2,919
Views
58
CrossRef citations to date
0
Altmetric
Review

An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins

, &
Pages 809-822 | Received 04 Jun 2020, Accepted 13 Jul 2020, Published online: 06 Aug 2020

References

  • Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;2013(1):CD004816.
  • Huang WC, Lin TW, Chiou KR, et al. The effect of intensified low density lipoprotein cholesterol reduction on recurrent myocardial infarction and cardiovascular mortality. Acta Cardiol Sin. 2013;29(5):404–412.
  • Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med. 2001;2(5):205–207.
  • Ucar M, Mjörndal T, Dahlqvist R. HMG-CoA reductase inhibitors and myotoxicity. Drug Saf. 2000;22(6):441–457.
  • Joy TR, Hegele RA. Narrative review : statin-related myopathy. Ann Intern Med. 2009;150(12):858–868.
  • Echaniz-Laguna A, Mohr M, Tranchant C. Neuromuscular symptoms and elevated creatine kinase after statin withdrawal. N Engl J Med. 2010;362(6):564–565.
  • Holbrook A, Wright M, Sung M, et al. Statin-associated rhabdomyolysis: is there a dose-response relationship? Can J Cardiol. 2011;27(2):146–151.
  • Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol. 2006;97(8A):27C–31C.
  • Ramsey LB, Johnson SG, Caudle KE, et al. The Clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–428.
  • Hirota T, Ieiri I. Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol. 2015;11(9):1435–1447.
  • Parke-Davis-Pfizer.. Lipitor (atorvastatin calcium) tablets for oral administration prescribing information. [cited 2020 May 25]. Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=587
  • Kearney AS, Crawford LF, Mehta SC, et al. The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res. 1993;10(10):1461–1465.
  • Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: A novel mechanism of statin lactonization. Drug Metab Dispos. 2002;30(5):505–512.
  • Jacobsen W, Kuhn B, Soldner A, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos. 2000;28(11):1369–1378.
  • Maeda K, Ikeda Y, Fujita T, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90(4):575–581.
  • Choi MK, Shin HJ, Choi YL, et al. Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica. 2011;41(1):24–34.
  • König J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol. 2011;201:1–28.
  • Karlgren M, Vildhede A, Norinder U, et al. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem. 2012;55(10):4740–4763.
  • Huang F, Marzin K, Koenen R, et al. Effect of steady-state faldaprevir on pharmacokinetics of atorvastatin or rosuvastatin in healthy volunteers: a prospective open-label, fixed-sequence crossover study. J Clin Pharmacol. 2017;57(10):1305–1314.
  • Lau YY, Huang Y, Frassetto L, et al. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 2007;81(2):194–204.
  • Choi Y, Lee S, Jang IJ, et al. Pharmacokinetic interaction between fimasartan and atorvastatin in healthy male volunteers. Drug Des Devel Ther. 2018;12:2301–2309.
  • McKeand W, Baird-Bellaire S, Ermer J, et al. Study of the potential interaction between bazedoxifene and atorvastatin in healthy postmenopausal women. Clin Pharmacol Drug Dev. 2018;7(8):911–919.
  • Park J, Kim CO, Jin BH, et al. Pharmacokinetic drug interaction between atorvastatin and ezetimibe in healthy Korean volunteers. Transl Clin Pharmacol. 2017;25(4):202–208.
  • Peña A, de La, Cui X, Geiser J, et al. No dose adjustment is recommended for digoxin, warfarin, atorvastatin or a combination oral contraceptive when coadministered with dulaglutide. Clin Pharmacokinet. 2017;56(11):1415–1427.
  • Hausner H, Derving Karsbøl J, Holst AG, et al. Effect of semaglutide on the pharmacokinetics of metformin, warfarin, atorvastatin and digoxin in healthy subjects. Clin Pharmacokinet. 2017;56(11):1391–1401.
