10,385
Views
25
CrossRef citations to date
0
Altmetric
Review

The pharmacokinetics of antibiotics in cystic fibrosis

, , , , , , & show all
Pages 53-68 | Received 30 Jun 2020, Accepted 07 Oct 2020, Published online: 29 Dec 2020

References

  • David PB. Cystic fibrosis. Pediatr Rev. 2001;22:257–264.
  • Principi N, Blasi F, Esposito S. Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2015;34:1071–1079.
  • Khan TZ, Wagener JS, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151:1075–1082.
  • Ramsey KA, Ranganathan S, Park J, et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am J Respir Crit Care Med. 2014;190:1111–1116.
  • Ratjen F, Döring G. Cystic fibrosis. Lancet. 2003;361:681–689.
  • De Vrankrijker AMM, Wolfs TFW. van der Ent CK. Challenging and emerging pathogens in cystic fibrosis. Pediatr Res Rev. 2010;11(4):246–254.
  • Caverly LJ, LiPuma JJ. Cystic fibrosis respiratory microbiota: unraveling complexity to inform clinical practice. Exp Rev Res Med. 2018;12(10):857–865.
  • Sanders DB, Bittner RC, Rosenfeld M, et al. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am J Respir Crit Care Med. 2010;182:627–632.
  • Rubin JL, Thayer S, Watkins A, et al. Frequency and costs of pulmonary exacerbations in patients with cystic fibrosis in the United States. Curr Med Res Opin. 2017;33(4):667–674.
  • 2018 patient registry, annual data report cystic fibrosis foundation
  • O’Toole GA. Cystic fibrosis airway microbiome: overturning the old, opening the way for the new. J Bacteriol. 2018;200:e00561–17.
  • 2015 Annual Report - The ECFS Patient Registry. European cystic fibrosis society. Available from: https://www.ecfs.eu/sites/default/files/images/ECFSPR_Report2015.pdf
  • Ballmann M, Rabsch P, von der Hardt H. Long-term follow-up of changes in FEV1 and treatment intensity during Pseudomonas aeruginosa colonisation in patients with cystic fibrosis. Thorax. 1998;53:732–737.
  • Emerson J, Rosenfeld M, McNamara S, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002;34:91–100.
  • Schaedel C, de Monestrol I, Hjelte L, et al. Predictors of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol. 2002;33:483–491.
  • Akkerman-Nijland AM, Yousofi M, Rottier BL, et al. Eradication of Pseudomonas aeruginosa in cystic fibrosis patients with inhalation of dry powder tobramycin. Ther Adv Respir Dis. 2020;14. DOI:10.1177/1753466620905279
  • Folkesson A, Jelsbak L, Yang L, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10:523–530.
  • Mogayzel PJ, Naurckas ET, Robinson KA, et al. Cystic fibrosis foundation pulmonary guideline: pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann ATS. 2010;11:1640–1650.
  • Hatziagorou E, Orenti A, Drevinek P, et al. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis – data from the European cystic fibrosis society patient registry. J Cyst Fibros. 2020 May;19(3):376–383.
  • Cystic Fibrosis Foundation. Patient registry annual data report. Available from: https://www.cff.org/our-research/cf-patient-registry/2015-patient-registry-annual-data-report.pdf
  • Akil N, Muhleback MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr Pulmonol. 2018;53. DOI:10.1002/ppul.24139
  • Dasenbrook EC, Checkley W, Merlo CA, et al. Association between respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis. JAMA. 2010;303(23):2386–2392.
  • Hurley MN, Prayle AP, Flume P. Intravenous antibiotics for pulmonary exacerbations in people with cystic fibrosis. Cochrane Rev. 2015;7.
  • Döring G, Conway SP, Heijerman HG, et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16(4):749–767.
  • Abbott L, Plummer A, Hui Hoo Z. et al. Duration of intravenous antibiotic therapy in people with cystic fibrosis. Cochrane Rev. 2019;9.
  • Touw DJ, Vinks ATMM, Mouton JW, et al. Pharmacokinetic optimization of antibacterial treatment in patients with cystic fibrosis. Clin Pharmacokinetic. 1998;35(6):437–459.
  • Rey E, Treluyer JM, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998;35(4):313–329.
  • Rubio TT, Miles MV, Lettieri JT, et al. Pharmacokinetic disposition of sequential intravenous/oral ciprofloxacin in pediatric cystic fibrosis patients with acute pulmonary exacerbation. Pediatr Infect Dis J. 1997;16(1):112–117.
