399
Views
36
CrossRef citations to date
0
Altmetric
Review

Prodrugs and nanomicelles to overcome ocular barriers for drug penetration

ORCID Icon, &
Pages 885-906 | Received 14 May 2020, Accepted 27 Jul 2020, Published online: 23 Aug 2020

References

  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–360. DOI:10.1208/s12248-010-9183-3
  • Gote V, Sikder S, Sicotte J, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–624.
  • Gaudana R, Jwala J, Boddu SHS, et al. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–1216.
  • Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188.
  • Racz P, Ruzsonyi MR, Nagy ZT, et al. Maintained intraocular pressure reduction with once-a-day application of a new prostaglandin F2 alpha analogue (PhXA41). An in-hospital, placebo-controlled study. Arch Ophthalmol. 1993;111(5):657–661. DOI:10.1001/archopht.1993.01090050091036
  • Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(Suppl1):S69–84.
  • Williams RD, Cohen JS, Gross RL, et al. Long-term efficacy and safety of bimatoprost for intraocular pressure lowering in glaucoma and ocular hypertension: year 4. Br J Ophthalmol. 2008;92(10):1387–1392.
  • Denis P. Travoprost/timolol fixed combination in the management of open-angle glaucoma: a clinical review. Expert Opin Pharmacother. 2011;12(3):463–471.
  • Chabi A, Varma R, Tsai JC, et al. Randomized clinical trial of the efficacy and safety of preservative-free tafluprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2012;153(6):1187–1196.
  • Mandal A, Gote V, Pal D, et al. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa(R)) for dry eye disease. Pharm Res. 2019;36(2):36.
  • Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116.
  • Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: basic research to clinical practice. Int J Pharm. 2017;532(1):249–268.
  • Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211–228.
  • Vaishya RD, Khurana V, Patel S, et al. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(5):422–437.
  • Pepic I, Lovric J, Filipovic-Grcic J. How do polymeric micelles cross epithelial barriers? Eur J Pharm Sci. 2013;50(1):42–55.
  • Cabral H, Miyata K, Osada K, et al. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118(14):6844–6892.
  • Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96–112.
  • Shen J, Lu GW, Hughes P. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res. 2018;35(11):217.
  • Barar J, Aghanejad A, Fathi M, et al. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts. 2016;6(1):49–67.
  • Reichl S, Kölln C, Hahne M, et al. In vitro cell culture models to study the corneal drug absorption. Expert Opin Drug Metab Toxicol. 2011;7(5):559–578.
  • Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–1163.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135.
  • Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol. 1987;253(6 Pt 1):C749–58.
  • Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci. 2015;134:7–23.
  • Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–1788.
  • Grass GM, Wood RW, Robinson JR. Effects of calcium chelating agents on corneal permeability. Invest Ophthalmol Vis Sci. 1985;26(1):110–113.
  • Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525–569.
  • Morrison PW, Khutoryanskiy VV. Enhancement in corneal permeability of riboflavin using calcium sequestering compounds. Int J Pharm. 2014;472(1–2):56–64.
  • Yongyut Rojanasakul JRR. Transport mechanisms of the cornea: characterization of barrier permselectivity. Int J Pharm. 1989;55(2–3):237–246.
  • Pal D, Vadlapudi AD, Mitra AK. Biology of ocular transporters and receptor. In: Ak M, editor. Ocular transporters and receptors: their role in drug delivery. Cambridge, UK: Woodhead Publishing Ltd; 2013.
  • Barar J, Asadi M, Mortazavi-Tabatabaei SA, et al. Ocular drug delivery; impact of in vitro cell culture models. J Ophthalmic Vis Res. 2009;4(4):238–252.
  • Mantelli F, Mauris J, Argueso P. The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Curr Opin Allergy Clin Immunol. 2013;13(5):563–568.
  • Hamalainen KM, Kananen K, Auriola S, et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38(3):627–634.
  • de Cogan F, Hill LJ, Lynch A, et al. Topical delivery of anti-VEGF drugs to the ocular posterior segment using cell-penetrating peptides. Invest Ophthalmol Vis Sci. 2017;58(5):2578–2590.
  • Vadlapatla RK, Vadlapudi A, Pal D, et al. Role of membrane transporters and metabolizing enzymes in ocular drug delivery. Curr Drug Metab. 2014;15(7):680–693.
  • Vellonen KS, Hellinen L, Mannermaa E, et al. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev. 2018;126:3–22.
  • Mishima DMM. Ocular Pharmacokinetics. Pharmacol Eye. 1984;69.
  • Hayakawa E, Chien D-S, Inagaki K, et al. Conjunctival penetration of insulin and peptide drugs in the albino rabbit. Pharm Res. 1992;9(6):769–775.
  • du Toit LC, Pillay V, Choonara YE, et al. Ocular drug delivery - a look towards nanobioadhesives. Expert Opin Drug Deliv. 2011;8(1):71–94.
