686
Views
18
CrossRef citations to date
0
Altmetric
Review

Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems

ORCID Icon, , , &
Pages 23-39 | Received 17 Jul 2020, Accepted 05 Oct 2020, Published online: 08 Nov 2020

References

  • Zuur MA, Bolhuis MS, Anthony R, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol. 2016;12:509–521.
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–854.
  • Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62:2169–2183.
  • Mota L, Al-Efraij K, Campbell JR, et al. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis. Int J Tuberc Lung Dis. [Internet]. 2016;20:819–826. Available from: https://pubmed.ncbi.nlm.nih.gov/27155187
  • Perumal R, Naidoo K, Naidoo A, et al. A systematic review and meta-analysis of first-line tuberculosis drug concentrations and treatment outcomes. Int J Tuberc Lung Dis. [Internet]. 2020; 24:48–64. Available from: https://pubmed.ncbi.nlm.nih.gov/32005307
  • Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant tuberculosis. an official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med. [Internet]. 2019;200:e93–e142. Available from: .
  • WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment. 2019 [Internet]. Geneva; 2019 [cited 2020 Sep 21]. Available from: https://www.who.int/tb/publications/2019/consolidated-guidelines-drug-resistant-TB-treatment/en/.
  • Peloquin CA; [Internet]. Tuberculosis Drug Serum Levels. Clin Infect Dis. 2001;33:584–585. Available from:.
  • [Internet]; Kuhlin J, Sturkenboom MGG, Ghimire S, et al. Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. Clin Mass Spectrom. 2019;14:34–45. Available from: http://www.sciencedirect.com/science/article/pii/S2376999818300151
  • Buclin T, Thoma Y, Widmer N, et al. The steps to therapeutic drug monitoring: a structured approach illustrated with imatinib [Internet]. Front Pharmacol. 2020;177. Available from: https://www.frontiersin.org/article/10.3389/fphar.2020.00177
  • Srivastava S, Gumbo T. In vitro and in vivo modeling of tuberculosis drugs and its impact on optimization of doses and regimens. Curr Pharm Des. 2011;17:2881–2888.
  • Alffenaar J-WC, Kosterink JGW, van Altena R, et al. Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit. 2010;32:97–101.
  • van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using linear regression and the bayesian approach for therapeutic drug monitoring of Moxifloxacin in tuberculosis patients. Antimicrob Agents Chemother. 2019;63:e00384–19.
  • Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. [Internet]. Clin Microbiol Rev. 2013;26;274–288. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23554417
  • Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017 Mar 15;291–360.
  • Alffenaar J-WC, Gumbo T, Aarnoutse RE. Acquired drug resistance: we can do more than we think! Clin Infect Dis. 2015;60:969–970. Available from:. [Internet].
  • van der Burgt EPM, Sturkenboom MGG, Bolhuis MS, et al. End TB with precision treatment! Eur Respir J. [Internet]. 2016;47:680 LP– 682. Available from:: http://erj.ersjournals.com/content/47/2/680.abstract
  • Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J England. 2016:1867–1869.
  • Ghimire S, Maharjan B, Jongedijk EM, et al. Evaluation of saliva as a potential alternative sampling matrix for therapeutic drug monitoring of levofloxacin in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2019;63:e02379–18.
  • Vu DH, Koster RA, Alffenaar JWC, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:1063–1070.
  • Alffenaar J-WC, Jongedijk EM, van Winkel CAJ, et al. A mobile microvolume-UV/VIS spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother. 2020. DOI:10.1093/jac/dkaa420.
  • van den Elsen SHJ, Sturkenboom MGG, Van’t Boveneind-Vrubleuskaya N, et al. Population Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother. 2018;62:e01092–18.
  • Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208:1464–1473.
  • Court R, Wiesner L, Stewart A, et al. Steady state pharmacokinetics of cycloserine in patients on terizidone for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2018;22:30–33.
  • Sasahara K, Shimokawa Y, Hirao Y, et al. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos. [Internet]. 2015;43:1267 LP– 1276. Available from:: http://dmd.aspetjournals.org/content/43/8/1267.abstract
  • Peloquin C. The role of therapeutic drug monitoring in mycobacterial infections. Microbiol Spectr. 2017;5:TNMI7-0029-2016. DOI:10.1128/microbiolspec.
  • Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein binding of first-line antituberculosis drugs. [Internet]. Antimicrob Agents Chemother. 2018;62;e00641–18. Available from: http://aac.asm.org/content/62/7/e00641-18.abstract
  • Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother. 2010;54:1484–1491.
  • Alffenaar J-WC, Gumbo T, Dooley KE, et al. Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis. Clin Infect Dis an off Publ Infect Dis Soc Am. 2020;70:1774–1780.
  • Lange C, Alghamdi WA, Al-Shaer MH, et al. Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis. J Intern Med. 2018;284:163–188.