  • Khalilieh S, Yee KL, Sanchez RI, et al. Results of a doravirine-atorvastatin drug-drug interaction study. Antimicrob Agents Chemother. 2017;61(2):e01364–16.
  • Yamazaki T, Desai A, Goldwater R, et al. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, digoxin, metformin, and methotrexate in healthy subjects. Clin Pharmacol Drug Dev. 2017;6(1):66–75.
  • Ayalasomayajula S, Pan W, Han Y, et al. Assessment of drug–drug interaction potential between atorvastatin and LCZ696, a novel angiotensin receptor neprilysin inhibitor, in healthy chinese male subjects. Eur J Drug Metab Pharmacokinet. 2017;42(2):309–318.
  • Malm-Erjefält M, Ekblom M, Vouis J, et al. Effect on the gastrointestinal absorption of drugs from different classes in the biopharmaceutics classification system, when treating with liraglutide. Mol Pharm. 2015;12(11):4166–4173.
  • Blonk M, Van Beek M, Colbers A, et al. Pharmacokinetic drug-drug interaction study between raltegravir and atorvastatin 20 mg in healthy volunteers. J Acquir Immune Defic Syndr. 2015;69(1):44–51.
  • Braeckman RA, Stirtan WG, Soni PN. Effect of concomitant icosapent ethyl (eicosapentaenoic acid ethyl ester) on the pharmacokinetics of atorvastatin. Clin Drug Investig. 2015;35(1):45–51.
  • Shen Z, Yeh LT, Wallach K, et al. In vitro and in vivo interaction studies between lesinurad, a selective urate reabsorption inhibitor, and major liver or kidney transporters. Clin Drug Investig. 2016;36(6):443–452.
  • Singhvi S, Pan H, Morrison R, et al. Disposition of pravastatin sodium, a tissue‐selective HMG‐CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol. 1990;29(2):239–243.
  • Hamelin BA, Turgeon J. Hydrophilicity/ Lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;19(1):26–37.
  • Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41(5):343–370.
  • Everett DW, Chando TJ, Didonato GC, et al. Biotransformation of pravastatin sodium in humans. Drug Metab Dispos. 1991;19(4):740–748.
  • Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther. 1998;63(3):332–341.
  • Kantola T, Backman JT, Niemi M, et al. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol. 2000;56(3):225–229.
  • Hatanaka T. Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet. 2000;39(6):397–412.
  • Pan HY, DeVault AR, Swites BJ, et al. Pharmacokinetics and pharmacodynamics of pravastatin alone and with cholestyramine in hypercholesterolemia. Clin Pharmacol Ther. 1990;48(2):201–207.
  • Sigurbjörnsson S, Kjartansdöttir T, Jóhannsson M, et al. A pharmacokinetic evaluation of pravastatin in middle-aged and elderly volunteers. Eur J Drug Metab Pharmacokinet. 1998;23(1):13–18.
  • Kameyama Y, Yamashita K, Kobayashi K, et al. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15 + C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005;15(7):513–522.
  • Kim RB. 3-Hydroxy-3-methylglutaryl–coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphisms) in a hepatic drug uptake transporter: what’s it all about? Clin Pharmacol Ther. 2004;75(5):381–385.
  • König J, Cui Y, Nies AT, et al. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G156–164.
  • Chandra P, Brouwer KLR. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res. 2004;21(5):719–735.
  • König J, Nies AT, Cui Y, et al. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999;1461(2):377–394.
  • Yamazaki M, Kobayashi K, Sugiyama Y. Primary active transport of pravastatin across the liver canalicular membrane in normal and mutant Eisai hyperbilirubinemic rats. Biopharm Drug Dispos. 1996;17(8):645–659.
  • Kobayashi D, Nozawa T, Imai K, et al. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther. 2003;306(2):703–708.
  • Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–3464.
  • Shitara Y, Itoh T, Sato H, et al. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther. 2003;304(2):610–616.