  • Djebli N, Khier S, Griguer F, et al. Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet. 2017;42(1):59–68.
  • Tiffany JM. Tears in health and disease. Eye (Lond). 2003;17(8):923–926.
  • Lee VH, Robinson JR. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci. 1979;68(6):673–684.
  • Bu HZ, Gukasyan HJ, Goulet L, et al. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab. 2007;8(2):91–107.
  • Karaman Erdur S, Eliacik M, Kocabora MS, et al. Tear osmolarity and tear film parameters in patients with ocular rosacea. Eye Contact Lens. 2016;42(6):347–349.
  • Yazdani M, Elgstøen KBP, Rootwelt H, et al. Tear metabolomics in dry eye disease: a review. Int J Mol Sci. 2019;20(15).
  • Chrai SS, Patton TF, Mehta A, et al. Lacrimal and instilled fluid dynamics in rabbit eyes. J Pharm Sci. 1973;62(7):1112–1121.
  • Nagataki S, Mishima S. Pharmacokinetics of instilled drugs in the human eye. Int Ophthalmol Clin. 1980;20(3):33–49.
  • Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–754.
  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.
  • Mandal A, Agrahari V, Khurana V, et al. Transporter effects on cell permeability in drug delivery. Expert Opin Drug Deliv. 2017;14(3):385–401.
  • Merriman-Smith R, Donaldson P, Kistler J. Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Invest Ophthalmol Vis Sci. 1999;40(13):3224–3230.
  • Yabuuchi H, Tamai I, Morita K, et al. Hepatic sinusoidal membrane transport of anionic drugs mediated by anion transporter Npt1. J Pharmacol Exp Ther. 1998;286(3):1391–1396.
  • Bretschneider B, Brandsch M, Neubert R. Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res. 1999;16(1):55–61.
  • Itoh T, Nakaura H, Koyano S, et al. Stereoselective renal secretion of carbenicillin in rabbits: role of the organic anion transporter at the renal brush border membrane. Chirality. 1998;10(4):349–357.
  • Jariyawat S, Sekine T, Takeda M, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–677.
  • Takeda M, Babu E, Narikawa S, et al. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–142.
  • Khamdang S, Takeda M, Babu E, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003;465(1–2):1–7.
  • Hosoyamada M, Sekine T, Kanai Y, et al. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol. 1999;276(1):F122–8.
  • Takeda M, Khamdang S, Narikawa S, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–671.
  • Cha SH, Sekine T, Fukushima JI, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–1286.
  • Michot JM, Seral C, Van Bambeke F, et al. Influence of efflux transporters on the accumulation and efflux of four quinolones (ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin) in J774 macrophages. Antimicrob Agents Chemother. 2005;49(6):2429–2437.
  • Michot JM, Van Bambeke F, Mingeot-Leclercq M-P, et al. Active efflux of ciprofloxacin from J774 macrophages through an MRP-like transporter. Antimicrob Agents Chemother. 2004;48(7):2673–2682.
  • Horibe Y, Hosoya K, Kim KJ, et al. Carrier-mediated transport of monocarboxylate drugs in the pigmented rabbit conjunctiva. Invest Ophthalmol Vis Sci. 1998;39(8):1436–1443.
  • Merino G, Alvarez AI, Pulido MM, et al. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos. 2006;34(4):690–695.
  • Masuda S, Ibaramoto K, Takeuchi A, et al. Cloning and functional characterization of a new multispecific organic anion transporter, OAT-K2, in rat kidney. Mol Pharmacol. 1999;55(4):743–752.
  • Terashi K, Oka M, Soda H, et al. Interactions of ofloxacin and erythromycin with the multidrug resistance protein (MRP) in MRP-overexpressing human leukemia cells. Antimicrob Agents Chemother. 2000;44(6):1697–1700.
  • Takano M, Hasegawa R, Fukuda T, et al. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol. 1998;358(3):289–294.
  • Babu E, Takeda M, Narikawa S, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002;88(1):69–76.
  • Bode KA, Donner MG, Leier I, et al. Inhibition of transport across the hepatocyte canalicular membrane by the antibiotic fusidate. Biochem Pharmacol. 2002;64(1):151–158.
  • Klokouzas A, Barrand MA, Hladky SB. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. Eur J Biochem. 2001;268(24):6569–6577.
  • Sakaeda T, Iwaki K, Kakumoto M, et al. Effect of micafungin on cytochrome P450 3A4 and multidrug resistance protein 1 activities, and its comparison with azole antifungal drugs. J Pharm Pharmacol. 2005;57(6):759–764.
  • Wada S, Tsuda M, Sekine T, et al. Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther. 2000;294(3):844–849.
  • Cihlar T, Lin DC, Pritchard JB, et al. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999;56(3):570–580.
  • Ho ES, Lin DC, Mendel DB, et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol. 2000;11(3):383–393.