  • Zuur MA, Pasipanodya JG, van Soolingen D, et al. Intermediate susceptibility dose-dependent breakpoints for high-dose rifampin, isoniazid, and pyrazinamide treatment in multidrug-resistant tuberculosis programs. Clin Infect Dis an off Publ Infect Dis Soc Am. 2018;67:1743–1749.
  • Azuma J, Ohno M, Kubota R, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69:1091–1101.
  • Saktiawati AMI, Harkema M, Setyawan A, et al. Optimal sampling strategies for therapeutic drug monitoring of first-line tuberculosis drugs in patients with tuberculosis. Clin Pharmacokinet. 2019;58:1445–1454.
  • Magis-Escurra C, HMJ L-N, Alffenaar JWC, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44:229–234.
  • WHO. Guidelines for treatment of drug-susceptible tuberculosis and patient care (2017 update) [Internet]. 2017 [cited 2020 Sep 21] . Available from: https://www.who.int/tb/publications/2017/dstb_guidance_2017/en/
  • Verbeeck RK, Gunther G, Kibuule D, et al. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72:905–916.
  • [Internet]; Stott KE, Pertinez H, Sturkenboom MGG, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73:2305–2313. Available from: https://pubmed.ncbi.nlm.nih.gov/29701775
  • Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47:2118–2124.
  • [Internet]; Gumbo T, Louie A, Deziel MR, et al. Concentration-Dependent Mycobacterium tuberculosis Killing and Prevention of Resistance by Rifampin. Antimicrob Agents Chemother. 2007;51:3781 LP– 3788. Available from: http://aac.asm.org/content/51/11/3781.abstract
  • Ray J, Gardiner I, Marriott D. Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and isoniazid. Intern Med J. 2003;33:229–234.
  • Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17:39–49.
  • Smythe W, Khandelwal A, Merle C, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother. 2012;56:2091–2098.
  • Loos U, Musch E, Jensen JC, et al. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63:1205–1211.
  • Magis-Escurra C, van den Boogaard J, IJdema D, et al. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. [Internet]. 2012;25:83–86. Available from:: http://www.sciencedirect.com/science/article/pii/S1094553911001660
  • Sturkenboom MGG, Mulder LW, de Jager A, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. [Internet]. 2015;59:4907 LP– 4913. Available from:: http://aac.asm.org/content/59/8/4907.abstract
  • Skinner MH, Hsieh M, Torseth J, et al. Pharmacokinetics of rifabutin. Antimicrob Agents Chemother. [Internet]. 1989;33:1237 LP– 1241. Available from:: http://aac.asm.org/content/33/8/1237.abstract
  • Munsiff SS, Kambili C, Ahuja SD. Rifapentine for the Treatment of Pulmonary tuberculosis. Clin Infect Dis. 2006;43:1468–1475. Available from:. [Internet].
  • Skinner MH, Blaschke TF. Clinical Pharmacokinetics of Rifabutin. Clin Pharmacokinet. 1995;28:115–125. Available from:. [Internet].
  • Weiner M, Bock N, Peloquin CA, et al. Pharmacokinetics of rifapentine at 600, 900, and 1,200 mg during once-weekly tuberculosis therapy. Am J Respir Crit Care Med. 2004;169:1191–1197.
  • Weiner M, Benator D, Burman W, et al. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin Infect Dis an off Publ Infect Dis Soc Am. 2005;40:1481–1491.
  • Savic RM, Weiner M, MacKenzie WR, et al. Defining the optimal dose of rifapentine for pulmonary tuberculosis: exposure-response relations from two phase II clinical trials. Clin Pharmacol Ther. [Internet]. 2017 /March/02;102:321–331. Available from: https://pubmed.ncbi.nlm.nih.gov/28124478
  • Weiner M, Benator D, Peloquin CA, et al. Evaluation of the drug interaction between rifabutin and efavirenz in patients with HIV infection and tuberculosis. Clin Infect Dis an off Publ Infect Dis Soc Am. 2005;41:1343–1349.
  • Zhu M, Burman WJ, Starke JR, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis off J. Int Union against Tuberc Lung Dis. 2004;8:1360–1367.
  • Denti P, Jeremiah K, Chigutsa E, et al. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly diagnosed pulmonary TB ‘patients in Tanzania. PLoS One. [Internet]. 2015;10:e0141002–e0141002. Available from:: https://pubmed.ncbi.nlm.nih.gov/26501782
  • Srivastava S, Musuka S, Sherman C, et al. Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis. 2010;201:1225–1231.
  • Hasenbosch RE, Alffenaar JWC, Koopmans SA, et al. Ethambutol-induced optical neuropathy: risk of overdosing in obese subjects. Int J Tuberc Lung Dis off J Int Union against Tuberc Lung Dis. 2008;12:967–971.
  • Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis off J. Int Union against Tuberc Lung Dis. 2003;7:6–21.
