)-albumin interface using mutagenesis and anti-FcRn albumin-blocking antibodies. J Biol Chem. 2014 Jun 13;289(24):17228–17239.
  • Nilsen J, Bern M, Sand KMK, et al. Human and mouse albumin bind their respective neonatal Fc receptors differently. Sci Rep. 2018 Oct 2;8(1):14648.
  • Andersen JT, Dee Qian J, Sandlie I. The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol. 2006 Nov;36(11):3044–3051.
  • Chaudhury C, Brooks CL, Carter DC, et al. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry. 2006 Apr 18;45(15):4983–4990.
  • Oganesyan V, Damschroder MM, Cook KE, et al. Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem. 2014 Mar 14;289(11):7812–7824.
  • Sand KM, Bern M, Nilsen J, et al. Interaction with both domain I and III of albumin is required for optimal pH-dependent binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2014 Dec 12;289(50):34583–34594.
  • Schnitzer JE, Carley WW, Palade GE. Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6773–6777.
  • Tiruppathi C, Song W, Bergenfeldt M, et al. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem. 1997 Oct 10;272(41):25968–25975.
  • Schnitzer JE. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol. 1992 Jan;262(1 Pt 2):H246–54.
  • Vogel SM, Minshall RD, Pilipovic M, et al. Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol Lung Cell Mol Physiol. 2001 Dec;281(6):L1512–22.
  • John TA, Vogel SM, Tiruppathi C, et al. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol. 2003 Jan;284(1):L187–96.
  • Pardridge WM, Eisenberg J, Cefalu WT. Absence of albumin receptor on brain capillaries in vivo or in vitro. Am J Physiol. 1985 Sep;249(3 Pt 1):E264–7.
  • Tiruppathi C, Finnegan A, Malik AB. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):250–254.
  • Schnitzer JE, Oh P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem. 1994 Feb 25;269(8):6072–6082.
  • Miyawaki-Shimizu K, Predescu D, Shimizu J, et al. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol. 2006 Feb;290(2):L405–13.
  • Minshall RD, Tiruppathi C, Vogel SM, et al. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol. 2000 Sep 4;150(5):1057–1070.
  • Chatterjee M, Ben-Josef E, Robb R, et al. Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy. Cancer Res. 2017 Nov 1;77(21):5925–5937.
  • John TA, Vogel SM, Minshall RD, et al. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J Physiol. 2001 Jun 1;533(Pt 2):547–559.
  • Raheel H, Ghaffari S, Khosraviani N, et al. CD36 mediates albumin transcytosis by dermal but not lung microvascular endothelial cells: role in fatty acid delivery. Am J Physiol Lung Cell Mol Physiol. 2019 May 1;316(5):L740–L750.
  • Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001 Sep;108(6):785–791.
  • Schnitzer JE, Sung A, Horvat R, et al. Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. J Biol Chem. 1992 Dec 5;267(34):24544–24553.
  • Schnitzer JE, Bravo J. High affinity binding, endocytosis, and degradation of conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. J Biol Chem. 1993 Apr 5;268(10):7562–7570.
  • Home P, Kurtzhals P. Insulin detemir: from concept to clinical experience. Expert Opin Pharmacother. 2006 Feb;7(3):325–343.
  • Affairs DoV. Department of defense. VA/DoD clinical practice guideline for the management of type 2 diabetes mellitus in primary care. 2017.
  • FDA. NovoLog® insulin aspart (rDNA origin) injection. [cited 2020 Jul 5]. Available from: https://www.accessdata.fda.gov/: FDA. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020986s033lbl.pdf
  • FDA. Prescribing informations of HUMULIN R: FDA. [cited 2020 Jul 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/018780s126s134lbl.pdf
  • Novo Nordisk Inc. Levemir® (insulin detemir injection): prescribing information. [cited 2020 Jul 5]. Available from: https://www.novo-pi.com/levemir.pdf
  • Morales J. Defining the role of insulin detemir in Basal insulin therapy. Drugs. 2007;67(17):2557–2584.
