727
Views
6
CrossRef citations to date
0
Altmetric
Review

Pharmacotherapy of neonatal opioid withdrawal syndrome: a review of pharmacokinetics and pharmacodynamics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 87-103 | Received 24 Jul 2020, Accepted 12 Oct 2020, Published online: 29 Oct 2020

References

  • Hedegaard H, Minino A, Warner M. Drug overdose deaths in the United States, 1999–2018. NCHS Data Brief, no 356. Hyattsville (MD): National Center for Health Statistics; 2020.
  • Smith K, Lipari R. Women of childbearing age and opioids. Rockville (MD): Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration; 2017.
  • Haight SC, Ko JY, Tong VT, et al. Opioid use disorder documented at delivery hospitalization - United States, 1999-2014. MMWR Morb Mortal Wkly Rep. 2018;67(31):845–849.
  • Jones HE, O’Grady KE, Malfi D, et al. Methadone maintenance vs. methadone taper during pregnancy: maternal and neonatal outcomes. Am J Addict. 2008;17(5):372–386.
  • Jones HE, Kaltenbach K, Heil SH, et al. Neonatal abstinence syndrome after methadone or buprenorphine exposure. N Engl J Med. 2010;363(24):2320–2331.
  • Jones HE, Finnegan LP, Kaltenbach K. Methadone and buprenorphine for the management of opioid dependence in pregnancy. Drugs. 2012;72(6):747–757.
  • ACOG. Committee on health care for underserved women; american society of addiction medicine. ACOG committee opinion no. 524: opioid abuse, dependence, and addiction in pregnancy. Obstet Gynecol. 2012;119(5):1070–1076.
  • World Health Organization (WHO). Guidelines for the psychosocially assisted pharmacological treatment of opioid dependence. Geneva: World Health Organization; 2009.
  • Lindberg BS, Hartvig P, Lilja A, et al. Positron-emission tomography: a new approach to feto-maternal pharmacokinetics. NIDA Res Monogr. 1985;60:88–97.
  • Gerdin E, Rane A, Lindberg B. Transplacental transfer of morphine in man. J Perinat Med. 1990;18(4):305–312.
  • Cooper J, Jauniaux E, Gulbis B, et al. Placental transfer of fentanyl in early human pregnancy and its detection in fetal brain. Br J Anaesth. 1999;82(6):929–931.
  • Malek A, Obrist C, Wenzinger S, et al. The impact of cocaine and heroin on the placental transfer of methadone. Reprod Biol Endocrinol. 2009;7:61.
  • Gordon AL, Lopatko OV, Somogyi AA, et al. (R)- and (S)-methadone and buprenorphine concentration ratios in maternal and umbilical cord plasma following chronic maintenance dosing in pregnancy. Br J Clin Pharmacol. 2010;70(6):895–902.
  • Winkelman TNA, Villapiano N, Kozhimannil KB, et al. Incidence and costs of neonatal abstinence syndrome among infants with medicaid: 2004-2014. Pediatrics. 2018;141:4.
  • Coenen H. Über das Jahr der Morphiumentdeckung Sertürners in Paderborn. [On the year of morphine discovery in Paderborn by Sertürner]. Arch Pharm Ber Dtsch Pharm Ges. 1954;287(59):165–180. German.
  • Sertüner FWA. Darstellung der reinen Mohnsaure (Opiumsaure) nebst einer Chemischen Untersuchung des Opiums mit vorzuglicher Hinsicht auf einen darin neu entdeckten Stoff und die dahin gehorigen Bemerkungen. [Preparation of pure poppy acid (opium acid) along with a chemical examination of opium with particular attention to a therein newly discovered substance and associated comments]. J Pharm Aerzte Apoth Chem. 1806;14:47–93. German.
  • Winckel FWCL, Seifert WG, Grenser PWT, et al. Discussion über Dr. Fiedler’s Vortrag. [Discussion on Dr. Fiedler’s lecture]. Jahresber Ges Nat Heilkd Dresd. 1876:32–38. German.
  • Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179(4077):1011–1014.
  • Wittert G, Hope P, Pyle D. Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun. 1996;218(3):877–881.
  • Hudak ML, Tan RC. Neonatal drug withdrawal. Pediatrics. 2012;129(2):e540–560.
  • Lisonkova S, Richter LL, Ting J, et al. Neonatal abstinence syndrome and associated neonatal and maternal mortality and morbidity. Pediatrics. 2019;144(2):1–11.
  • Witt CE, Rudd KE, Bhatraju P, et al. Neonatal abstinence syndrome and early childhood morbidity and mortality in Washington state: a retrospective cohort study. J Perinatol. 2017;37(10):1124–1129.
  • Brandt L, Finnegan LP. Neonatal abstinence syndrome: where are we, and where do we go from here? Curr Opin Psychiatry. 2017;30(4):268–274.