  • Millard JD, Mackay EA, Bonnett LJ, et al. The impact of inclusion, dose and duration of pyrazinamide (PZA) on efficacy and safety outcomes in tuberculosis: systematic review and meta-analysis protocol. Syst Rev. 2019;8:329.
  • Peloquin CA, Bulpitt AE, Jaresko GS, et al. Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy. 1998;18:1205–1211.
  • Chideya S, Winston CA, Peloquin CA, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis an off Publ Infect Dis Soc Am. 2009;48:1685–1694.
  • East African-British Medical Research Councils. Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Third report. 1974;2:237–240.
  • Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet. 1972;1:1079–1085.
  • Gumbo T, Dona CSWS, Meek C, et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother. 2009;53:3197–3204.
  • Pranger AD, van Altena R, Aarnoutse RE, et al. Evaluation of moxifloxacin for the treatment of tuberculosis: 3 years of experience. Eur Respir J. 2011;38:888–894.
  • Deshpande D, Pasipanodya JG, Mpagama SG, et al. Ethionamide pharmacokinetics/pharmacodynamics-derived dose, the role of MICs in clinical outcome, and the resistance arrow of time in multidrug-resistant tuberculosis. Clin Infect Dis. [Internet]. 2018;67:S317–S326. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30496457
  • Peloquin CA, Hadad DJ, Molino LPD, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52:852–857.
  • Thwaites GE, Bhavnani SM, Chau TTH, et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55:3244–3253.
  • Alffenaar JWC, van Altena R, Bökkerink HJ, et al. Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis. Clin Infect Dis an off Publ Infect Dis Soc Am. 2009;49:1080–1082.
  • Manika K, Chatzika K, Zarogoulidis K, et al. Moxifloxacin in multidrug-resistant tuberculosis: is there any indication for therapeutic drug monitoring? Eur Respir J. 2012;40:1051–1053.
  • Van’t Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, et al. Pharmacokinetics of Levofloxacin in multidrug- and extensively drug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2017;61:e00343–17.
  • Cegielski JP, Dalton T, Yagui M, et al. Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin Infect Dis an off Publ Infect Dis Soc Am. 2014;59:1049–1063.
  • Deshpande D, Pasipanodya JG, Mpagama SG, et al. Levofloxacin pharmacokinetics/pharmacodynamics, dosing, susceptibility breakpoints, and artificial intelligence in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis an off Publ Infect Dis Soc Am. 2018;67:S293–S302.
  • Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190:1642–1651.
  • Heinrichs MT, Drusano GL, Brown DL, et al. Dose optimization of moxifloxacin and linezolid against tuberculosis using mathematical modeling and simulation. Int J Antimicrob Agents. 2019;53:275–283.
  • Bouton TC, Phillips PPJ, Mitnick CD, et al. An optimized background regimen design to evaluate the contribution of levofloxacin to multidrug-resistant tuberculosis treatment regimens: study protocol for a randomized controlled trial. Trials. 2017;18:563.
  • Peloquin CA, Phillips PPJ, Mitnick CD, et al. Increased doses lead to higher drug exposures of Levofloxacin for treatment of tuberculosis. Antimicrob Agents Chemother. 2018 Sep 24;62(10):e00770–18.
  • Nunn AJ, Phillips PPJ, Meredith SK, et al. A trial of a shorter regimen for Rifampin-resistant tuberculosis. N Engl J Med. 2019;380:1201–1213.
  • Svensson EM, Dosne A-G, Karlsson MO. Population pharmacokinetics of Bedaquiline and metabolite M2 in patients with drug-resistant tuberculosis: the effect of time-varying weight and Albumin. CPT Pharmacometrics Syst Pharmacol. 2016;5:682–691.
  • Svensson EM, Karlsson MO. Modelling of mycobacterial load reveals bedaquiline’s exposure-response relationship in patients with drug-resistant TB. J Antimicrob Chemother. 2017;72:3398–3405.
  • Diacon AH, Pym A, Grobusch M, et al. The Diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med. 2009;360:2397–2405. Available from:. [Internet].
  • van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: a review of human pharmacokinetics and drug–drug interactions. J Antimicrob Chemother. 2014;69:2310–2318. Available from:. [Internet].
  • Akkerman OW, Odish OFF, Bolhuis MS. et al. Pharmacokinetics of Bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin Infect Dis an off Publ Infect Dis Soc Am United States. 2016; 523–524.
  • Nguyen TVA, Anthony RM, A-L B, et al. Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis an off Publ Infect Dis Soc Am. 2018;66:1625–1630.
  • Alffenaar J-WC, Akkerman OW, Tiberi S, et al. Should we worry about bedaquiline exposure in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis? Eur Respir J England. 2020.
  • Healan AM, Salata RA, Griffiss JM, et al. Effects of Rifamycin coadministration on Bedaquiline desmethylation in healthy adult volunteers. Clin Pharmacol Drug Dev. 2019;8:436–442.