  • Jacobsen LV, Flint A, Olsen AK, et al. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2016 Jun;55(6):657–672.
  • Novo Nordisk Inc. Victoza® (Liraglutide injection): prescribing information. [cited 2020]. Available from: https://www.novo-pi.com/victoza.pdf
  • Gradel AKJ, Porsgaard T, Lykkesfeldt J, et al. Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J Diabetes Res. 2018;2018:1205121.
  • Hvam ML, Cai Y, Dagnaes-Hansen F, et al. Fatty acid-modified gapmer antisense oligonucleotide and serum albumin constructs for pharmacokinetic modulation. Mol Ther. 2017 Jul 5;25(7):1710–1717.
  • Bienk K, Hvam ML, Pakula MM, et al. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing. J Control Release. 2016 Jun 28;232:143–151.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004 Nov 11;432(7014):173–178.
  • Sarett SM, Werfel TA, Lee L, et al. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6490–E6497.
  • Walker A, Dunlevy G, Rycroft D, et al. Anti-serum albumin domain antibodies in the development of highly potent, efficacious and long-acting interferon. Protein Eng Des Sel. 2010 Apr;23(4):271–278.
  • Holt LJ, Basran A, Jones K, et al. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Des Sel. 2008 May;21(5):283–288.
  • O’Connor-Semmes RL, Lin J, Hodge RJ, et al. GSK2374697, a novel albumin-binding domain antibody (AlbudAb), extends systemic exposure of exendin-4: first study in humans–PK/PD and safety. Clin Pharmacol Ther. 2014 Dec;96(6):704–712.
  • Thorneloe KS, Sepp A, Zhang S, et al. The biodistribution and clearance of AlbudAb, a novel biopharmaceutical medicine platform, assessed via PET imaging in humans. EJNMMI Res. 2019 May 21;9(1):45.
  • GlaxoSmithKline. A positron emission tomography (PET) imaging study to investigate the biodistribution and clearance of an albumin binding domain antibody (AlbudAb) GSK3128349 in healthy male subjects ClinicalTrials.gov [cited 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT02829307
  • Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther. 2005 Jan;5(1):111–124.
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797.
  • Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015 May 20;17:135.
  • Jovcevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020 Feb;34(1):11–26.
  • Ablynx. A phase IIb study for ALX-0061 monotherapy in subjects with rheumatoid arthritis ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02287922
  • Ablynx. A dose-range finding study for ALX-0061 combination therapy in subjects with rheumatoid arthritis ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02309359
  • Taisho Pharmaceutical Co. An extension study of TS-152 in subjects with rheumatoid arthritis ClinicalTrials.gov [cited 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT04077567
  • Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release. 2012 Jul 20;161(2):429–445.
  • Nilvebrant J, Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J. 2013;6:e201303009.
  • Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. Medchemcomm. 2019 Jul 1;10(7):1068–1081.
  • Jonsson A, Dogan J, Herne N, et al. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel. 2008 Aug;21(8):515–527.
  • Tolmachev V, Orlova A, Pehrson R, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res. 2007 Mar 15;67(6):2773–2782.
  • Guo R, Guo W, Cao L, et al. Fusion of an albumin-binding domain extends the half-life of immunotoxins. Int J Pharm. 2016 Sep 10;511(1):538–549.
  • Li R, Yang H, Jia D, et al. Fusion to an albumin-binding domain with a high affinity for albumin extends the circulatory half-life and enhances the in vivo antitumor effects of human TRAIL. J Control Release. 2016 Apr 28;228:96–106.
  • Celgene Corporation. ABRAXANE® for injectable suspension (paclitaxel protein-bound particles for injectable suspension) (albumin-bound). [cited 2020 Jul 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021660s037lbl.pdf
  • Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006 Feb 15;12(4):1317–1324.
  • Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005 Nov 1;23(31):7794–7803.
  • FDA. Prescribing informations of TANZEUM: FDA. [cited 2020 Jul 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125431s019lbl.pdf
  • Matthews JE, Stewart MW, De Boever EH, et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008 Dec;93(12):4810–4817.
