589
Views
13
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetic factors affecting β-blocker metabolism and response

ORCID Icon & ORCID Icon
Pages 953-964 | Received 07 Jun 2020, Accepted 27 Jul 2020, Published online: 09 Sep 2020

References

  • Kd Ms K, Xu JQ, Deaths: AE. Final data for 2017. National Vital Stat Rep. 2019;68(9):1–77.
  • Murphy SL, Xu J, Kochanek KD, Arias E. Mortality in the United States, 2017. NCHS Data Brief. 2018;(328):1–8.
  • Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017;39(2):119–177.
  • Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol. 2018;71(19):e127.
  • Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. J Am Coll Cardiol. 2017;70(6):776.
  • Eichelbaum M, Gross AS. The genetic polymorphism of debrisoquine/sparteine metabolism–clinical aspects. Pharmacol Ther. 1990;46(3):377–394.
  • Brodde OE, Kroemer HK. Drug-drug interactions of beta-adrenoceptor blockers. Arzneimittel-Forschung. 2003;53(12):814–822.
  • Lennard MS, Silas JH, Freestone S, et al. Oxidation phenotype–a major determinant of metoprolol metabolism and response. N Engl J Med. 1982 Dec 16;307(25):1558–1560.
  • Lennard MS, Silas JH, Freestone S, et al. Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol. 1982 Aug;14(2):301–303.
  • Lennard MS, Tucker GT, Silas JH, et al. Debrisoquine polymorphism and the metabolism and action of metoprolol, timolol, propranolol and atenolol. Xenobiotica. 1986 May;16(5):435–447.
  • Shin J, Johnson JA. Pharmacogenetics of beta-blockers. Pharmacotherapy. 2007;27(6):874–887.
  • Distlerath LM, Guengerich FP. Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs by using antibodies raised to the analogous rat enzyme. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7348–7352.
  • Eichelbaum M, Baur MP, Dengler HJ, et al. Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol. 1987 Apr;23(4):455–458.
  • Nofziger C, Turner AJ, Sangkuhl K, et al. PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther. 2020 Jan;107(1):154–170.
  • Bell GC, Caudle KE, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin Pharmacol Ther. 2017 Aug;102(2):213–218.
  • Brown JT, Bishop JR, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther. 2019 Jul;106(1):94–102.
  • Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014 Apr;95(4):376–382.
  • Goetz MP, Sangkuhl K, Guchelaar HJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther. 2018 May;103(5):770–777.
  • Hicks JK, Bishop JR, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015 Aug;98(2):127–134.
  • Hicks JK, Sangkuhl K, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017 Jul;102(1):37–44.
  • Gaedigk A, Simon SD, Pearce RE, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008 Feb;83(2):234–242.
  • Caudle KE, Sangkuhl K, Whirl-Carrillo M, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2020 Jan;13(1):116–124.
  • Bae SH, Lee JK, Cho DY, et al. Simultaneous determination of metoprolol and its metabolites, alpha-hydroxymetoprolol and O-desmethylmetoprolol, in human plasma by liquid chromatography with tandem mass spectrometry: application to the pharmacokinetics of metoprolol associated with CYP2D6 genotypes. J Sep Sci. 2014 Jun;37(11):1256–1264.
  • PharmVar CYP2D6 gene page. Available from: https://www.pharmvar.org/gene/CYP2D6
  • Batty JA, Hall AS, White HL, et al. An investigation of CYP2D6 genotype and response to metoprolol CR/XL during dose titration in patients with heart failure: a MERIT-HF substudy. Clin Pharmacol Ther. 2014 Mar;95(3):321–330.
  • Fux R, Morike K, Prohmer AM, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther. 2005 Oct;78(4):378–387.
  • Goryachkina K, Burbello A, Boldueva S, et al. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol. 2008 Dec;64(12):1163–1173.
  • Ismail R, Teh LK. The relevance of CYP2D6 genetic polymorphism on chronic metoprolol therapy in cardiovascular patients. J Clin Pharm Ther. 2006 Feb;31(1):99–109.
  • Jin SK, Chung HJ, Chung MW, et al. Influence of CYP2D6*10 on the pharmacokinetics of metoprolol in healthy Korean volunteers. J Clin Pharm Ther. 2008 Oct;33(5):567–573.
  • Kirchheiner J, Heesch C, Bauer S, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2004 Oct;76(4):302–312.
  • Koytchev R, Alken RG, Vlahov V, et al. Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur J Clin Pharmacol. 1998 Aug;54(6):469–474.