  • Healan AM, Griffiss JM, Proskin HM, et al. Impact of Rifabutin or Rifampin on Bedaquiline safety, tolerability, and pharmacokinetics assessed in a randomized clinical trial with healthy adult volunteers. Antimicrob Agents Chemother. 2017 Dec 21;62(1):e00855–1717.
  • Maartens G, Brill MJE, Pandie M, et al. Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis. Int J Tuberc Lung Dis off J. Int Union against Tuberc Lung Dis. 2018;22:26–29.
  • Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. [Internet]. 2012;367:1508–1518. Available from:: https://pubmed.ncbi.nlm.nih.gov/23075177
  • Lee M, Cho SN, Barry CE 3rd, et al. Linezolid for XDR-TB–final study outcomes. N Engl J Med. [Internet]. 2015;373:290–291. Available from: https://pubmed.ncbi.nlm.nih.gov/26176401
  • Tang S, Yao L, Hao X, et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. [Internet]. 2014 /September/18;45:161–170. Available from: https://pubmed.ncbi.nlm.nih.gov/25234807
  • Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Expert Rev Anti Infect Ther. [Internet]. 2016 /August/27;14:901–915. Available from: https://pubmed.ncbi.nlm.nih.gov/27532292
  • Zyvox 600 mg film-coated tablets summary of product characteristics [Internet]. 2018 [cited 2020 Sep 21]. Available from: https://www.medicines.org.uk/emc/medicine/9857#gref.
  • Moellering RC Jr. Linezolid: the First Oxazolidinone Antimicrobial. Ann Intern Med. 2003;138:135–142. Available from:. [Internet].
  • Bolhuis MS, Akkerman OW, Sturkenboom MGG. et al. Different underlying mechanism might explain the absence of a significant difference in area under the concentration-time curve of linezolid for different ABCB1 genotypes. Ther Drug Monit United States. 2019; p. 253–254.
  • Bolhuis MS, van Altena R, van Soolingen D, et al. Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients. Eur Respir J. 2013;42:1614–1621.
  • Ashizawa N, Tsuji Y, Kawago K, et al. Successful treatment of methicillin-resistant Staphylococcus aureus osteomyelitis with combination therapy using linezolid and rifampicin under therapeutic drug monitoring. J Infect Chemother. [Internet]. 2016;22:331–334. Available from:: http://www.sciencedirect.com/science/article/pii/S1341321X15002846
  • Song T, Lee M, Jeon H-S, et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine [Internet]. 2015;2:1627–1633. Available from:: https://pubmed.ncbi.nlm.nih.gov/26870788.
  • Srivastava S, Magombedze G, Koeuth T, et al. Linezolid dose that maximizes sterilizing effect while minimizing toxicity and resistance emergence for tuberculosis. Antimicrob Agents Chemother. 2017;61:e00751–17.
  • Kamp J, Bolhuis MS, Tiberi S, et al. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis. Int J Antimicrob Agents. [Internet]. 2017 /April/04;49:688–694. Available from: https://pubmed.ncbi.nlm.nih.gov/28389352
  • Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902.
  • Brown AN, Drusano GL, Adams JR, et al. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. MBio. [Internet]. 2015;6:e01741. Available from:: https://pubmed.ncbi.nlm.nih.gov/26530386
  • Millard J, Pertinez H, Bonnett L, et al. Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. J Antimicrob Chemother. 2018;73:1755–1762.
  • Bolhuis MS, Tiberi S, Sotgiu G, et al. Is there still room for therapeutic drug monitoring of linezolid in patients with tuberculosis? Eur Respir J. [Internet]. 2016;47:1288–1290. Available from:: https://pubmed.ncbi.nlm.nih.gov/27037319
  • Bolhuis MS, van der Werf TS, Kerstjens HAM, et al. Treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring: first experiences with sub-300 mg linezolid dosages using in-house made capsules. Eur. Respir. J. England. 2019 Dec 4;54(6):1900580.
  • Bolhuis MS, Akkerman OW, Sturkenboom MGG, et al. Linezolid-based regimens for multidrug-resistant tuberculosis (TB): a systematic review to establish or revise the current recommended dose for TB treatment. Clin Infect Dis an off Publ Infect Dis Soc Am. 2018;67:S327–S335.
  • Ammerman NC, R V S, Tapley A, et al. Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis both in vitro and in vivo. J Antimicrob Chemother. 2017;72:455–461.
  • Garrelts JC. Clofazimine: a review of its use in leprosy and Mycobacterium avium complex infection. [Internet]. DICP. 1991;25;525–531. Available from: http://europepmc.org/abstract/MED/2068838
  • Holdiness MR. Clinical pharmacokinetics of clofazimine. A review. Clin Pharmacokinet. 1989;16:74–85.