  • Stillhart C, Vucicevic K, Augustijns P, et al. Impact of gastrointestinal physiology on drug absorption in special populations. Eur J Pharm Sci. 2020;147:105280.
  • Corral JE, Dye CW, Mascarenhas MR, et al. Is gastroparesis found more frequently in patients with cystic fibrosis? A systematic review. Scientifica (Cairo). 2016;2016:1–11.
  • Dana J, Girard M, Debray D. Hepatic manifestations of cystic fibrosis. Curr Opin Gastroenterol. 2020;36(3):192–198.
  • Weersink RA, Burger DM, Hayward KL, et al. Safe use of medication in patients with cirrhosis: pharmacokinetic and pharmacodynamic considerations. Expert Opin Drug Metab Toxicol. 2020;16(1):45–57.
  • Polk RE, Healy DP, Sahai J, et al. Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother. 1989;33:1841–1844.
  • Pai MP, Allen SE, Amsden GW. Altered steady state pharmacokinetics of levofloxacin in adult cystic fibrosis patients receiving calcium carbonate. J Cyst Fibros. 2006;5:153–157.
  • Spino M, Chai RP, Isles AF, et al. Cloxacillin absorption and disposition in cystic fibrosis. J Pediatr. 1984;105(5):829–835.
  • Reed MD, Stern RC, Myers CM, et al. Lack of unique ciprofloxacin pharmacokinetic characteristics in patients with cystic fibrosis. J Clin Pharmacol. 1988;28:691–699.
  • Jiao Y, Kim TH, Tao X, et al. First population pharmacokinetic analysis showing increased quinolone metabolite formation and clearance in patients with cystic fibrosis compared to healthy volunteers. Eur J Pharm Sci. 2018;123:416–428.
  • Lee CK, Boyle MP, Diener-West M, et al. Levofloxacin pharmacokinetics in adult cystic fibrosis. Chest. 2007;131:796–802.
  • Goldfarb J, Wromser GP, Inchiosa MA, et al. Single-dose pharmacokinetics of oral ciprofloxacin in patients with cystic fibrosis. J Clin Pharmacol. 1986;26:222–226.
  • Bender SW, Dalholff A, Shah PM, et al. Ciprofloxacin pharmacokinetics in patients with cystic fibrosis. Infection. 1986;14:17–21.
  • Lebel M, Bergeron MG, Vallee F, et al. Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother. 1986;30:260–266.
  • Christensson BA, Hilsson-Ehle I, Ljungberg B, et al. Increased oral bioavailability of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother. 1992;36:2512–2517.
  • Rajagopalan P, Gastonguay MR. Population pharmacokinetics of ciprofloxacin in pediatric patients. J Clin Pharmacol. 2003;43:698–710.
  • Schaefer HG, Stass H, Wedgwood J, et al. Pharmacokinetics of ciprofloxacin in pediatric cystic fibrosis patients. Antimicrob Agents Chemother. 1996;40(1):29–34.
  • Beringer PM, Owens H, Nguyen A, et al. Pharmacokinetics of doxycycline in adults with cystic fibrosis. Antimicrob Agents Chemother. 2011;56:70–74.
  • Berings P, Huynh KM, Kriengkauykiat J, et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. Antimicrob Agents Chemother. 2005;49(12):5013–5017.
  • Bulitta JB, Jiao Y, Dresher SK, et al. Four decades of ß-lactam antibiotic pharmacokinetics in cystic fibrosis. Clin Pharmacokinet. 2019;58:143–156.
  • Shah NR, Bulitta JB, Kinzig M, et al. Novel population pharmacokinetic approach to explain the differences between cystic fibrosis patients and healthy volunteers via protein binding. Pharmaceutics. 2019;11:6.
  • Thompson RZ, Martin CA, Burgess DR, et al. Optimizing beta-lactam pharmacodynamics against Pseudomonas aeruginosa in adult cystic fibrosis patients. J Cyst Fibros. 2016;15(5):660–663.
  • Vinks AA, van Rossem RN, Mathot RA, et al. Pharmacokinetics of aztreonam in healthy subjects and patients with cystic fibrosis and evaluation of dose-exposure relationships using monte carlo simulation. Antimicrob Agents Chemother. 2007;51(9):3049–3055.
  • Kearns G, Hilman BC, Wilson JT, et al. Dosing implications of altered gentamicin disposition in patients with cystic fibrosis. J Pediatr. 1982;100:312–318.
  • Kelly HB, Menendez R, Fan L, et al. Pharmacokinetics of tobramycin in cystic fibrosis. J Pediatr. 1982;100:318–321.