  • Woodward HN, Anderson SL. Once-weekly albiglutide in the management of type 2 diabetes: patient considerations. Patient Prefer Adherence. 2014;8:789–803.
  • Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. Guidelines for the management of hemophilia. Haemophilia. 2013 Jan;19(1):e1–47.
  • White GC 2nd, Beebe A, Nielsen B. Recombinant factor IX. Thromb Haemost. 1997 Jul;78(1):261–265.
  • Bjorkman S, Shapiro AD, Berntorp E. Pharmacokinetics of recombinant factor IX in relation to age of the patient: implications for dosing in prophylaxis. Haemophilia. 2001 Mar;7(2):133–139.
  • Chia J, Louber J, Glauser I, et al. Half-life-extended recombinant coagulation factor IX-albumin fusion protein is recycled via the FcRn-mediated pathway. J Biol Chem. 2018 Apr 27;293(17):6363–6373.
  • Metzner HJ, Weimer T, Kronthaler U, et al. Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost. 2009 Oct;102(4):634–644.
  • Santagostino E, Martinowitz U, Lissitchkov T, et al. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial. Blood. 2016 Apr 7;127(14):1761–1769.
  • Zeuzem S, Yoshida EM, Benhamou Y, et al. Albinterferon alfa-2b dosed every two or four weeks in interferon-naive patients with genotype 1 chronic hepatitis C. Hepatology. 2008 Aug;48(2):407–417.
  • Bain VG, Kaita KD, Yoshida EM, et al. A phase 2 study to evaluate the antiviral activity, safety, and pharmacokinetics of recombinant human albumin-interferon alfa fusion protein in genotype 1 chronic hepatitis C patients. J Hepatol. 2006 Apr;44(4):671–678.
  • Colvin RA, Tanwandee T, Piratvisuth T, et al. Randomized, controlled pharmacokinetic and pharmacodynamic evaluation of albinterferon in patients with chronic hepatitis B infection. J Gastroenterol Hepatol. 2015 Jan;30(1):184–191.
  • Zeuzem S, Sulkowski MS, Lawitz EJ, et al. Albinterferon Alfa-2b was not inferior to pegylated interferon-alpha in a randomized trial of patients with chronic hepatitis C virus genotype 1. Gastroenterology. 2010 Oct;139(4):1257–1266.
  • Prescription Drug Information ISe. Zalbin approval status [cited 2020]. Available from: http://www.drugs.com/history/zalbin.html
  • Wong SS. Chemistry of protein conjugation and cross-linking. Boca Raton (FL): CRC press; 1991.
  • CytRx. Phase 3 study to treat patients with soft tissue sarcomas ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT02049905
  • Gong J, Yan J, Forscher C, et al. Aldoxorubicin: a tumor-targeted doxorubicin conjugate for relapsed or refractory soft tissue sarcomas. Drug Des Devel Ther. 2018;12:777–786.
  • Cranmer LD. Spotlight on aldoxorubicin (INNO-206) and its potential in the treatment of soft tissue sarcomas: evidence to date. Onco Targets Ther. 2019;12:2047–2062.
  • Mita MM, Natale RB, Wolin EM, et al. Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs. 2015 Apr;33(2):341–348.
  • Chawla SP, Ganjoo KN, Schuetze S, et al. Phase III study of aldoxorubicin vs investigators’ choice as treatment for relapsed/refractory soft tissue sarcomas. Am Soc Clin Oncol. 2017;35. DOI:10.1200/JCO.2017.35.15_suppl.11000.
  • Prescription Drug Information ISe. Doxorubicin. [cited 2020]. Available from: https://www.drugs.com/pro/doxorubicin.html
  • Lau S, Graham B, Cao N, et al. Enhanced extravasation, stability and in vivo cardiac gene silencing via in situ siRNA-albumin conjugation. Mol Pharm. 2012 Jan 1;9(1):71–80.
  • Stehle G, Sinn H, Wunder A, et al. The loading rate determines tumor targeting properties of methotrexate-albumin conjugates in rats. Anticancer Drugs. 1997 Aug;8(7):677–685.