  • Hedman M, Neuvonen PJ, Neuvonen M, et al. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin Pharmacol Ther. 2004;75(1):101–109.
  • Yee SW, Giacomini MM, Shen H, et al. Organic anion transporter polypeptide 1b1 polymorphism modulates the extent of drug–drug interaction and associated biomarker levels in healthy volunteers. Clin Transl Sci. 2019;12(4):388–399.
  • Kosloski MP, Bow DAJ, Kikuchi R, et al. Translation of in vitro transport inhibition studies to clinical drug-drug interactions for glecaprevir and pibrentasvir. J Pharmacol Exp Ther. 2019;370(2):278–287.
  • Badri PS, Dutta S, Wang H, et al. Drug interactions with the direct-acting antiviral combination of ombitasvir and paritaprevir-ritonavir. Antimicrob Agents Chemother. 2016;60(1):105–114.
  • Menon RM, Badri PS, Wang T, et al. Drug-drug interaction profile of the all-oral anti-hepatitis C virus regimen of paritaprevir/ritonavir, ombitasvir, and dasabuvir. J Hepatol. 2015;63(1):20–29.
  • García MJ, Reinoso RF, Navarro AS, et al. Clinical pharmacokinetics of statins. Methods Find Exp Clin Pharmacol. 2003;25(6):457–481.
  • Carswell CI, Plosker GL, Jarvis B. Rosuvastatin. Drugs. 2002;62(14):2075–2085.
  • Hu M, Tomlinson B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol. 2014;10(1):51–65.
  • McTaggart F. Comparative pharmacology of rosuvastatin. Atheroscler Suppl. 2003;4(1):9–14.
  • Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105.
  • Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705.
  • Kitamura S, Maeda K, Wang Y, et al. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos. 2008;36(10):2014–2023.
  • Huang L, Wang Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos. 2006;34(5):738–742.
  • Zurth C, Koskinen M, Fricke R, et al. Drug–drug interaction potential of darolutamide: in vitro and clinical studies. Eur J Drug Metab Pharmacokinet. 2019;44(6):747–759.
  • Zhang W, Deng S, Chen XP, et al. Pharmacokinetics of rosuvastatin when coadministered with rifampicin in healthy males: A randomized, single-blind, placebo-controlled, crossover study. Clin Ther. 2008;30(7):1283–1289.
  • Lai Y, Mandlekar S, Shen H, et al. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition. J Pharmacol Exp Ther. 2016;358(3):397–404.
  • Wu HF, Hristeva N, Chang J, et al. Rosuvastatin pharmacokinetics in asian and white subjects wild type for both OATP1B1 and BCRP under control and inhibited conditions. J Pharm Sci. 2017;106(9):2751–2757.
  • Williamson B, Dooley KE, Zhang Y, et al. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–6369.
  • Vavricka SR, Van Montfoort J, Ha HR, et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002;36(1):164–172.
  • Harvey RD, Aransay NR, Isambert N, et al. Effect of multiple-dose osimertinib on the pharmacokinetics of simvastatin and rosuvastatin. Br J Clin Pharmacol. 2018;84(12):2877–2888.
  • Offman E, Davidson M, Nilsson C. Assessment of pharmacokinetic interaction between omega-3 carboxylic acids and the statins rosuvastatin and simvastatin: results of 2 phase I studies in healthy volunteers. J Clin Lipidol. 2017;11(3):739–748.
  • Martin P, Gillen M, Ritter J, et al. Effects of fostamatinib on the pharmacokinetics of oral contraceptive, warfarin, and the statins rosuvastatin and simvastatin: results from Phase I clinical studies. Drugs R D. 2016;16(1):93–107.
  • Csonka D, Bruderer S, Schultz A, et al. Effect of macitentan on the pharmacokinetics of the breast cancer resistance protein substrates, rosuvastatin and riociguat, in healthy male subjects. Clin Drug Investig. 2019;39(12):1223–1232.