  • Wachman EM, Schiff DM, Silverstein M. Neonatal abstinence syndrome: advances in diagnosis and treatment. JAMA. 2018;319(13):1362–1374.
  • Bogen DL, Whalen BL, Kair LR, et al. Wide variation found in care of opioid-exposed newborns. Acad Pediatr. 2017;17(4):374–380.
  • Disher T, Gullickson C, Singh B, et al. Pharmacological treatments for neonatal abstinence syndrome: a systematic review and network meta-analysis. JAMA Pediatr. 2019;173(3):234–243.
  • Wachman EM, Werler MM. Pharmacologic treatment for neonatal abstinence syndrome: which medication is best? JAMA Pediatr. 2019;173(3):221–223.
  • Gaalema DE, Scott TL, Heil SH, et al. Differences in the profile of neonatal abstinence syndrome signs in methadone- versus buprenorphine-exposed neonates. Addiction. 2012;107(Suppl 1):53–62.
  • Kaltenbach K, Holbrook AM, Coyle MG, et al. Predicting treatment for neonatal abstinence syndrome in infants born to women maintained on opioid agonist medication. Addiction. 2012;107(Suppl 1):45–52.
  • Wachman EM, Newby PK, Vreeland J, et al. The relationship between maternal opioid agonists and psychiatric medications on length of hospitalization for neonatal abstinence syndrome. J Addict Med. 2011;5(4):293–299.
  • Zelson C, Lee SJ, Casalino M. Neonatal narcotic addiction. Comparative effects of maternal intake of heroin and methadone. N Engl J Med. 1973;289(23):1216–1220.
  • Hall ES, Wexelblatt SL, Crowley M, et al. A multicenter cohort study of treatments and hospital outcomes in neonatal abstinence syndrome. Pediatrics. 2014;134(2):e527–534.
  • Finnegan LP, Kron RE, Connaughton JF, et al. Assessment and treatment of abstinence in the infant of the drug-dependent mother. Int J Clin Pharmacol Biopharm. 1975;12(1–2):19–32.
  • Finnegan LP, Connaughton JF Jr., Kron RE, et al. Neonatal abstinence syndrome: assessment and management. Addict Dis. 1975;2(1):141–158.
  • Mehta A, Forbes KD, Kuppala VS. Neonatal abstinence syndrome management from prenatal counseling to postdischarge follow-up care: results of a national survey. Hosp Pediatr. 2013;3(4):317–323.
  • Jones HE, Fielder A. Neonatal abstinence syndrome: historical perspective, current focus, future directions. Prev Med. 2015;80:12–17.
  • Grossman MR, Lipshaw MJ, Osborn RR, et al. A novel approach to assessing infants with neonatal abstinence syndrome. Hosp Pediatr. 2018;8(1):1–6.
  • Hall ES, Meinzen-Derr J, Wexelblatt SL. Cohort analysis of a pharmacokinetic-modeled methadone weaning optimization for neonatal abstinence syndrome. J Pediatr. 2015;167(6):1221–1225.
  • Emmerson PJ, Liu MR, Woods JH, et al. Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther. 1994;271(3):1630–1637.
  • Codd EE, Shank RP, Schupsky JJ, et al. Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J Pharmacol Exp Ther. 1995;274(3):1263–1270.
  • Khroyan TV, Polgar WE, Jiang F, et al. Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists. J Pharmacol Exp Ther. 2009;331(3):946–953.
  • Volpe DA, McMahon Tobin GA, Mellon RD, et al. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol. 2011;59(3):385–390.
  • Holford NH, Anderson BJ. Why standards are useful for predicting doses. Br J Clin Pharmacol. 2017;83(4):685–687.
  • Holford NH. A size standard for pharmacokinetics. Clin Pharmacokinet. 1996;30(5):329–332.
  • Loew GH, Berkowitz DS, Newth RC. Quantum chemical studies of methadone. J Med Chem. 1976;19(7):863–869.
  • Sheng Y, Standing JF. Pharmacokinetic reason for negative results of clonidine sedation in long-term-ventilated neonates and infants. Pediatr Crit Care Med. 2015;16(1):92–93.
  • Cunningham FE, Baughman VL, Peters J, et al. Comparative pharmacokinetics of oral versus sublingual clonidine. J Clin Anesth. 1994;6(5):430–433.
  • Siu A, Robinson CA. Neonatal abstinence syndrome: essentials for the practitioner. J Pediatr Pharmacol Ther. 2014;19(3):147–155.
  • Micromedex® [electronic version]. Greenwood Village (CO): IBM Watson Health; [ cited 2020 Jun 4]. Available from: https://www.micromedexsolutions.com/.