  • Kido Y, Tamai I, Okamoto M, et al. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm Res. 2000;17(1):55–62.
  • Adachi M, Sampath J, Lan L-B, et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem. 2002;277(41):38998–39004.
  • Majumdar S, Gunda S, Mitra A. Functional expression of a sodium dependent nucleoside transporter on rabbit cornea: role in corneal permeation of acyclovir and idoxuridine. Curr Eye Res. 2003;26(3–4):175–183.
  • Fang X, Parkinson FE, Mowles DA, et al. Functional characterization of a recombinant sodium-dependent nucleoside transporter with selectivity for pyrimidine nucleosides (cNT1rat) by transient expression in cultured mammalian cells. Biochem J. 1996;317((Pt 2)):457–465.
  • Bhardwaj RK, Herrera-Ruiz D, Sinko PJ, et al. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J Pharmacol Exp Ther. 2005;314(3):1093–1100.
  • Kanai N, Lu R, Bao Y, et al. Transient expression of oatp organic anion transporter in mammalian cells: identification of candidate substrates. Am J Physiol. 1996;270(2 Pt 2):F319–25.
  • Rao US, Fine RL, Scarborough GA. Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994;48(2):287–292.
  • Yates CR, Chang C, Kearbey JD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res. 2003;20(11):1794–1803.
  • Cooray HC, Shahi S, Cahn AP, et al. Modulation of p-glycoprotein and breast cancer resistance protein by some prescribed corticosteroids. Eur J Pharmacol. 2006;531(1–3):25–33.
  • Morita N, Kusuhara H, Sekine T, et al. Functional characterization of rat organic anion transporter 2 in LLC-PK1 cells. J Pharmacol Exp Ther. 2001;298(3):1179–1184.
  • Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000;295(1):10–15.
  • Pratt S, Shepard RL, Kandasamy RA, et al. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther. 2005;4(5):855–863.
  • Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2ʹ,3ʹ-dideoxycytidine and 9ʹ-(2ʹ-phosphonylmethoxyethyl)adenine. J Biol Chem. 2003;278(32):29509–29514.
  • Zhang N, Kannan R, Okamoto CT, et al. Characterization of brimonidine transport in retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2006;47(1):287–294.
  • Han YH, Sweet DH, Hu DN, et al. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther. 2001;296(2):450–457.
  • Gao B, Huber RD, Wenzel A, et al. Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium. Exp Eye Res. 2005;80(1):61–72.
  • Katoh M, Nakajima M, Yamazaki H, et al. Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci. 2001;12(4):505–513.
  • Zhang Y, Berger SA. Ketotifen reverses MDR1-mediated multidrug resistance in human breast cancer cells in vitro and alleviates cardiotoxicity induced by doxorubicin in vivo. Cancer Chemother Pharmacol. 2003;51(5):407–414.
  • Letschert K, Faulstich H, Keller D, et al. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 2006;91(1):140–149.
  • Qadir M, O'Loughlin KL, Fricke SM, et al. Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin Cancer Res. 2005;11(6):2320–2326.
  • Sun H, Johnson DR, Finch RA, et al. Transport of fluorescein in MDCKII-MRP1 transfected cells and mrp1-knockout mice. Biochem Biophys Res Commun. 2001;284(4):863–869.
  • Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19(8):1194–1202.
  • Fukasawa Y, Segawa H, Kim JY, et al. Identification and characterization of a Na+ independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d- and l-amino acids. J Biol Chem. 2000;275(13):9690–9698.
  • Verrey F, Meier C, Rossier G, et al. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch. 2000;440(4):503–512.
  • Hatanaka T, Haramura M, Fei YJ, et al. Transport of amino acid-based prodrugs by the Na+- and Cl(-) -coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery. J Pharmacol Exp Ther. 2004;308(3):1138–1147.
  • Ganapathy ME, Ganapathy V. Amino acid transporter ATB0,+ as a delivery system for drugs and prodrugs. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(4):357–364. DOI:10.2174/156800805774912953
  • Vellonen KS, Häkli M, Merezhinskaya N, et al. Monocarboxylate transport in human corneal epithelium and cell lines. Eur J Pharm Sci. 2010;39(4):241–247.
  • Anfuso CD, Olivieri M, Fidilio A, et al. Gabapentin attenuates ocular inflammation: in vitro and in vivo studies. Front Pharmacol. 2017;8:173.
  • Anand BS, Katragadda S, Nashed YE, et al. Amino acid prodrugs of acyclovir as possible antiviral agents against ocular HSV-1 infections: interactions with the neutral and cationic amino acid transporter on the corneal epithelium. Curr Eye Res. 2004;29(2–3):153–166.
  • Suresh K, Xiadong Z, Ravi TS, et al. Small neutral amino acid ester prodrugs of acyclovir targeting amino acid transporters on the cornea: possible antiviral agents against ocular HSV-1 infections. Ophthalmol Eye Dis. 2010;2:43–56.