  • Moon SJ, Jeon JY, Jang K, et al. Pharmacokinetic interactions between telmisartan/amlodipine and rosuvastatin after multiple oral administrations in healthy Korean male subjects. Drug Des Devel Ther. 2019;13:2533–2542.
  • Willis BA, Andersen SW, Ayan-Oshodi M, et al. Assessment of transporter polymorphisms as a factor in a BCRP drug interaction study with lanabecestat. J Clin Pharmacol. 2020;60(1):107–116.
  • Poller B, Woessner R, Barve A, et al. Fevipiprant has a low risk of influencing co-medication pharmacokinetics: impact on simvastatin and rosuvastatin in different SLCO1B1 genotypes. Pulm Pharmacol Ther. 2019;57:101809.
  • Otani N, Wakuda H, Imai H, et al. No effect of digoxin on rosuvastatin pharmacokinetics in healthy subjects: utility of oita combination for clinical drug–drug interaction study. Clin Transl Sci. 2019;12(5):513–518.
  • Yang J, Hasegawa J, Endo Y, et al. Pharmacokinetic drug interaction between rosuvastatin and tanjin in healthy volunteers and rats. Yonago Acta Med. 2019;62(1):77–84.
  • Ishii Y, Ito Y, Matsuki S, et al. Clinical drug–drug interaction potential of BFE1224, prodrug of antifungal ravuconazole, using two types of cocktails in healthy subjects. Clin Transl Sci. 2018;11(5):477–486.
  • Kim H, Choi HY, Kim YH, et al. Pharmacokinetic interactions and tolerability of rosuvastatin and ezetimibe: an open-label, randomized, multiple-dose, crossover study in healthy male volunteers. Drug Des Devel Ther. 2018;12:815–821.
  • Lee J, Rhee SJ, Lee SH, et al. Evaluation of drug interactions between fimasartan and rosuvastatin after single and multiple doses in healthy Caucasians. Drug Des Devel Ther. 2018;12:787–794.
  • Stopfer P, Giessmann T, Hohl K, et al. Optimization of a drug transporter probe cocktail: potential screening tool for transporter-mediated drug–drug interactions. Br J Clin Pharmacol. 2018;84(9):1941–1949.
  • Katsube T, Miyazaki S, Narukawa Y, et al. Drug-drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters. Eur J Clin Pharmacol. 2018;74(7):931–938.
  • Kim CH, An H, Kim SH, et al. Pharmacokinetic and pharmacodynamic interaction between ezetimibe and rosuvastatin in healthy male subjects. Drug Des Devel Ther. 2017;11:3461–3469.
  • Edwards JE, Eliot L, Parkinson A, et al. Assessment of pharmacokinetic interactions between obeticholic acid and caffeine, midazolam, warfarin, dextromethorphan, omeprazole, rosuvastatin, and digoxin in phase 1 studies in healthy subjects. Adv Ther. 2017;34(9):2120–2138.
  • Stopfer P, Giessmann T, Hohl K, et al. Effects of metformin and furosemide on rosuvastatin pharmacokinetics in healthy volunteers: implications for their use as probe drugs in a transporter cocktail. Eur J Drug Metab Pharmacokinet. 2018;43(1):69–80.
  • Gidal BE, Mintzer S, Schwab M, et al. Evidence for a pharmacokinetic interaction between eslicarbazepine and rosuvastatin: potential effects on xenobiotic transporters. Epilepsy Res. 2017;135:64–70.
  • Zhu T, Parker B, Wojtkowski T, et al. Drug interactions between peficitinib, an orally administered, once-daily janus kinase inhibitor, and rosuvastatin in healthy subjects. Clin Pharmacokinet. 2017;56(7):747–757.
  • Kang WY, Kim EH, Seong SJ, et al. Pharmacokinetic drug interaction study using fimasartan and rosuvastatin in healthy volunteers. Int J Clin Pharmacol Ther. 2016;54(12):992–1003.