  • Mashayekhi SO, Hain RD, Buss DC, et al. Morphine in children with cancer: impact of age, chemotherapy and other factors on protein binding. J Pain Palliat Care Pharmacother. 2007;21(4):5–12.
  • Olsen GD. Morphine binding to human plasma proteins. Clin Pharmacol Ther. 1975;17(1):31–35.
  • Ganshorn A, Kurz H. Unterschiede zwischen der Proteinbindung Neugeborener und Erwachsener und ihre Bedeutung für die pharmakologische Wirkung. [Differences between the protein binding of newborns and adults and their importance for pharmacological action]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;260(2):117–118. German.
  • Avdeef A, Barrett DA, Shaw PN, et al. Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates. J Med Chem. 1996;39(22):4377–4381.
  • Oldendorf WH, Hyman S, Braun L, et al. Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science. 1972;178(4064):984–986.
  • Tzvetkov MV, dos Santos Pereira JN, Meineke I, et al. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol. 2013;86(5):666–678.
  • Martin WR, Eades CG, Thompson JA, et al. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976;197(3):517–532.
  • Bot G, Blake AD, Li S, et al. Opioid regulation of the mouse delta-opioid receptor expressed in human embryonic kidney 293 cells. Mol Pharmacol. 1997;52(2):272–281.
  • Davis JM, Shenberger J, Terrin N, et al. Comparison of safety and efficacy of methadone vs morphine for treatment of neonatal abstinence syndrome: a randomized clinical trial. JAMA Pediatr. 2018;172(8):741–748.
  • Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25(1):1–4.
  • Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol. 1992;34(2):130–138.
  • Shimomura K, Kamata O, Ueki S, et al. Analgesic effect of morphine glucuronides. Tohoku J Exp Med. 1971;105(1):45–52.
  • Yeh SY. Urinary excretion of morphine and its metabolites in morphine-dependent subjects. J Pharmacol Exp Ther. 1975;192(1):201–210.
  • Knibbe CA, Krekels EH, van den Anker JN, et al. Morphine glucuronidation in preterm neonates, infants and children younger than 3 years. Clin Pharmacokinet. 2009;48(6):371–385.
  • Zelcer N, van de Wetering K, Hillebrand M, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A. 2005;102(20):7274–7279.
  • Brunk SF, Delle M. Morphine metabolism in man. Clin Pharmacol Ther. 1974;16(1):51–57.
  • Hanks GW, Hoskin PJ, Aherne GW, et al. Enterohepatic circulation of morphine. Lancet. 1988;1(8583):469.
  • Hanks GW, Wand PJ. Enterohepatic circulation of opioid drugs. Is it clinically relevant in the treatment of cancer patients? Clin Pharmacokinet. 1989;17(2):65–68.
  • van de Wetering K, Zelcer N, Kuil A, et al. Multidrug resistance proteins 2 and 3 provide alternative routes for hepatic excretion of morphine-glucuronides. Mol Pharmacol. 2007;72(2):387–394.
  • Grisk O, Schlüter T, Steinbach A, et al. Effects of generalized and kidney specific Mrp2 (ABCC2) deficiency on renal elimination of PAH and morphine-6-glucuronide. Faseb J. 2007;21(6):A909–A909.
  • Huwyler J, Drewe J, Klusemann C, et al. Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol. 1996;118(8):1879–1885.
  • Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (-/-) and mdr1a (+/+) mice. Br J Pharmacol. 1999;128(3):563–568.
  • Barrett DA, Elias-Jones AC, Rutter N, et al. Morphine kinetics after diamorphine infusion in premature neonates. Br J Clin Pharmacol. 1991;32(1):31–37.
  • Chay PC, Duffy BJ, Walker JS. Pharmacokinetic-pharmacodynamic relationships of morphine in neonates. Clin Pharmacol Ther. 1992;51(3):334–342.
  • Hartley R, Green M, Quinn M, et al. Pharmacokinetics of morphine infusion in premature neonates. Arch Dis Child. 1993;69(1 Spec No):55–58.
  • Mikkelsen S, Feilberg VL, Christensen CB, et al. Morphine pharmacokinetics in premature and mature newborn infants. Acta Paediatr. 1994;83(10):1025–1028.
  • Barrett DA, Barker DP, Rutter N, et al. Morphine, morphine-6-glucuronide and morphine-3-glucuronide pharmacokinetics in newborn infants receiving diamorphine infusions. Br J Clin Pharmacol. 1996;41(6):531–537.
  • Scott CS, Riggs KW, Ling EW, et al. Morphine pharmacokinetics and pain assessment in premature newborns. J Pediatr. 1999;135(4):423–429.
  • Anand KJ, Anderson BJ, Holford NH, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–689.