  • Lee J, Pelis RM. Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos. 2016;44(10):1675–1681.
  • Mannis MJ. The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis. Trans Am Ophthalmol Soc. 2002;100:243–271.
  • Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169–184.
  • Atluri H, Anand BS, Patel J, et al. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res. 2004;78(4):815–822.
  • Dias C, Nashed Y, Atluri H, et al. Ocular penetration of acyclovir and its peptide prodrugs valacyclovir and val-valacyclovir following systemic administration in rabbits: an evaluation using ocular microdialysis and LC-MS. Curr Eye Res. 2002;25(4):243–252.
  • Janoria KG, Hariharan S, Paturi D, et al. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res. 2006;31(10):797–809.
  • Hariharan S, Janoria KG, Gunda S, et al. Identification and functional expression of a carrier-mediated riboflavin transport system on rabbit corneal epithelium. Curr Eye Res. 2006;31(10):811–824.
  • Jwala J, Boddu SHS, Paturi DK, et al. Functional characterization of folate transport proteins in Staten’s Seruminstitut rabbit corneal epithelial cell line. Curr Eye Res. 2011;36(5):404–416.
  • Brubaker RF, Bourne WM, Bachman LA, et al. Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Vis Sci. 2000;41(7):1681–1683.
  • Ringvold A, Anderssen E, Kjonniksen I. Impact of the environment on the mammalian corneal epithelium. Invest Ophthalmol Vis Sci. 2003;44(1):10–15.
  • Khurana V, Vadlapudi AD, Vadlapatla RK, et al. Functional characterization and molecular identification of vitamin C transporter (SVCT2) in human corneal epithelial (HCEC) and retinal pigment epithelial (D407) cells. Curr Eye Res. 2015;40(5):457–469.
  • Merriman-Smith BR, Krushinsky A, Kistler J, et al. Expression patterns for glucose transporters GLUT1 and GLUT3 in the normal rat lens and in models of diabetic cataract. Invest Ophthalmol Vis Sci. 2003;44(8):3458–3466.
  • Lim JC, Perwick RD, Li B, et al. Comparison of the expression and spatial localization of glucose transporters in the rat, bovine and human lens. Exp Eye Res. 2017;161:193–204.
  • Harik SI, Kalaria RN, Whitney PM, et al. Glucose transporters are abundant in cells with “occluding” junctions at the blood-eye barriers. Proc Natl Acad Sci U S A. 1990;87(11):4261–4264.
  • Hosoya K, Lee VH, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60(2):227–240.
  • Leveillard T, Sahel JA. Metabolic and redox signaling in the retina. Cell Mol Life Sci. 2017;74(20):3649–3665.
  • Pinsky PM. Three-dimensional modeling of metabolic species transport in the cornea with a hydrogel intrastromal inlay. Invest Ophthalmol Vis Sci. 2014;55(5):3093–3106.
  • Hagenbuch B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endocrinol Metab. 2007;21(2):209–221.
  • Ueda H, Horibe Y, Kim KJ, et al. Functional characterization of organic cation drug transport in the pigmented rabbit conjunctiva. Invest Ophthalmol Vis Sci. 2000;41(3):870–876.
  • Nirmal J, Singh SB, Biswas NR, et al. Potential pharmacokinetic role of organic cation transporters in modulating the transcorneal penetration of its substrates administered topically. Eye (Lond). 2013;27(10):1196–1203.
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–1166.
  • Tagami M, Kusuhara S, Honda S, et al. Expression of ATP-binding cassette transporters at the inner blood-retinal barrier in a neonatal mouse model of oxygen-induced retinopathy. Brain Res. 2009;1283:186–193.
  • Karla PK, Pal D, Mitra AK. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells. Exp Eye Res. 2007;84(1):53–60.
  • Yang JJ, Kim KJ, Lee VH. Role of P-glycoprotein in restricting propranolol transport in cultured rabbit conjunctival epithelial cell layers. Pharm Res. 2000;17(5):533–538.
  • Dey S, Patel J, Anand BS, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(7):2909–2918.
  • Senthilkumari S, Velpandian T, Biswas NR, et al. Evaluation of the modulation of P-glycoprotein (P-gp) on the intraocular disposition of its substrate in rabbits. Curr Eye Res. 2008;33(4):333–343.
  • Barot M, Gokulgandhi MR, Pal D, et al. Mitochondrial localization of P-glycoprotein and peptide transporters in corneal epithelial cells–novel strategies for intracellular drug targeting. Exp Eye Res. 2013;106:47–54.
  • Dey S, Gunda S, Mitra AK. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther. 2004;311(1):246–255.
  • Kawazu K, Yamada K, Nakamura M, et al. Characterization of cyclosporin A transport in cultured rabbit corneal epithelial cells: P-glycoprotein transport activity and binding to cyclophilin. Invest Ophthalmol Vis Sci. 1999;40(8):1738–1744.
  • Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39(7):1221–1226.
  • Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–172.
  • Anand BS, Dey S, Mitra AK. Current prodrug strategies via membrane transporters/receptors. Expert Opin Biol Ther. 2002;2(6):607–620.
  • Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv Drug Deliv Rev. 2004;56(10):1437–1452.
  • Majumdar S, Mitra AK. Chemical modification and formulation approaches to elevated drug transport across cell membranes. Expert Opin Drug Deliv. 2006;3(4):511–527.
  • Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–270.
  • Lee VH. Esterase activities in adult rabbit eyes. J Pharm Sci. 1983;72(3):239–244.
  • Stratford RE Jr., Lee VH. Ocular aminopeptidase activity and distribution in the albino rabbit. Curr Eye Res. 1985;4(9):995–999.
  • Tamada Y, Fukiage C, Boyle DL, et al. Involvement of cysteine proteases in bFGF-induced angiogenesis in guinea pig and rat cornea. J Ocul Pharmacol Ther. 2000;16(3):271–283.
  • Hussain A, Truelove JE. Prodrug approaches to enhancement of physicochemical properties of drugs IV: novel epinephrine prodrug. J Pharm Sci. 1976;65(10):1510–1512.
  • Anderson JA. Systemic absorption of topical ocularly applied epinephrine and dipivefrin. Arch Ophthalmol. 1980;98(2):350–353.
  • Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology. 1978;85(3):268–275.
  • Hariharan S, Minocha M, Mishra GP, et al. Interaction of ocular hypotensive agents (PGF2 alpha analogs-bimatoprost, latanoprost, and travoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol Ther. 2009;25(6):487–498.
  • Grass GM, Robinson JR. Mechanisms of corneal drug penetration. I: in vivo and in vitro kinetics. J Pharm Sci. 1988;77(1):3–14.
  • Modi SS, Minocha M, Mishra GP, et al. Once-daily nepafenac ophthalmic suspension 0.3% to prevent and treat ocular inflammation and pain after cataract surgery: phase 3 study. J Cataract Refract Surg. 2014;40(2):203–211.
  • Numaga J, Yata K, Miyake S, et al. [Phase III open-label study of nepafenac ophthalmic suspension 0.1% for inflammation and ocular pain following ophthalmic surgery]. Nippon Ganka Gakkai Zasshi. 2012;116(2):86–94.
  • Singh RP, Lehmann R, Martel J, et al. Nepafenac 0.3% after cataract surgery in patients with diabetic retinopathy: results of 2 randomized phase 3 studies. Ophthalmology. 2017;124(6):776–785.
  • Rodrigues EB, Farah ME, Bottós JM, et al. Nonsteroidal Anti-Inflammatory Drugs in the Treatment of Retinal Diseases. Dev Ophthalmol. 2016;55:212–220.
  • Jespersen H, Andersen JH, Ditzel HJ, et al. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Biochimie. 2012;94(1):2–10.
  • Stevens PJ, Sekido M, Lee RJ. A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res. 2004;21(12):2153–2157.
  • Cholkar K, Trinh HM, Vadlapudi AD, et al. Synthesis and characterization of ganciclovir long chain lipid prodrugs. Adv Ophthalmol Vis Syst. 2014;1(2).
  • Gokulgandhi MR, Barot M, Bagui M, et al. Transporter-targeted lipid prodrugs of cyclic cidofovir: a potential approach for the treatment of cytomegalovirus retinitis. J Pharm Sci. 2012;101(9):3249–3263.
  • Vadlapudi AD, Vadlapatla RK, Earla R, et al. Novel biotinylated lipid prodrugs of acyclovir for the treatment of herpetic keratitis (HK): transporter recognition, tissue stability and antiviral activity. Pharm Res. 2013;30(8):2063–2076.
  • Dey S, Mitra AK. Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv. 2005;2(2):201–204.
  • Majumdar S, Hingorani T, Srirangam R, et al. Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res. 2009;26(5):1261–1269.
  • Jain-Vakkalagadda B, Pal D, Gunda S, et al. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol Pharm. 2004;1(5):338–346.
  • Janoria KG, Boddu SH, Wang Z, et al. Vitreal pharmacokinetics of biotinylated ganciclovir: role of sodium-dependent multivitamin transporter expressed on retina. J Ocul Pharmacol Ther. 2009;25(1):39–49.
  • Dalpiaz A, Filosa R, de Caprariis P, et al. Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int J Pharm. 2007;336(1):133–139.
  • Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica. 2008;38(7–8):1022–1042.
  • Vig BS, Huttunen KM, Laine K, et al. Amino acids as promoieties in prodrug design and development. Adv Drug Deliv Rev. 2013;65(10):1370–1385.