  • Abdelwahab MT, Wasserman S, Brust JCM, et al. Clofazimine pharmacokinetics in patients with TB: dosing implications. J Antimicrob Chemother. 2020 Nov;75(11):3269–3277. [Internet] Available from: DOI:10.1093/jac/dkaa310
  • Ramachandran G, Swaminathan S. Safety and tolerability profile of second-line anti-tuberculosis medications. Drug Saf. [Internet].2015;38;253–269. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25676682
  • Choudhri SH, Harris L, Butany JW, et al. Clofazimine induced cardiotoxicity–a case report. Lepr Rev. 1995;66:63–68.
  • Chang MJ, Jin B, Chae J-W, et al. Population pharmacokinetics of moxifloxacin, cycloserine, p-aminosalicylic acid and kanamycin for the treatment of multi-drug-resistant tuberculosis. Int J Antimicrob Agents. [Internet]. 2017 /April/10;49:677–687. Available from: https://pubmed.ncbi.nlm.nih.gov/28408267
  • Zítková L, Tousek J. Pharmacokinetics of cycloserine and terizidone. A comparative study. Chemotherapy. [Internet]. 1974;20;18–28. Available from: https://pubmed.ncbi.nlm.nih.gov/4845674
  • Hung W-Y, Yu M-C, Chiang Y-C, et al. Serum concentrations of cycloserine and outcome of multidrug-resistant tuberculosis in Northern Taiwan. Int J Tuberc Lung Dis. [Internet]. 2014;18:601–606. Available from:: https://pubmed.ncbi.nlm.nih.gov/24903799
  • Zhu H, Guo S-C, Liu Z-Q, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis off J. Int Union against Tuberc Lung Dis. 2018;22:931–936.
  • Deshpande D, Alffenaar J-WC, Köser CU, et al. d-cycloserine pharmacokinetics/pharmacodynamics, susceptibility, and dosing implications in multidrug-resistant tuberculosis: a Faustian deal. Clin Infect Dis. [Internet]. 2018;67:S308–S316. Available from:: https://pubmed.ncbi.nlm.nih.gov/30496460
  • Alghamdi WA, Alsultan A, Al-Shaer MH, et al. Cycloserine population pharmacokinetics and pharmacodynamics in patients with tuberculosis. Antimicrob Agents Chemother. 2019;63:e00055–19.
  • van der Galiën R, Boveneind-Vrubleuskaya NV, Peloquin C, et al. Pharmacokinetic modeling, simulation, and development of a limited sampling strategy of cycloserine in patients with multidrug-/extensively drug-resistant tuberculosis. Clin Pharmacokinet. 2020;59:899–910.
  • Hwang TJ, Wares DF, Jafarov A, et al. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. [Internet]. 2013 /June/03;17:1257–1266. Available from: https://pubmed.ncbi.nlm.nih.gov/23735593
  • Li Y, Sun F, Zhang W. Bedaquiline and delamanid in the treatment of multidrug-resistant tuberculosis: promising but challenging. Drug Dev Res. 2019;80:98–105. Available from:. [Internet].
  • Ferlazzo G, Mohr E, Laxmeshwar C, et al. Early safety and efficacy of the combination of bedaquiline and delamanid for the treatment of patients with drug-resistant tuberculosis in Armenia, India, and South Africa: a retrospective cohort study. Lancet Infect Dis. 2018;18:536–544.
  • Akkerman O, Aleksa A, Alffenaar J-W, et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2019;83:72–76.
  • Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–2160.
  • Keam SJ. Pretomanid: first approval. Drugs. 2019;79:1797–1803.
  • Winter H, Ginsberg A, Egizi E, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother. [Internet]. 2013;57:5516 LP– 5520. Available from:: http://aac.asm.org/content/57/11/5516.abstract
  • Dooley KE, Luetkemeyer AF, Park J-G, et al. Phase I Safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant Lopinavir-Ritonavir, Efavirenz, or Rifampin. Antimicrob Agents Chemother. [Internet]. 2014;58:5245 LP– 5252. Available from:: http://aac.asm.org/content/58/9/5245.abstract
  • Winter H, Egizi E, Erondu N, et al. Evaluation of pharmacokinetic interaction between PA-824 and Midazolam in healthy adult subjects. Antimicrob Agents Chemother. [Internet] 2013;57:3699 LP– 3703. Available from: http://aac.asm.org/content/57/8/3699.abstract
  • Sturkenboom MGG, Simbar N, Akkerman OW, et al. Amikacin dosing for MDR tuberculosis: a systematic review to establish or revise the current recommended dose for tuberculosis treatment. Clin Infect Dis an off Publ Infect Dis Soc Am. 2018;67:S303–S307.