  • Fiehn C, Muller-Ladner U, Gay S, et al. Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology (Oxford). 2004 Sep;43(9):1097–1105.
  • Vis AN, van der Gaast A, van Rhijn BW, et al. A phase II trial of methotrexate-human serum albumin (MTX-HSA) in patients with metastatic renal cell carcinoma who progressed under immunotherapy. Cancer Chemother Pharmacol. 2002 Apr;49(4):342–345.
  • Hartung G, Stehle G, Sinn H, et al. Phase I trial of methotrexate-albumin in a weekly intravenous bolus regimen in cancer patients. Phase i study group of the association for medical oncology of the German cancer society. Clin Cancer Res. 1999 Apr;5(4):753–759.
  • Bolling C, Graefe T, Lubbing C, et al. Phase II study of MTX-HSA in combination with cisplatin as first line treatment in patients with advanced or metastatic transitional cell carcinoma. Invest New Drugs. 2006 Nov;24(6):521–527.
  • ConjuChem LCC. About DAC™ http://www.conjuchem.com/: conjuChem LCC. [cited 2020 Jul 5]. Available from: http://www.conjuchem.com/technology/dac
  • ConjuChem LCC. About PC-DAC™ http://www.conjuchem.com/: conjuChem LCC. [cited 2020 Jul 5]. Available from: http://www.conjuchem.com/technology/pc-dac
  • LCC C. A study to evaluate the efficacy and safety of CJC-1134-PC in patients with type 2 diabetes who are currently on metformin monotherapy ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00674466
  • LCC C. A study to evaluate the efficacy and safety of CJC-1134-PC in patients with type 2 diabetes mellitus who are currently on metformin monotherapy (DM200-101) ClinicalTrials.gov. [cited 2020 Jul 5]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT00638716
  • Shen BQ, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012 Jan 22;30(2):184–189.
  • Smith ME, Caspersen MB, Robinson E, et al. A platform for efficient, thiol-stable conjugation to albumin’s native single accessible cysteine. Org Biomol Chem. 2015 Aug 7;13(29):7946–7949.
  • Wall A, Nicholls K, Caspersen MB, et al. Optimised approach to albumin-drug conjugates using monobromomaleimide-C-2 linkers. Org Biomol Chem. 2019 Aug 28;17(34):7870–7873.
  • Rahbek UL, Howard KA, Oupicky D, et al. Intracellular siRNA and precursor miRNA trafficking using bioresponsive copolypeptides. J Gene Med. 2008 Jan;10(1):81–93.
  • Iwao Y, Hiraike M, Kragh-Hansen U, et al. Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin. Biochim Biophys Acta. 2007 Dec;1774(12):1582–1590.
  • Iwao Y, Hiraike M, Kragh-Hansen U, et al. Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin. Biochim Biophys Acta. 2009 Apr;1794(4):634–641.
  • Andersen JT, Dalhus B, Viuff D, et al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding. J Biol Chem. 2014 May 9;289(19):13492–13502.
  • Larsen MT, Mandrup OA, Schelde KK, et al. FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. J Control Release. 2020 Mar 4;322:53–63.
  • Schelde KK, Nicholls K, Dagnaes-Hansen F, et al. A new class of recombinant human albumin with multiple surface thiols exhibits stable conjugation and enhanced FcRn binding and blood circulation. J Biol Chem. 2019 Mar 8;294(10):3735–3743.
  • Pyzik M, Sand KMK, Hubbard JJ, et al. The Neonatal Fc Receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540.
  • Andersen JT, Daba MB, Berntzen G, et al. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2010 Feb 12;285(7):4826–4836.
  • Viuff D, Antunes F, Evans L, et al. Generation of a double transgenic humanized neonatal Fc receptor (FcRn)/albumin mouse to study the pharmacokinetics of albumin-linked drugs. J Control Release. 2016 Feb 10;223:22–30.
  • Kuhlmann M, Hamming JBR, Voldum A, et al. An albumin-oligonucleotide assembly for potential combinatorial drug delivery and half-life extension applications. Mol Ther Nucleic Acids. 2017 Dec 15;9:284–293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.