  • Gunda S, Hariharan S, Mitra AK. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol Ther. 2006;22(6):465–476.
  • Majumdar S, Nashed YE, Patel K, et al. Dipeptide Monoester Ganciclovir Prodrugs for Treating HSV-1-Induced Corneal Epithelial and Stromal Keratitis: in Vitro and In Vivo Evaluations. J Ocul Pharmacol Ther. 2005;21(6):463–474.
  • Kansara V, Hao Y, Mitra AK. Dipeptide monoester ganciclovir prodrugs for transscleral drug delivery: targeting the oligopeptide transporter on rabbit retina. J Ocul Pharmacol Ther. 2007;23(4):321–334.
  • Anand BS, Hill JM, Dey S, et al. In vivo antiviral efficacy of a dipeptide acyclovir prodrug, val-val-acyclovir, against HSV-1 epithelial and stromal keratitis in the rabbit eye model. Invest Ophthalmol Vis Sci. 2003;44(6):2529–2534.
  • Vooturi SK, Kadam RS, Kompella UB. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery. Mol Pharm. 2012;9(11):3136–3146.
  • Katragadda S, Talluri RS, Mitra AK. Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: an approach involving peptide transporter-mediated influx across rabbit cornea. J Ocul Pharmacol Ther. 2006;22(2):110–120.
  • Hariharan S, Gunda S, Mishra GP, et al. Enhanced corneal absorption of erythromycin by modulating P-glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res. 2009;26(5):1270–1282.
  • Sheng Y, Yang X, Pal D, et al. Prodrug approach to improve absorption of prednisolone. Int J Pharm. 2015;487(1–2):242–249.
  • Agarwal S, Jain R, Pal D, et al. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies. Int J Pharm. 2007;332(1–2):147–152.
  • Sheng Y, Yang X, Wang Z, et al. Stereoisomeric prodrugs to improve corneal absorption of prednisolone: synthesis and in vitro evaluation. AAPS PharmSciTech. 2016;17(3):718–726.
  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond). 2010;5(3):485–505.
  • Cholkar K, Patel A, Dutt Vadlapudi A, et al. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82–95.
  • Vadlapudi AD, Mitra AK. Nanomicelles: an emerging platform for drug delivery to the eye. Ther Deliv. 2013;4(1):1–3.
  • Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3(1):139–162.
  • Mandal A, Cholkar K, Khurana V, et al. Topical formulation of self-assembled antiviral prodrug nanomicelles for targeted retinal delivery. Mol Pharm. 2017;14(6):2056–2069.
  • Grimaudo MA, Pescina S, Padula C, et al. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16(4):397–413.
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–1355.
  • Rosler A, Vandermeulen GW, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 2001;53(1):95–108.
  • Jones M, Leroux J. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101–111.
  • Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv. 2018;15(11):1085–1104.
  • Zhang Z, Grijpma DW, Feijen J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles. J Control Release. 2006;112(1):57–63.
  • Torchilin VP, Trubetskoy VS, Whiteman KR, et al. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J Pharm Sci. 1995;84(9):1049–1053.
  • Tauber J, Schechter BA, Bacharach J, et al. A Phase II/III, randomized, double-masked, vehicle-controlled, dose-ranging study of the safety and efficacy of OTX-101 in the treatment of dry eye disease. Clin Ophthalmol. 2018;12:1921–1929.
  • Goldberg DF, Malhotra RP, Schechter BA, et al. A phase 3, randomized, double-masked study of OTX-101 ophthalmic solution 0.09% in the treatment of dry eye disease. Ophthalmology. 2019;126(9):1230–1237.
  • Cyclosporine 0.09% solution (Cequa) for dry eye Disease. Med Lett Drugs Ther. 2019;61(1577):116–118.
  • Rahman MQ, Chuah K-S, Macdonald ECA, et al. The effect of pH, dilution, and temperature on the viscosity of ocular lubricants–shift in rheological parameters and potential clinical significance. Eye (Lond). 2012;26(12):1579–1584.
  • Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm. 2018;15(2):571–584.
  • Pepic I, Hafner A, Lovrić J, et al. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. 2010;99(10):4317–4325.
  • Xin J, Tang J, Bu M, et al. A novel eye drop of alpha tocopherol to prevent ocular oxidant damage: improve the stability and ocular efficacy. Drug Dev Ind Pharm. 2016;42(4):525–534.
  • Duan Y, Cai X, Du H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015;128:322–330.
  • Lin HR, Chang PC. Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res B Appl Biomater. 2013;101(5):689–699.
  • Ribeiro A, Sosnik A, Chiappetta DA, et al. Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy. J R Soc Interface. 2012;9(74):2059–2069.
  • Jaiswal M, Kumar M, Pathak K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf B Biointerfaces. 2015;130:23–30.
  • Al-Kinani AA, Zidan G, Elsaid N, et al. Ophthalmic gels: past, present and future. Adv Drug Deliv Rev. 2018;126:113–126.