  • Dijkstra JA, van Altena R, Akkerman OW, et al. Limited sampling strategies for therapeutic drug monitoring of amikacin and kanamycin in patients with multidrug-resistant tuberculosis. Int J Antimicrob Agents. 2015;46:332–337.
  • Smith CR, Maxwell RR, Edwards CQ, et al. Nephrotoxicity induced by gentamicin and amikacin. Johns Hopkins Med J. 1978;142:85–90.
  • French MA, Cerra FB, Plaut ME, et al. Amikacin and gentamicin accumulation pharmacokinetics and nephrotoxicity in critically ill patients. Antimicrob Agents Chemother. 1981;19:147–152.
  • van Altena R, Dijkstra JA, van der Meer ME, et al. Reduced chance of hearing loss associated with therapeutic drug monitoring of aminoglycosides in the treatment of multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2017 Feb 23;61(3):e01400–16.
  • Modongo C, Pasipanodya JG, Magazi BT, et al. Artificial intelligence and Amikacin exposures predictive of outcomes in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2016;60:5928–5932.
  • Srivastava S, Modongo C, Siyambalapitiyage Dona CW, et al. Amikacin optimal exposure targets in the hollow-fiber system model of tuberculosis. Antimicrob Agents Chemother. 2016;60:5922–5927.
  • Peloquin CA, Berning SE, Nitta AT, et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis An Off Publ Infect Dis Soc Am. 2004;38:1538–1544.
  • Modongo C, Pasipanodya JG, Zetola NM, et al. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2015;59:6337–6343.
  • Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. [Internet]. 2018;392:821–834. Available from:. https://doi.org/10.1016/S0140-6736(18)31644-1
  • Nathanson E, Gupta R, Huamani P, et al. Adverse events in the treatment of multidrug-resistant tuberculosis: results from the DOTS-Plus initiative. Int J Tuberc Lung Dis. [Internet]. 2004;8:1382–1384. Available from:: https://www.ncbi.nlm.nih.gov/pubmed/15581210
  • Lee HW, Kim DW, Park JH, et al. Pharmacokinetics of prothionamide in patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis [Internet]. 2009;13:1161–1166. Available from:: https://pubmed.ncbi.nlm.nih.gov/19723408.
  • Auclair B, Nix DE, Adam RD, et al. Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. Antimicrob Agents Chemother. [Internet]. 2001;45:810–814. Available from:: https://www.ncbi.nlm.nih.gov/pubmed/11181366
  • Zhu M, Namdar R, Stambaugh JJ, et al. Population pharmacokinetics of ethionamide in patients with tuberculosis. Tuberculosis (Edinb). [Internet]. 2002;82:91–96. Available from:: https://www.ncbi.nlm.nih.gov/pubmed/12356460
  • Lee SH, Seo K-A, Lee YM, et al. Low serum concentrations of moxifloxacin, prothionamide, and cycloserine on sputum conversion in multi-drug resistant TB. Yonsei Med J. [Internet]. 2015;56:961–967. Available from:: https://pubmed.ncbi.nlm.nih.gov/26069117
  • Al-Shaer MH, Märtson, A-G, Alghamdi WA, et al. Ethionamide population pharmacokinetic model and target attainment in multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2020.
  • WHO treatment guidelines for drug-resistant tuberculosis. 2016 Update [Internet]. 2020 Aug 20 [cited 2020 Sep 21];64(9):e00713–20. Available from: https://apps.who.int/medicinedocs/en/m/abstract/Js23097en/.
  • Donald PR, Diacon AH. Para-aminosalicylic acid: the return of an old friend. Lancet Infect Dis. [Internet]. 2015 /August/12;15:1091–1099. Available from: https://pubmed.ncbi.nlm.nih.gov/26277036
  • Heysell SK, Moore JL, Peloquin CA, et al. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in virginia, 2009–2014. Tuberc Respir Dis (Seoul). [Internet]. 2015 /April/02;78:78–84. Available from: https://pubmed.ncbi.nlm.nih.gov/25861340
  • Peloquin CA, Berning SE, Huitt GA, et al. Once-daily and twice-daily dosing of p-aminosalicylic acid granules. Am J Respir Crit Care Med. 1999;159:932–934. Available from:. [Internet].
  • Curry International Tuberculosis Center and California Department of Public Health. 2016. Drug-resistant tuberculosis: a survival guide for clinicians. 3rd ed. California, USA: Curry International Tuberculosis Center.
  • de Kock L, Sy SKB, Rosenkranz B, et al. Pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV-coinfected tuberculosis patients receiving antiretroviral therapy, managed for multidrug-resistant and extensively drug-resistant tuberculosis. Antimicrob Agents Chemother. 2014;58:6242–6250.
  • Deshpande D, Srivastava S, Chapagain ML, et al. The discovery of ceftazidime/avibactam as an anti-mycobacterium avium agent. J Antimicrob Chemother. 2017;72:i36–i42.