  • Taguchi M, Nozawa T, Kameyama T, et al. Effect of CYP2D6*10 on pharmacokinetic variability of routinely administered metoprolol in middle-aged and elderly Japanese patients. Eur J Clin Pharmacol. 2003 Sep;59(5–6):385–388.
  • Terra SG, Pauly DF, Lee CR, et al. Beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005 Mar;77(3):127–137.
  • Sehrt D, Meineke I, Tzvetkov M, et al. Carvedilol pharmacokinetics and pharmacodynamics in relation to CYP2D6 and ADRB pharmacogenetics. Pharmacogenomics. 2011 Jun;12(6):783–795.
  • Blake CM, Kharasch ED, Schwab M, et al. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013 Sep;94(3):394–399.
  • Bijl MJ, Visser LE, van Schaik RH, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in beta-blocker users. Clin Pharmacol Ther. 2009 Jan;85(1):45–50.
  • Edeki TI, He H, Wood AJ. Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops. Potential for oral-ophthalmic drug interaction. Jama. 1995 Nov 22–29;274(20):1611–1613.
  • Johnson JA, Herring VL, Wolfe MS, et al. CYP1A2 and CYP2D6 4-hydroxylate propranolol and both reactions exhibit racial differences. J Pharmacol Exp Ther. 2000 Sep;294(3):1099–1105.
  • Lai ML, Wang SL, Lai MD, et al. Propranolol disposition in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther. 1995 Sep;58(3):264–268.
  • Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994 Nov-Dec;22(6):909–915.
  • Nieminen T, Uusitalo H, Maenpaa J, et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Clin Pharmacol. 2005 Dec;61(11):811–819.
  • Sowinski KM, Burlew BS. Impact of CYP2D6 poor metabolizer phenotype on propranolol pharmacokinetics and response. Pharmacotherapy. 1997 Nov-Dec;17(6):1305–1310.
  • Briciu C, Neag M, Muntean D, et al. Phenotypic differences in nebivolol metabolism and bioavailability in healthy volunteers. Clujul Med. 2015;88(2):208–213.
  • Briciu C, Neag M, Muntean D, et al. A pharmacokinetic drug interaction study between nebivolol and paroxetine in healthy volunteers. J Clin Pharm Ther. 2014 Oct;39(5):535–540.
  • Gheldiu AM, Popa A, Neag M, et al. Assessment of a potential pharmacokinetic interaction between nebivolol and bupropion in healthy volunteers. Pharmacology. 2016;98(3–4):190–198.
  • Guo L, Wang S, Wan Z, et al. Influence of CYP2D6*5 and *10 polymorphism on the pharmacokinetics of nebivolol in healthy Chinese subjects. J Clin Pharm Ther. 2020 Aug;45(4):632–637.
  • Hu X, Lan T, Dai D, et al. Evaluation of 24 CYP2D6 variants on the metabolism of nebivolol in vitro. Drug Metab Dispos. 2016 Nov;44(11):1828–1831.
  • Lefebvre J, Poirier L, Poirier P, et al. The influence of CYP2D6 phenotype on the clinical response of nebivolol in patients with essential hypertension. Br J Clin Pharmacol. 2007 May;63(5):575–582.
  • Vieira CP, Neves DV, Coelho EB, et al. Effect of CYP2D6 poor metabolizer phenotype on stereoselective nebivolol pharmacokinetics. Drug Metab Lett. 2018;12(1):68–70.
  • Zhou HH, Wood AJ. Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther. 1995 May;57(5):518–524.
  • Honda M, Ogura Y, Toyoda W, et al. Multiple regression analysis of pharmacogenetic variability of carvedilol disposition in 54 healthy Japanese volunteers. Biol Pharm Bull. 2006 Apr;29(4):772–778.
  • Saito M, Kawana J, Ohno T, et al. Population pharmacokinetics of R- and S-carvedilol in Japanese patients with chronic heart failure. Biol Pharm Bull. 2010;33(8):1378–1384.
  • Takekuma Y, Takenaka T, Kiyokawa M, et al. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull. 2007 Mar;30(3):537–542.
  • Hamadeh IS, Langaee TY, Dwivedi R, et al. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014 Aug;96(2):175–181.
  • Gao X, Wang H, Chen H. Impact of CYP2D6 and ADRB1 polymorphisms on heart rate of post-PCI patients treated with metoprolol. Pharmacogenomics. 2017 Nov 2. DOI:10.2217/pgs-2017-0203
  • Luzum JA, Sweet KM, Binkley PF, et al. CYP2D6 genetic variation and beta-blocker maintenance dose in patients with heart failure. Pharm Res. 2017 Aug;34(8):1615–1625.