  • Autret E, Marchand S, Breteau M, et al. Pharmacokinetics of amikacin in cystic fibrosis: a study of bronchial diffusion. Eur J Clin Pharmacol. 1986;31:79–83.
  • Mann HJ, Canafax DM, Cipolle RJ, et al. Increased dosage requirements of tobramycin and gentamicin for treating Pseudomonas pneumonia in patients with cystic fibrosis. Pediatr Pulmonol. 1985;1:238–243.
  • Grenier B, Autret E, Marchand S, et al. Kinetic parameters of amikacin in cystic fibrosis children. Infection. 1987;15:295–299.
  • Touw DJ, Knox AJ, Smyth A. Population pharmacokinetics of tobramycin administered thrice daily and once daily in children and adults with cystic fibrosis. J Cyst Fibros. 2007;6:327–333.
  • Davis RL, Koup JR, William-Warre J, et al. Pharmacokinetics of ciprofloxacin in cystic fibrosis. Antimicrob Agents Chemother. 1987;31:915–919.
  • Lebel M, Bergeron MG, Vallee F, et al. Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother. 1986;40:29–34.
  • Pleasants RA, Michalets EL, Williams DM, et al. Pharmacokinetics of vancomycin in adult cystic fibrosis patients. Antimicrob Agents Chemother. 1996;40(1):186–190.
  • Stockmann C, Sherwin CMT, Zobell JT, et al. Population pharmacokinetics of intermittent vancomycin in children with cystic fibrosis. Pharmacother. 2013;33(12):1288–1296.
  • Reed MD, Stern RC, Bertino JS, et al. Dosing implications of rapid elimination of trimethoprim-sulfamethoxazole in patients with cystic fibrosis. J Pediatr. 1984;104:303.
  • Hutabarat RM, Unadkat JD, Sahajwala C, et al. Disposition of drugs in cystic fibrosis. Sulfamethoxazole and trimethoprim. Clin Pharmacol Ther. 1991;49:402–409.
  • Mimeault J, Vallee F, Seelmann R, et al. Altered disposition of fleroxacin in patients with cystic fibrosis. Clin Pharmacol Ther. 1990;47(5):618–628.
  • Vree TB, Hekster YA, Baars AM, et al. Determination of trimethoprim and sulfamethoxazole (co-trimoxazole) in body fluids of man by means of high-performance liquid chromatography. J Chromatogr. 1978;146:103–112.
  • Hedman A, Adan-Abdi Y, Alvan G, et al. Influence of glomerular filtration rate on renal clearance of ceftazidime in cystic fibrosis. Clin Pharmacokinet. 1998;15(1):57–65.
  • Leeder JS, Spino M, Isles AF, et al. Ceftazidime disposition in acute and stable cystic fibrosis. Clin Pharmacol Ther. 1984;36:355–362.
  • Bui KQ, Ambrose PG, Nicolau DP, et al. Pharmacokinetics of high-dose meropenem in adult cystic fibrosis patients. Chemotherapy. 2001;47(3):153–156.
  • Pettit RS, Neu N, Cies JJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71(1):189–195.
  • Levy J, Smith AL, Koup JR, et al. Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J Pediatr. 1984;105(1):117–124.
  • Vondracek TG. Beta-lactam antibiotics: is continuous infusion the preferred method of administration? Ann Pharmacother. 1995;29(4):415–424.
  • Bakker W, Vinks AA, Mouton JW, et al. Continuous intravenous home treatment of airway infections using ceftazidime administration via portable pump in patients with cystic fibrosis; a multicenter study. NTvG. 1993;137(48):2486–2491.
  • Hubert D, Le Roux E, Lavrut T, et al. Continuous versus intermittent infusions of ceftazidime for treating exacerbation of cystic fibrosis. Antimicrob Agents Chemother. 2009;53:650–656.
  • Hong LT, Liou TG, Deka R, et al. Pharmacokinetics of continuous infusion beta-lactams in the treatment of acute pulmonary exacerbations in adult patients with cystic fibrosis. Chest. 2018;154(5):1108–1114.
  • Ashwlayan V, Singh G. Analysis of aminoglycosides. Int J Pharm Sci Rev Res. 2016;39(1):282–293.
  • Bhatt J, Jahnke N, Smyth AR. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2019;9.
  • Leeder JS, Spino M, Isles AF, et al. Ceftazidime disposition in acute and stable cystic fibrosis. Clin Pharmacol Ther. 1984;36:355–362.