  • Prosperi-Porta G, Kedzior S, Muirhead B, et al. Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery. Biomacromolecules. 2016;17(4):1449–1457.
  • Bongiovi F, Di Prima G, Palumbo FS, et al. Hyaluronic acid-based micelles as ocular platform to modulate the loading, release, and corneal permeation of corticosteroids. Macromol Biosci. 2017;17(12).
  • Li C, Chen R, Xu M, et al. Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Deliv. 2018;25(1):1258–1265.
  • Alonso MJ, Sanchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol. 2003;55(11):1451–1463.
  • de la Fuente M, Raviña M, Paolicelli P, et al. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010;62(1):100–117.
  • Bonferoni MC, Sandri G, Dellera E, et al. Palmitoyl glycol chitosan micelles for corneal delivery of cyclosporine. J Biomed Nanotechnol. 2016;12(1):231–240.
  • Hafner A, Lovrić J, Romić MD, et al. Evaluation of cationic nanosystems with melatonin using an eye-related bioavailability prediction model. Eur J Pharm Sci. 2015;75:142–150.
  • Yu Y, Chen D, Li Y, et al. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Deliv. 2018;25(1):888–899.
  • Li J, Li Z, Zhou T, et al. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int J Nanomedicine. 2015;10:6027–6037.
  • Cholkar K, Hariharan S, Gunda S, et al. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech. 2014;15(6):1454–1467.
  • Trinh HM, Cholkar K, Joseph M, et al. Clear, Aqueous Topical Drop of Triamcinolone Acetonide. AAPS PharmSciTech. 2017;18(7):2466–2478.
  • Mandal A, Patel P, Pal D, et al. Multi-layered nanomicelles as self-assembled nanocarrier systems for ocular peptide delivery. AAPS PharmSciTech. 2019;20(2):66.
  • Kuwano M, Ibuki H, Morikawa N, et al. Cyclosporine A formulation affects its ocular distribution in rabbits. Pharm Res. 2002;19(1):108–111.
  • Kang H, Cha KH, Cho W, et al. Cyclosporine amicellar delivery system for dry eyes. Int J Nanomedicine. 2016;11:2921–2933.
  • Di Tommaso C, Bourges J-L, Valamanesh F, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm. 2012;81(2):257–264.
  • Jerkins GW, Pattar GR, Kannarr SR. A review of topical cyclosporine a formulations-a disease-modifying agent for keratoconjunctivitis sicca. Clin Ophthalmol. 2020;14:481–489.
  • Luschmann C, Tessmar J, Schoeberl S, et al. Self-assembling colloidal system for the ocular administration of cyclosporine A. Cornea. 2014;33(1):77–81.
  • Kutlehria S, Vhora I, Bagde A, et al. Tacrolimus loaded PEG-cholecalciferol based micelles for treatment of ocular inflammation. Pharm Res. 2018;35(6):117.
  • Elsaid N, Somavarapu S, Jackson TL. Cholesterol-poly(ethylene) glycol nanocarriers for the transscleral delivery of sirolimus. Exp Eye Res. 2014;121:121–129.
  • Noh G, Keum T, Seo JE, et al. Development and evaluation of a water soluble fluorometholone eye drop formulation employing polymeric micelle. Pharmaceutics. 2018;10(4):208. Published 2018 Oct 28.
  • Yang J, Yan J, Zhou Z, et al. Dithiol-PEG-PDLLA micelles: preparation and evaluation as potential topical ocular delivery vehicle. Biomacromolecules. 2014;15(4):1346–1354.
  • Vaishya RD, Gokulgandhi M, Patel S, et al. Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis. AAPS PharmSciTech. 2014;15(5):1238–1251.
  • Civiale C, Licciardi M, Cavallaro G, et al. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm. 2009;378(1–2):177–186.
  • Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci. 2018;21(2):153–164.
  • Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release. 2012;160(1):96–104.
  • Salama AH, Shamma RN. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int J Pharm. 2015;492(1–2):28–39.
  • Chetoni P, Panichi L, Burgalassi S, et al. Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J Ocul Pharmacol Ther. 2000;16(4):363–372.
  • Ribeiro A, Sandez-Macho I, Casas M, et al. Poloxamine micellar solubilization of alpha-tocopherol for topical ocular treatment. Colloids Surf B Biointerfaces. 2013;103:550–557.
  • Alvarez-Rivera F, Fernández-Villanueva D, Concheiro A, et al. alpha-lipoic acid in soluplus((R)) polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases. J Pharm Sci. 2016;105(9):2855–2863.
  • Zhou T, Zhu L, Xia H, et al. Micelle carriers based on macrogol 15 hydroxystearate for ocular delivery of terbinafine hydrochloride: in vitro characterization and in vivo permeation. Eur J Pharm Sci. 2017;109:288–296.