  • Hu M, Lee HK, To KKW, et al. Telmisartan increases systemic exposure to rosuvastatin after single and multiple doses, and in vitro studies show telmisartan inhibits ABCG2-mediated transport of rosuvastatin. Eur J Clin Pharmacol. 2016;72(12):1471–1478.
  • Moradi-Kalbolandi S, Habibi-Anbouhi M, Golkar M, et al. Development of a novel engineered antibody targeting human CD123. Anal Biochem. 2016;511:27–30.
  • Huguet J, Lu J, Gaudette F, et al. No effects of pantoprazole on the pharmacokinetics of rosuvastatin in healthy subjects. Eur J Clin Pharmacol. 2016;72(8):925–931.
  • Jung JA, Lee SY, Kim JR, et al. A pharmacokinetic and pharmacodynamic drug interaction between rosuvastatin and valsartan in healthy subjects. Drug Des Devel Ther. 2015;9:745–752.
  • Jin F, Robeson M, Zhou H, et al. Clinical drug interaction profile of idelalisib in healthy subjects. J Clin Pharmacol. 2015;55(8):909–919.
  • Kulmatycki K, Hanna I, Meyers D, et al. Evaluation of a potential transporter-mediated drug interaction between rosuvastatin and pradigastat, a novel DGAT-1 inhibitor. Int J Clin Pharmacol Ther. 2015;53(5):345–355.
  • Shah Y, Iqbal Z, Ahmad L, et al. Effect of omeprazole on the pharmacokinetics of rosuvastatin in healthy male volunteers. Am J Ther. 2016;23(6):e1514–23.
  • Choi HY, Lim HS, Kim YH, et al. Evaluation of the pharmacokinetics of the DPP-4 inhibitor gemigliptin when coadministered with rosuvastatin or irbesartan to healthy subjects. Curr Med Res Opin. 2015;31(2):229–241.
  • Elsby R, Martin P, Surry D, et al. Solitary inhibition of the breast cancer resistance protein efflux transporter results in a clinically significant drug-drug interaction with rosuvastatin by causing up to a 2-fold increase in statin exposure. Drug Metab Dispos. 2016;44(3):398–408.
  • Vickers S, Duncan CA, Chen IW, et al. Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug. Drug Metab Dispos. 1990;18(2):138–145.
  • Vickers S, Duncan CA, Vyas KP, et al. In vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase. Drug Metab Dispos. 1990;18(4):476–483.
  • Prueksaritanont T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans [SBT]identification of metabolizlng enzymes and effect of the drug on hepatic P450S. Drug Metab Dispos. 1997;25(10):1191–1199.
  • Mauro VF. Clinical pharmacokinetics and practical applications of simvastatin. Clin Pharmacokinet. 1993;24(3):195–202.
  • Jones NS, Yoshida K, Salphati L, et al. Complex DDI by fenebrutinib and the use of transporter endogenous biomarkers to elucidate the mechanism of DDI. Clin Pharmacol Ther. 2020;107(1):269–277.
  • Hisaka A, Nakamura M, Tsukihashi A, et al. Assessment of intestinal availability (FG) of substrate drugs of cytochrome P450s by analyzing changes in pharmacokinetic properties caused by drug-drug interactions. Drug Metab Dispos. 2014;42(10):1640–1645.
  • Jiang F, Choi JY, Lee JH, et al. The influences of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of simvastatin, in relation to CYP3A4 inhibition. Pharmacogenomics. 2017;18(5):459–469.
  • Bogman K, Brumm J, Hofmann C, et al. Assessment of drug–drug interactions between taspoglutide, a glucagon-like peptide-1 agonist, and drugs commonly used in type 2 diabetes mellitus: results of five phase I trials. Clin Pharmacokinet. 2019;58(9):1205–1214.
  • Kim JR, Jung JA, Kim S, et al. Effect of cilostazol on the pharmacokinetics of simvastatin in healthy subjects. Biomed Res Int. 2019;2019:1365180.