  • Cavanaugh JS, Jou R, Wu M-H, et al. Susceptibilities of MDR mycobacterium tuberculosis isolates to unconventional drugs compared with their reported pharmacokinetic/pharmacodynamic parameters. J Antimicrob Chemother. 2017;72:1678–1687.
  • Nicolau DP. Pharmacodynamic optimization of beta-lactams in the patient care setting. Crit Care [ [Internet]]. 2008 [/May/21];12:S2–S2. Available from:: https://pubmed.ncbi.nlm.nih.gov/18495059
  • Wivagg CN, Bhattacharyya RP, Hung DT. Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis. J Antibiot (Tokyo). 2014;67:645–654.
  • Gonzalo X, Drobniewski F. Is there a place for β-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother. 2013;68:366–369.
  • Nicolau DP, Siew L, Armstrong J, et al. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother. 2015;70:2862–2869.
  • Deshpande D, Srivastava S, Chapagain M, et al. Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis [Internet]. Sci Adv Available from:. 2017;e1701102. Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75204, USA. http://europepmc.org/abstract/MED/28875168.
  • van Rijn SP, van Altena R, Akkerman OW, et al. Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis. Eur Respir J. [Internet]. 2016;47:1229–1234. Available from:: http://europepmc.org/abstract/MED/26743484
  • van Rijn SP, Srivastava S, Wessels MA, et al. Sterilizing effect of Ertapenem-clavulanate in a hollow-fiber model of tuberculosis and implications on clinical dosing. Antimicrob Agents Chemother. 2017;61:e02039–16.
  • Zuur MA, Ghimire S, Bolhuis MS, et al. Pharmacokinetics of 2,000 Milligram ertapenem in tuberculosis patients. Antimicrob Agents Chemother. 2018;62:e02250–17.
  • van Rijn SP, Zuur MA, Anthony R, et al. Evaluation of Carbapenems for treatment of multi- and extensively drug-resistant mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63:e01489–18.
  • Sotgiu G, D’Ambrosio L, Centis R, et al. Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2016;17:373.
  • Tiberi S, Sotgiu G,D, Ambrosio L, et al. Comparison of effectiveness and safety of imipenem/clavulanate- <em>versus</em> meropenem/clavulanate-containing regimens in the treatment of MDR- and XDR-TB. Eur Respir J. [Internet]. 2016;47:1758 LP– 1766. Available from: http://erj.ersjournals.com/content/47/6/1758.abstract
  • Bushnell G, Stennis NL, Drobnik AM, et al. Characteristics and TB treatment outcomes in TB patients with viral hepatitis, New York City, 2000-2010. Epidemiol Infect. 2015;143:1972–1981.
  • Lian J, Hu P, Lu Y, et al. Prophylactic antiviral treatment reduces the incidence of liver failure among patients coinfected with Mycobacterium tuberculosis and hepatitis B virus. Virus Res. 2019;270:197664.
  • Tsai M-C, Lin M-C, Hung C-H. Successful antiviral and antituberculosis treatment with pegylated interferon-alfa and ribavirin in a chronic hepatitis C patient with pulmonary tuberculosis. J Formos Med Assoc. 2009;108:746–750.
  • Kempker RR, Alghamdi WA, Al-Shaer MH, et al. A pharmacology perspective on simultaneous tuberculosis and Hepatitis C treatment. Antimicrob Agents Chemother. [Internet]. 2019;63:e01215–19. Available from:: http://aac.asm.org/content/63/12/e01215-19.abstract
  • Yew WW, Chang KC, Chan DP, et al. Oxidative Stress and First-Line Antituberculosis Drug-Induced Hepatotoxicity. Antimicrob Agents Chemother. 2018 Jul 27;62(8):e02637–17.
  • Satyaraddi A, Velpandian T, Sharma SK, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis off J Int Union against Tuberc Lung Dis. 2014;18:188–195, i–iii.
  • Svensson EM, Acharya C, Clauson B, et al. Pharmacokinetic interactions for drugs with a long half-life—evidence for the need of model-based analysis. Aaps J. 2016;18:171–179.
  • Svensson EM, Murray S, Karlsson MO, et al. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother. 2015;70:1106–1114.
  • Guiastrennec B, Ramachandran G, Karlsson MO, et al. Suboptimal antituberculosis drug concentrations and outcomes in small and HIV-coinfected children in India: recommendations for dose modifications. Clin Pharmacol Ther. 2018;104:733–741.
  • Esposito S, Codecasa LR, Centis R. The role of therapeutic drug monitoring in individualised drug dosage and exposure measurement in tuberculosis and HIV co-infection. Eur Respir J. [Internet]. 2015;45;571 LP– 574. Available from: http://erj.ersjournals.com/content/45/2/571.abstract
  • Liverpool U of. HIV drug interactions [Internet]. [cited 2020 Sep 21]. Available from: https://www.hiv-druginteractions.org/checker.