  • Younes NF, Abdel-Halim SA, Elassasy AI. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Drug Deliv. 2018;25(1):1706–1717.
  • Alshamrani M, Sikder S, Coulibaly F, et al. Self-assembling topical nanomicellar formulation to improve curcumin absorption across ocular tissues. AAPS PharmSciTech. 2019;20(7):254.
  • Dahmana N, Mugnier T, Gabriel D, et al. Topical administration of spironolactone-loaded nanomicelles prevents glucocorticoid-induced delayed corneal wound healing in rabbits. Mol Pharm. 2018;15(3):1192–1202.
  • Li X, Zhang Z, Li J, et al. Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale. 2012;4(15):4667–4673.
  • Gupta AK, Madan S, Majumdar DK, et al. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm. 2000;209(1–2):1–14.
  • Pepic I, Jalsenjak N, Jalsenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm. 2004;272(1–2):57–64.
  • Stack T, Vahabikashi A, Johnson M, et al. Modulation of Schlemm’s canal endothelial cell stiffness via latrunculin loaded block copolymer micelles. J Biomed Mater Res A. 2018;106(7):1771–1779.
  • Li M, Xin M, Guo C, et al. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm. 2017;43(11):1846–1857.
  • Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. 2016;498(1–2):326–334.
  • Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C. Soluplus micelles for acyclovir ocular delivery: formulation and cornea and sclera permeability. Int J Pharm. 2018;552(1–2):39–47.
  • Li Y, Zhang Y, Li P, et al. Ion-paired pirenzepine-loaded micelles as an ophthalmic delivery system for the treatment of myopia. Nanomedicine. 2017;13(6):2079–2089.
  • Bongiovi F, Fiorica C, Palumbo FS, et al. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Mol Pharm. 2018;15(11):5031–5045.
  • Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl Vis Sci Technol. 2015;4(3):1.
  • Weng YH, Ma X-W, Che J, et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv Sci (Weinh). 2018;5(1):1700455.
  • Terreni E, Chetoni P, Tampucci S, et al. Assembling surfactants-mucoadhesive polymer nanomicelles (ASMP-Nano) for ocular delivery of cyclosporine-A. Pharmaceutics. 2020;12(3):253. Published 2020 Mar 11.
  • Moiseev RV, Morrison PWJ, Steele F, et al. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11(7):321. Published 2019 Jul 9.
  • Di Prima G, Saladino S, Bongiovì F, et al. Novel inulin-based mucoadhesive micelles loaded with corticosteroids as potential transcorneal permeation enhancers. Eur J Pharm Biopharm. 2017;117:385–399.
  • Ramsay E, Del Amo EM, Toropainen E, et al. Corneal and conjunctival drug permeability: systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci. 2018;119:83–89.
  • Xu X, Sun L, Zhou L, et al. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym. 2020;227:115356.
  • Cholkar K, Gunda S, Earla R, et al. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech. 2015;16(3):610–622.
  • Platania CBM, Dei Cas M, Cianciolo S, et al. Novel ophthalmic formulation of myriocin: implications in retinitis pigmentosa. Drug Deliv. 2019;26(1):237–243.
  • Puglia C, Santonocito D, Ostacolo C, et al. Ocular formulation based on palmitoylethanolamide-loaded nanostructured lipid carriers: technological and pharmacological profile. Nanomaterials (Basel). 2020;10(2):287. Published 2020 Feb 8.
  • Taskar P, Tatke A, Majumdar S. Advances in the use of prodrugs for drug delivery to the eye. Expert Opin Drug Deliv. 2017;14(1):49–63.
  • Malhotra R, Devries DK, Luchs J, et al. Effect of OTX-101, a novel nanomicellar formulation of cyclosporine A, on corneal staining in patients with keratoconjunctivitis sicca: a pooled analysis of phase 2b/3 and phase 3 studies. Cornea. 2019;38(10):1259–1265.
  • Smyth-Medina R, Johnston J, Devries DK, et al. Effect of OTX-101, a novel nanomicellar formulation of cyclosporine A, on conjunctival staining in patients with keratoconjunctivitis sicca: a pooled analysis of phase 2b/3 and 3 clinical trials. J Ocul Pharmacol Ther. 2019;35(7):388–394.
  • Karpecki PM, Weiss SL, Kramer WG, et al. A phase 1, open-label, single-arm study evaluating the ocular safety of OTX-101 and systemic absorption of cyclosporine in healthy human volunteers. Clin Ophthalmol. 2019;13:591–596.
  • Weiss SL, Kramer WG. Ocular distribution of cyclosporine following topical administration of OTX-101 in New Zealand white rabbits. J Ocul Pharmacol Ther. 2019;35(7):395–402.
  • Durgun ME, Gungor S, Ozsoy Y. Micelles: promising ocular drug carriers for anterior and posterior segment diseases. J Ocul Pharmacol Ther. 2020;36:323–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.