  • Li G, Zhao M, Qiu F, et al. Pharmacokinetic interactions and tolerability of berberine chloride with simvastatin and fenofibrate: an open-label, randomized, parallel study in healthy chinese subjects. Drug Des Devel Ther. 2019;13:129–139.
  • Kaleem Z, Khan JA, Mushtaq Z, et al. Assessment of potential interaction between simvastatin and clarithromycin in healthy adult male subjects. Pak J Pharm Sci. 2018;31(3):801–806.
  • Ayalasomayajula S, Han Y, Langenickel T, et al. In vitro and clinical evaluation of OATP-mediated drug interaction potential of sacubitril/valsartan (LCZ696). J Clin Pharm Ther. 2016;41(4):424–431.
  • Tao J, Jiang P, Peng C, et al. The pharmacokinetic characters of simvastatin after co-administration with Shexiang Baoxin Pill in healthy volunteers’ plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1026:162–167.
  • Georgy A, Zhai S, Liang Z, et al. Lack of potential pharmacokinetic and pharmacodynamic interactions between piragliatin, a glucokinase activator, and simvastatin in patients with type 2 diabetes mellitus. J Clin Pharmacol. 2016;56(6):675–682.
  • Itkonen MK, Tornio A, Neuvonen M, et al. Clopidogrel has no clinically meaningful effect on the pharmacokinetics of the organic anion transporting polypeptide 1B1 and cytochrome P450 3A4 substrate simvastatin. Drug Metab Dispos. 2015;43(11):1655–1660.
  • Cannady EA, Suico JG, Wang MD, et al. CYP-mediated drug-drug interactions with evacetrapib, an investigational CETP inhibitor: in vitro prediction and clinical outcome. Br J Clin Pharmacol. 2015;80(6):1388–1398.
  • Zhao Q, Jiang J, Hu P. Effects of four traditional Chinese medicines on the pharmacokinetics of simvastatin. Xenobiotica. 2015;45(9):803–810.
  • Devineni D, Manitpisitkul P, Murphy J, et al. Effect of canagliflozin on the pharmacokinetics of glyburide, metformin, and simvastatin in healthy participants. Clin Pharmacol Drug Dev. 2015;4(3):226–236.
  • Gehin M, Sidharta PN, Gnerre C, et al. Pharmacokinetic interactions between simvastatin and setipiprant, a CRTH2 antagonist. Eur J Clin Pharmacol. 2015;71(1):15–23.
  • Abd TT, Jacobson TA. Statin-induced myopathy: A review and update. Expert Opin Drug Saf. 2011;10(3):373–387.
  • Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta. 2003;1609(1):1–18.
  • Lee E, Ryan S, Birmingham B, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther. 2005;78(4):330–341.
  • Li Y, Jiang X, Lan K, et al. Pharmacokinetic properties of rosuvastatin after single-dose, oral administration in Chinese volunteers: a randomized, open-label, three-way crossover study. Clin Ther. 2007;29(10):2194–2203.
  • Birmingham BK, Bujac SR, Elsby R, et al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: A class effect? Eur J Clin Pharmacol. 2015;71(3):341–355.
  • Woo HI, Kim SR, Huh W, et al. Association of genetic variations with pharmacokinetics and lipid-lowering response to atorvastatin in healthy Korean subjects. Drug Des Devel Ther. 2017;11:1135–1146.
  • Rajput TA, Naveed AK, Farooqi ZUR, et al. Effects of two functionally important SLCO1B1 gene polymorphisms on pharmacokinetics of atorvastatin. Pak J Pharm Sci. 2017;30(4):1363–1370.
  • Daka A, Dimovski A, Kapedanovska A, et al. Effects of single nucleotide polymorphisms and haplotypes of the SLCO1B1 gene on the pharmacokinetic profile of atorvastatin in healthy Macedonian volunteers. Pharmazie. 2015;70(7):480–488.