  • Lindamood C, Ortiz S, Shaw A, et al. Effects of commonly administered agents and genetics on nebivolol pharmacokinetics: drug-drug interaction studies. J Clin Pharmacol. 2011 Apr;51(4):575–585.
  • Bystolic (nebivolol) [package insert]. Irvine, CA: Allergan; 2017.
  • Rau T, Dungen HD, Edelmann F, et al. Impact of the beta1-adrenoceptor Arg389Gly polymorphism on heart-rate responses to bisoprolol and carvedilol in heart-failure patients. Clin Pharmacol Ther. 2012 Jul;92(1):21–28.
  • Yuan H, Huang Z, Yang G, et al. Effects of polymorphism of the beta(1) adrenoreceptor and CYP2D6 on the therapeutic effects of metoprolol. J Int Med Res. 2008 Nov-Dec;36(6):1354–1362.
  • Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999 Jun 12;353(9169):2001–2007.
  • White HL, de Boer RA, Maqbool A, et al. An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. 2003 Aug;5(4):463–468.
  • Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004 Dec;76(6):536–544.
  • Lymperopoulos A, French F. Pharmacogenomics of heart failure. In: Yan Q, editor. Pharmacogenomics in drug discovery and development. New York (NY): Springer New York; 2014. p. 245–257.
  • Joseph SS, Lynham JA, Grace AA, et al. Markedly reduced effects of (-)-isoprenaline but not of (-)-CGP12177 and unchanged affinity of beta-blockers at Gly389-beta1-adrenoceptors compared to Arg389-beta1-adrenoceptors. Br J Pharmacol. 2004 May;142(1):51–56.
  • Mason DA, Moore JD, Green SA, et al. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem. 1999 Apr 30;274(18):12670–12674.
  • La Rosee K, Huntgeburth M, Rosenkranz S, et al. The Arg389Gly beta1-adrenoceptor gene polymorphism determines contractile response to catecholamines. Pharmacogenetics. 2004 Nov;14(11):711–716.
  • Liu J, Liu ZQ, Tan ZR, et al. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003 Oct;74(4):372–379.
  • Petersen M, Andersen JT, Jimenez-Solem E, et al. Effect of the Arg389Gly beta(1)-adrenoceptor polymorphism on plasma renin activity and heart rate, and the genotype-dependent response to metoprolol treatment. Clin Exp Pharmacol Physiol. 2012 Sep;39(9):779–785.
  • de Groote P, Helbecque N, Lamblin N, et al. Association between beta-1 and beta-2 adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet Genomics. 2005 Mar;15(3):137–142.
  • Johnson JA, Zineh I, Puckett BJ, et al. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003 Jul;74(1):44–52.
  • Liu J, Liu ZQ, Yu BN, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006 Jul;80(1):23–32.
  • Van Driest SLSL, Dietz H Impact of variants in ADRB1 and CYP2C9 on atenolol and losartan response in Marfan syndrome. Paper presented at: Pediatric Academic Societies 2017 Annual Meeting; 2017 May 6–9; San Francisco, CA; 2017.
  • Beitelshees AL, Zineh I, Yarandi HN, et al. Influence of phenotype and pharmacokinetics on beta-blocker drug target pharmacogenetics. Pharmacogenomics J. 2006 May-Jun;6(3):174–178.
  • Karlsson J, Lind L, Hallberg P, et al. Beta1-adrenergic receptor gene polymorphisms and response to beta1-adrenergic receptor blockade in patients with essential hypertension. Clin Cardiol. 2004 Jun;27(6):347–350.
  • O’Shaughnessy KM, Fu B, Dickerson C, et al. The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond). 2000 Sep;99(3):233–238.
  • Sofowora GG, Dishy V, Muszkat M, et al. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther. 2003 Apr;73(4):366–371.
  • Pacanowski MA, Gong Y, Cooper-Dehoff RM, et al. beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension. Clin Pharmacol Ther. 2008 Dec;84(6):715–721.
  • Metra M, Covolo L, Pezzali N, et al. Role of beta-adrenergic receptor gene polymorphisms in the long-term effects of beta-blockade with carvedilol in patients with chronic heart failure. Cardiovasc Drugs Ther. 2010 Feb;24(1):49–60.
  • Wu D, Li G, Deng M, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to beta-blocker therapy in hypertension. J Int Med Res. 2015 Jun;43(3):424–434.
  • Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al. A calcium antagonist vs a non–calcium antagonist hypertension treatment strategy for patients with coronary artery diseaseThe International Verapamil-Trandolapril Study (INVEST): A randomized controlled trial. JAMA. 2003;290(21):2805–2816.
  • Iwai C, Akita H, Kanazawa K, et al. Arg389Gly polymorphism of the human beta1-adrenergic receptor in patients with nonfatal acute myocardial infarction. Am Heart J. 2003 Jul;146(1):106–109.
  • Baudhuin LM, Miller WL, Train L, et al. Relation of ADRB1, CYP2D6, and UGT1A1 polymorphisms with dose of, and response to, carvedilol or metoprolol therapy in patients with chronic heart failure. Am J Cardiol. 2010 Aug 1;106(3):402–408.
  • Kim KM, Murray MD, Tu W, et al. Pharmacogenetics and healthcare outcomes in patients with chronic heart failure. Eur J Clin Pharmacol. 2012 Nov;68(11):1483–1491.
  • O’Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. Jama. 2009 Apr 8;301(14):1439–1450.
  • Fiuzat M, Neely ML, Starr AZ, et al. Association between adrenergic receptor genotypes and beta-blocker dose in heart failure patients: analysis from the HF-ACTION DNA substudy. Eur J Heart Fail. 2013 Mar;15(3):258–266.
  • Eichhorn EJ, Domanski MJ, Krause-Steinrauf H, et al. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001 May 31;344(22):1659–1667.
  • Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11288–11293.
  • Aleong RG, Sauer WH, Robertson AD, et al. Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure. Circ Arrhythm Electrophysiol. 2013 Feb;6(1):137–143.
  • Kao DP, Davis G, Aleong R, et al. Effect of bucindolol on heart failure outcomes and heart rate response in patients with reduced ejection fraction heart failure and atrial fibrillation. Eur J Heart Fail. 2013 Mar;15(3):324–333.
  • Cresci S, Kelly RJ, Cappola TP, et al. Clinical and genetic modifiers of long-term survival in heart failure. J Am Coll Cardiol. 2009 Jul 28;54(5):432–444.
  • Lacro RV, Dietz HC, Wruck LM, et al. Rationale and design of a randomized clinical trial of beta-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am Heart J. 2007 Oct;154(4):624–631.
  • Lacro RV, Dietz HC, Sleeper LA, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014 Nov 27;371(22):2061–2071.
  • Benavente OR, White CL, Pearce L, et al. The Secondary Prevention of Small Subcortical Strokes (SPS3) study. Int J Stroke. 2011 Apr;6(2):164–175.
  • Magvanjav O, McDonough CW, Gong Y, et al. Pharmacogenetic associations of beta1-Adrenergic receptor polymorphisms with cardiovascular outcomes in the SPS3 Trial (Secondary Prevention of Small Subcortical Strokes). Stroke. 2017 May;48(5):1337–1343.
  • Green SA, Turki J, Bejarano P, et al. Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 1995 Jul;13(1):25–33.
  • Green SA, Turki J, Innis M, et al. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994 Aug 16;33(32):9414–9419.
  • Dishy V, Sofowora GG, Xie HG, et al. The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med. 2001 Oct 4;345(14):1030–1035.
  • Troncoso R, Moraga F, Chiong M, et al. Gln(27)–>Glubeta(2)-adrenergic receptor polymorphism in heart failure patients: differential clinical and oxidative response to carvedilol. Basic Clin Pharmacol Toxicol. 2009 May;104(5):374–378.
  • Huang J, Li C, Song Y, et al. ADRB2 polymorphism Arg16Gly modifies the natural outcome of heart failure and dictates therapeutic response to beta-blockers in patients with heart failure. Cell Discov. 2018;4:57.
  • Liggett SB, Cresci S, Kelly RJ, et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med. 2008 May;14(5):510–517.
  • Premont RT, Koch WJ, Inglese J, et al. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem. 1994 Mar 4;269(9):6832–6841.
  • Kurnik D, Cunningham AJ, Sofowora GG, et al. GRK5 Gln41Leu polymorphism is not associated with sensitivity to beta(1)-adrenergic blockade in humans. Pharmacogenomics. 2009 Oct;10(10):1581–1587.
  • Lobmeyer MT, Wang L, Zineh I, et al. Polymorphisms in genes coding for GRK2 and GRK5 and response differences in antihypertensive-treated patients. Pharmacogenet Genomics. 2011 Jan;21(1):42–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.