  • Daskapan A, Idrus LR, Postma MJ, et al. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. [Internet]. 2019;58:747–766. Available from: https://pubmed.ncbi.nlm.nih.gov/30406475
  • Saito N, Yoshii Y, Kaneko Y, et al. Impact of renal function-based anti-tuberculosis drug dosage adjustment on efficacy and safety outcomes in pulmonary tuberculosis complicated with chronic kidney disease. BMC Infect Dis. 2019;19:374.
  • Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. [Internet]. Int J Nephrol Renovasc Dis. 2014;7;457–468. Available from: https://pubmed.ncbi.nlm.nih.gov/25540591
  • Milburn H, Ashman N, Davies P, et al. Guidelines for the prevention and management of <em>Mycobacterium tuberculosis</em> infection and disease in adult patients with chronic kidney disease. Thorax. [Internet]. 2010;65:559 LP– 570. Available from: http://thorax.bmj.com/content/65/6/559.abstract
  • Slocum JL, Heung M, Pennathur S. Marking renal injury: can we move beyond serum creatinine? [Internet]. Transl Res. 2012;159;277–289. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308350/
  • Roberts DM, Sevastos J, Carland JE, et al. Clinical pharmacokinetics in kidney disease: application to rational design of dosing regimens. Clin J Am Soc Nephrol. [Internet]. 2018 /July/24;13:1254–1263. Available from: https://pubmed.ncbi.nlm.nih.gov/30042221
  • Chew R, Jongbloed S, Jegatheesan D, et al. Ethambutol is cleared by a contemporary high-flux hemodialyzer, and drug monitoring ensures safety and therapeutic effect. Antimicrob Agents Chemother. 2017;61:e01988–16.
  • Strunk A-K, Ciesek S, Schmidt JJ, et al. Single- and multiple-dose pharmacokinetics of ethambutol and rifampicin in a tuberculosis patient with acute respiratory distress syndrome undergoing extended daily dialysis and ECMO treatment. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2016;42:1–3.
  • Batchelor HK, Marriott JF. Paediatric pharmacokinetics: key considerations. [Internet]. Br J Clin Pharmacol. 2015;79;395–404. Available from: https://pubmed.ncbi.nlm.nih.gov/25855821
  • Martial LC, Kerkhoff J, Martinez N, et al. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int J Antimicrob Agents. 2018;52:109–113.
  • Gafar F, Arifin H, Jurnalis YD, et al. Antituberculosis drug-induced liver injury in children: incidence and risk factors during the two-month intensive phase of therapy. Pediatr Infect Dis J. 2019;38:50–53.
  • Swaminathan S, Pasipanodya JG, Ramachandran G, et al. Drug concentration thresholds predictive of therapy failure and death in children with tuberculosis: bread crumb trails in random forests. Clin Infect Dis an off Publ Infect Dis Soc Am. 2016;63:S63–S74.
  • O’Kelly B, Murtagh R, Lambert JS. Therapeutic drug monitoring of HIV antiretroviral drugs in pregnancy: a narrative review. Ther Drug Monit. 2020;42:229–244.
  • Abdelwahab MT, Leisegang R, Dooley KE, et al. Population pharmacokinetics of Isoniazid, Pyrazinamide, and Ethambutol in pregnant South African women with tuberculosis and HIV. Antimicrob Agents Chemother. 2020;64:e01978–19.
  • Denti P, Martinson N, Cohn S, et al. Population pharmacokinetics of rifampin in pregnant women with tuberculosis and HIV coinfection in Soweto, South Africa. Antimicrob Agents Chemother. 2015;60:1234–1241.
  • Van Kampenhout E, Bolhuis MS, Alffenaar J-WC, et al. Pharmacokinetics of moxifloxacin and linezolid during and after pregnancy in a patient with multidrug-resistant tuberculosis. Eur Respir J. [Internet]. 2017;49:1601724. Available from: http://erj.ersjournals.com/content/49/3/1601724.abstract
  • Gupta A, Mathad JS, Abdel-Rahman SM, et al. Toward earlier inclusion of pregnant and postpartum women in tuberculosis drug trials: consensus statements from an international expert panel. Clin Infect Dis. [Internet]. 2015;62:761–769.
  • Ebers A, Stroup S, Mpagama S, et al. Determination of plasma concentrations of levofloxacin by high performance liquid chromatography for use at a multidrug-resistant tuberculosis hospital in Tanzania. PLoS One. 2017;12:e0170663.
  • Kim HY, Heysell SK, Mpagama S, et al. Challenging the management of drug-resistant tuberculosis. Lancet. England. 2020 Mar 7;395(10226):783.
  • Alffenaar J-WC, Heysell SK, Mpagama SG. Therapeutic drug monitoring: the need for practical guidance. Clin Infect Dis. [Internet]. 2019;68:1065–1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.