  • Wang Y, Tian Y, Lv P, et al. The effect of SLCO1B1 polymorphism on the pharmacokinetics of atorvas-tatin and 2-hydroxyatorvastatin in healthy Chinese people. Pharmazie. 2017;72(6):365–368.
  • RBR L-C, Ascacio-Martínez JA, Gamino-Peña ME, et al. A pharmacogenetic pilot study reveals MTHFR, DRD3, and MDR1 polymorphisms as biomarker candidates for slow atorvastatin metabolizers. BMC Cancer. 2016;16:74.
  • Thakkar D, Dash RP. Pharmacokinetic interactions between glimepiride and rosuvastatin in healthy Korean subjects: does the SLCO1B1 or CYP2C9 genetic polymorphism affect these drug interactions? Observations and introspection of the bioanalysis. Drug Des Devel Ther. 2017;11:503–512.
  • Pasanen MK, Fredrikson H, Neuvonen PJ, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82(6):726–733.
  • Ho RH, Tirona RG, Leake BF, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793–1806.
  • Keskitalo JE, Zolk O, Fromm MF, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203.
  • AstraZeneca. CRESTOR (rosuvastatin calcium) tablets prescribing information. [cited 2020 May 25]. Available from: https://www.crestor.com/cholesterol-medicine/how-when-to-take-crestor.html
  • Hu M, Lui SSH, Ko GTC, et al. Do the lipid responses to rosuvastatin and atorvastatin differ between Chinese and Caucasians? Comparison of the DISCOVERY-Hong Kong study with other DISCOVERY studies. Int J Cardiol. 2013;168(3):3071–3073.
  • Liu M, Wu XJ, Zhao GL, et al. Effects of polymorphisms in NR1H4, NR1I2, SLCO1B1, and ABCG2 on the pharmacokinetics of rosuvastatin in healthy Chinese volunteers. J Cardiovasc Pharmacol. 2016;68(5):383–390.
  • Kim Y, Yoon S, Choi Y, et al. Influence of OATP1B1 and BCRP polymorphisms on the pharmacokinetics and pharmacodynamics of rosuvastatin in elderly and young Korean subjects. Sci Rep. 2019;9(1):19410.
  • Birmingham BK, Bujac SR, Elsby R, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in Caucasian and Asian subjects residing in the United States. Eur J Clin Pharmacol. 2015;71(3):329–340.
  • Wan Z, Wang G, Li T, et al. Marked alteration of rosuvastatin pharmacokinetics in healthy Chinese with ABCG2 34G>A and 421C>A homozygote or compound heterozygote. J Pharmacol Exp Ther. 2015;354(3):310–315.
  • Finkelman RD, Wang TD, Wang Y, et al. Effect of CYP2C19 polymorphism on the pharmacokinetics of rosuvastatin in healthy Taiwanese subjects. Clin Pharmacol Drug Dev. 2015;4(1):33–40.
  • Lou XY, Zhang W, Wang G, et al. The effect of Na+/taurocholate cotransporting polypeptide (NTCP) c.800C > T polymorphism on rosuvastatin pharmacokinetics in chinese healthy males. Pharmazie. 2014;69(10):775–779.
  • Kivistö KT, Niemi M, Schaeffeler E, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics. 2004;14(8):523–525.
  • Choi HY, Bae KS, Cho SH, et al. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet Genomics. 2015;25(12):595–608.
  • Tsamandouras N, Dickinson G, Guo Y, et al. Identification of the effect of multiple polymorphisms on the pharmacokinetics of Simvastatin and Simvastatin acid using a population-modeling approach. Clin Pharmacol Ther. 2014;96(1):90–100.
  • Transon C, Leemann T, Dayer P. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol. 1996;50(3):209–215.
  • Toscano C, Klein K, Blievernicht J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics. 2006;16(10):755–766.