  • Huls CF, Prince RA, Seilheimer DK, et al. Pharmacokinetics of cefepime in cystic fibrosis patients. Antimicrob Agents Chemother. 1993;37:1414–1416.
  • Döring G, Flume P, Heijerman H, et al. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cystic Fibros. 2012;11:461–479.
  • Chmiel JF, Aksamit TR, Chotirmall SH, et al. Antibiotic management of lung infections in cystic fibrosis. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc. 2014;11(7):1120–1129.
  • d’Angelo I, Conte C, La Rotonda MI, et al. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev. 2014;75:92–111.
  • Di Sant’Agnese PEA, Andersen D. Chemotherapy in infections of the respiratory tract with penicillin and drugs of the sulfonamide group, with special reference to penicillin aerosol. Am J Dis Child. 1946;10:297–314.
  • Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis inhaled tobramycin study group. N Engl J Med. 1999;340:23–30.
  • Murphy TD, Anbar RD, Lester LA, et al. Treatment with tobramycin solution for inhalation reduces hospitalizations in young CF subjects with mild lung disease. Pediatr Pulmonol. 2004;38:314–320.
  • Tiddens HAWM, Bos AC, Mouton JW, et al. Inhaled antibiotics: dry or wet? Eur Respir J. 2014;44:1308–1318.
  • Klinger-Strobel M, Lautenschlager C, Fischer D, et al. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis – where do we stand? Expert Opin Drug Deliv. 2015;12(8):1351–1374.
  • De Boer A, Hagedoorn P, Hoppentocht M, et al. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14(4):499–512.
  • Geller DE, Konstan MW, Smith J, et al. Novel tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics and safety. Pediatr Pulmonol. 2007;42:307–313.
  • Konstan MW, Flume PA, Kappler M, et al. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros. 2011;10(1):54–61.
  • Schuster A, Haliburn C, Döring G, et al. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax. 2013;68(4):344–350.
  • Le Brun PPH, Vinks AA, Touw DJ, et al. Can tobramycin inhalation be improved with a jet nebulizer? Ther Drug Mon. 1992;21(6):618.
  • Asmus MJ, Stewart BA, Milavetz GM, et al. Tobramycin as a pharmacologic tracer to compare airway deposition from nebulizers. Pharmacotherapy. 2002;22(5):557–563.
  • Daniels T, Mills N, Whitaker P. Nebuliser systems for drug delivery in cystic fibrosis. Cochrane Database Syst Rev. 2013;4.
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:600–612.
  • Westerman EM, de Boer AH, Le Brun PPH, et al. Dry powder inhalation of colistin sulphomethate in healthy volunteers: a pilot study. Int J Pharmaceut. 2007;335:41–45.
  • Labiris N, Dolovich M. Pulmonary drug delivery. Part I: physiological facts affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–599.
  • De Jongh FH, Rinkel MJ, Hoeijmakers HW. Aerosol deposition in the upper airways of a child. J Aerosol Med. 2006;19:279–289.
  • Hagerman JK, Hancock KE, Klepser ME. Aerosolised antibiotics: a critical appraisal of their use. Expert Opin Drug Delivery. 2005;3:71–86.
  • Chua HL, Collis GG, Newbury AM, et al. The influence of age on aerosol deposition in children with cystic fibrosis. Eur Respir J. 1994;7:2185–2191.
  • Clavel A, Boulamery A, Bosdure E, et al. Nebulisers comparison with inhaled tobramycin in young children with cystic fibrosis. JCF. 2007;6(2):137–143.
  • Laube BL, Jashnani R, Dalby RN, et al. Targeting aerosol deposition in patients with cystic fibrosis: effects of alterations in particle size and inspiratory flow rate. Chest. 2000;118:1069–1076.
  • Chung KF, Jeyasingh K, Snashall PD. Influence of airway caliber on the intrapulmonary dose and distribution of inhaled aerosol in normal and asthmatic subjects. Eur Respir J. 1988;1:890–895.
  • Smaldone GC, Messina MS. Flow limitation, cough and patterns of aerosol deposition in humans. J Appl Physiol. 1985;59:515–520.
  • Wang YB, watts AB, Peters JI, et al. The impact of pulmonary diseases on the fate of inhaled medicines – a review. Int J Pharmaceutics. 2014;46:112–128.
  • Bos AC, van Holsbeke C, de Backer JW, et al. Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough? PlosOne. 2015;10(3).
  • Darquenne C. Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv. 2012;25(3):140–147.
  • Geller DE. The science of aerosol delivery in cystic fibrosis. Pediatr Pulmonol. 2008;43:S5–S17.
  • Meerburg JJ, Andrinopoulou ER, Bos AC. et al. Effect of inspiratory maneuvers on lung deposition of tobramycin inhalation powder: a modeling study. J Aer Med Pulm Drug Delivery. 2020;33(4):1–12.
  • Bhat PG, Flanagan CR, Donovan MD. Drug diffusion through cystic fibrotic mucus: steady-state permeation, rheologic properties, and glycoprotein morphology. J Pharm Sci. 1996;85(6):624–630.
  • Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017;532(1):555–572.
  • Mendelman PM, Smith AL, Levy J, et al. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis. 1985;132(4):761‑765.
  • Purdy Drew KR, Sanders LK, Culumber ZW, et al. Cationic amphiphiles increase activity of aminoglycoside antibiotic tobramycin in the presence of airway polyelectrolytes. J Am Chem Soc. 2009;131(2):486‑493.
  • Bataillon V, Lhermitte M, Lafitte JJ, et al. The binding of amikacin to macromolecules from the sputum of patients suffering from respiratory diseases. J Antimicrob Chemother. 1992;29(5):499‑508.
  • Levy J, Smith AL, Kenny MA, et al. Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum. J Infect Dis. 1983;148(6):1069–1076.
  • Ramphal R, Lhermitte M, Filliat M, et al. The binding of anti-pseudomonal antibiotics to macromolecules from cystic fibrosis sputum. J Antimicrob Chemother. 1988;22:483–490.
  • Hunt BE, Weber A, Berger A, et al. Macromolecular mechanisms of sputum inhibition of tobramycin activity. Antimicrob Agents Chemother. 1995;39:34–39.
  • Alipour M, Suntres ZE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemoth. 2009;64:317–325.
  • King P, Citron DM, Griffith DC, et al. Effect of oxygen limitation on the in vitro activity of levofloxacin and other antibiotics administered by the aerosol route against pseudomonas aeruginosa for cystic fibrosis patients. Diagn MIcrobiol Infect Dis. 2010;66(2):181–186.
  • Gupta S, Laskar N, Kadouri DE. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol Insights. 2016;9:37–46.
  • Pompilio A, Crocetta V, Pomponio S, et al. In vitro activity of colistin against biofilm by pseudomonas aeruginosa is significantly improved under ‘cystic fibrosis-like’ physiochemical conditions. Diagn Microbiol Infect Dis. 2015;82(4):318–325.
  • Hill D, Rose B, Pajkos A, et al. Antibiotic susceptibilities of pseudomonas aeruginosa isolated derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol. 2005;43(10):5085–5090.
  • Bos AC, Passé KM, Mouton JW, et al. The fate of inhaled antibiotics after deposition in patients with cystic fibrosis: how to get drug to the bug? J Cyst Fibros. 2017;16(1):13–23.
  • Hoiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–332.
  • Ciofu O, Tolker-Nielsen T, Jensen PO, et al. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.
  • Linnane BM, Hall G, Nolan G, et al. AREST-CF. Lung function in infants with cystic fibrosis diagnosed by newborn screening. Am J Respir Crit Care Med. 2008;178(12):1238–1244.
  • Sly PD, Brennan S, Gangell C, et al. Australian respiratory early surveillance team for cystic fibrosis (AREST-CF): lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 2009;180(2):146–152.
  • Bos AC, Mouton JW, van Westreenen M, et al. Patients-specific modelling of regional tobramycin concentrations levels in airways of patients with cystic fibrosis: can we dose once daily? J Antimicrob Chemother. 2017;72:3435–3442.
  • Burkhardt O, Lehmann C, Madabushi R, et al. Once-daily tobramycin in cystic fibrosis: better for clinical outcome than thrice-daily tobramycin but more resistance development? J Antimicrob Chemother. 2006;58(4):822–829.
  • Lopes-Pacheco M. CFTR-Modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol. 2020;10.
  • Clancy JP. Rapid therapeutic advances in CFTR modulator science. Pediatr Pulmonol. 2018;53:S4–S11.
  • Rogers GB, Taylor SL, Hoffman LR, et al. The impact of CFTR modulator therapies on CF airway microbiology. J Cyst Fibros. 2019;19(3):359–364.
  • Singh SB, McLearn-Montz AJ, Milavetz F, et al. Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor. Pediatr Pulmonol. 2019;54(8):1200–1208.
  • Hisert KB, Heltshe SL, pope C, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med. 2017;195(12):1617–1628.