  • Pasanen MK, Neuvonen M, Neuvonen PJ, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–879.
  • Hasunuma T, Tohkin M, Kaniwa N, et al. Absence of ethnic differences in the pharmacokinetics of moxifloxacin, simvastatin, and meloxicam among three East Asian populations and Caucasians. Br J Clin Pharmacol. 2016;81(6):1078–1090.
  • Wagner JB, Abdel-Rahman S, Van Haandel L, et al. Impact of SLCO1B1 genotype on pediatric simvastatin acid pharmacokinetics. J Clin Pharmacol. 2018;58(6):823–833.
  • Fischer V, Johanson L, Heitz F, et al. The 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos. 1999;27(3):410–416.
  • Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–581.
  • Kirchheiner J, Kudlicz D, Meisel C, et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S, 5R-fluvastatin and (+)-3R, 5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther. 2003;74(2):186–194.
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, et al. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–1624.
  • Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther. 2006;80(4):356–366.
  • Hirvensalo P, Tornio A, Neuvonen M, et al. Enantiospecific pharmacogenomics of fluvastatin. Clin Pharmacol Ther. 2019;106(3):668–680.
  • Vyas KP, Kari PH, Pitzenberger SM, et al. Biotransformation of lovastatin. I. Structure elucidation of in vitro and in vivo metabolites in the rat and mouse. Drug Metab Dispos. 1990;18(2):203–211.
  • Zhu Y, D’Agostino J, Zhang QY. Role of intestinal cytochrome P450 (P450) in modulating the bioavailability of oral lovastatin: insights from studies on the intestinal epithelium-specific P450 reductase knockout mouse. Drug Metab Dispos. 2011;39(6):939–943.
  • Yin OQP, Mak VWL, Hu M, et al. Impact of CYP2D6 polymorphisms on the pharmacokinetics of lovastatin in Chinese subjects. Eur J Clin Pharmacol. 2012;68(6):943–949.
  • Becker ML, Visser LE, Van Schaik RHN, et al. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol Drug Saf. 2010;19(1):75–81.
  • Tornio A, Vakkilainen J, Neuvonen M, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of lovastatin acid. Pharmacogenet Genomics. 2015;25(8):382–387.
  • Neuvonen PJ, Backman JT, Niemi M. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet. 2008;47(7):463–474.
  • Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. J Am Med Assoc. 2004;292(21):2585–2590.
  • Rosenson RS, Baker SK, Jacobson TA, et al. An assessment by the statin muscle safety task force: 2014 update. J Clin Lipidol. 2014;8(3 SUPPL):S58–71.
  • Mancini GBJ, Baker S, Bergeron J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian consensus working group update (2016). Can J Cardiol. 2016;32(7 SUPPL):S35–65.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007;26(4):219–225.
  • Williams AH, Liu N, van Rooij E, et al. MicroRNA control of muscle development and disease. Curr Opin Cell Biol. 2009;21(3):461–469.
  • Saito S, Nakanishi T, Shirasaki Y, et al. Association of miR-145 with statin-induced skeletal muscle toxicity in human rhabdomyosarcoma RD cells. J Pharm Sci. 2017;106(9):2873–2880.
  • Min PK, Park J, Isaacs S, et al. Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise. J Appl Physiol. 2016;120(6):711–720.
  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518.
  • Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148.
  • Chatzizisis YS, Koskinas KC, Misirli G, et al. Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment. Drug Saf. 2010;33(3):171–187.
  • Catapano L, Statin-induced myotoxicity: pharmacokinetic differences among statins and the risk of rhabdomyolysis, with particular reference to pitavastatin. Curr Vasc Pharmacol. 2012;10(2):257–267.
  • Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther. 2010;87(1):130–133.
  • Gotanda K, Hirota T, Saito J, et al. Circulating intestine-derived exosomal miR-328 in plasma, a possible biomarker for estimating BCRP function in the human intestines. Sci Rep. 2016;6:32299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.