  • Liu T, Lewis T, Gauda E, et al. Mechanistic population pharmacokinetics of morphine in neonates with abstinence syndrome after oral administration of diluted tincture of opium. J Clin Pharmacol. 2016;56(8):1009–1018.
  • Knøsgaard KR, Foster DJ, Kreilgaard M, et al. Pharmacokinetic models of morphine and its metabolites in neonates: systematic comparisons of models from the literature, and development of a new meta-model. Eur J Pharm Sci. 2016;92:117–130.
  • Välitalo PA, Krekels EH, van Dijk M, et al. Morphine pharmacodynamics in mechanically ventilated preterm neonates undergoing endotracheal suctioning. CPT Pharmacometrics Syst Pharmacol. 2017;6(4):239–248.
  • Stanski DR, Paalzow L, Edlund PO. Morphine pharmacokinetics: GLC assay versus radioimmunoassay. J Pharm Sci. 1982;71(3):314–317.
  • Hoskin PJ, Hanks GW, Aherne GW, et al. The bioavailability and pharmacokinetics of morphine after intravenous, oral and buccal administration in healthy volunteers. Br J Clin Pharmacol. 1989;27(4):499–505.
  • Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther. 1990;47(1):12–19.
  • Hasselström J, Säwe J. Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet. 1993;24(4):344–354.
  • Lötsch J, Skarke C, Schmidt H, et al. Pharmacokinetic modeling to predict morphine and morphine-6-glucuronide plasma concentrations in healthy young volunteers. Clin Pharmacol Ther. 2002;72(2):151–162.
  • Säwe J. High-dose morphine and methadone in cancer patients. Clinical pharmacokinetic considerations of oral treatment. Clin Pharmacokinet. 1986;11(2):87–106.
  • Bhatt DK, Mehrotra A, Gaedigk A, et al. Age- and genotype-dependent variability in the protein abundance and activity of six major uridine diphosphate-glucuronosyltransferases in human liver. Clin Pharmacol Ther. 2019;105(1):131–141.
  • Bouwmeester NJ, Anderson BJ, Tibboel D, et al. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92(2):208–217.
  • Holford NH, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Paediatr Anaesth. 2012;22(3):209–222.
  • Wang C, Sadhavisvam S, Krekels EH, et al. Developmental changes in morphine clearance across the entire paediatric age range are best described by a bodyweight-dependent exponent model. Clin Drug Investig. 2013;33(7):523–534.
  • Emoto C, Johnson TN, Neuhoff S, et al. PBPK model of morphine incorporating developmental changes in hepatic OCT1 and UGT2B7 proteins to explain the variability in clearances in neonates and small infants. CPT Pharmacometrics Syst Pharmacol. 2018;7(7):464–473.
  • Euteneuer JC, Mizuno T, Fukuda T, et al. Model-informed bayesian estimation improves the prediction of morphine exposure in neonates and infants. Ther Drug Monit. 2020;42(5):778–786.
  • Anderson BJ, van den Anker J. Why is there no morphine concentration-response curve for acute pain? Paediatr Anaesth. 2014;24(3):233–238.
  • Chen KK. Pharmacology of methadone and related compounds. Ann N Y Acad Sci. 1948;51(Art 1):83–97.
  • Institute of Medicine (US) Committee on Federal Regulation of Methadone Treatment. Federal Regulation of Methadone Treatment. Rettig RA, Yarmolinsky A, editors. Washington (DC): National Academy Press (US); 1995.
  • Madden JD, Chappel JN, Zuspan F, et al. Observation and treatment of neonatal narcotic withdrawal. Am J Obstet Gynecol. 1977;127(2):199–201.
  • Olsen GD. Methadone binding to human plasma proteins. Clin Pharmacol Ther. 1973;14(3):338–343.
  • Eap CB, Cuendet C, Baumann P. Binding of d-methadone, l-methadone, and dl-methadone to proteins in plasma of healthy volunteers: role of the variants of alpha 1-acid glycoprotein. Clin Pharmacol Ther. 1990;47(3):338–346.
  • Lerman J, Strong HA, LeDez KM, et al. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46(2):219–225.
  • Teklezgi BG, Pamreddy A, Baijnath S, et al. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction. Addict Biol. 2019;24(3):438–446.
  • Scott CC, Robbins EB, Chen KK. Pharmacologic comparison of the optical isomers of methadon. J Pharmacol Exp Ther. 1948;93(3):282–286.
  • Campbell SD, Gadel S, Friedel C, et al. Influence of HIV antiretrovirals on methadone N-demethylation and transport. Biochem Pharmacol. 2015;95(2):115–125.
  • Kharasch ED. Current concepts in methadone metabolism and transport. Clin Pharmacol Drug Dev. 2017;6(2):125–134.
  • Wolff K, Rostami-Hodjegan A, Hay AW, et al. Population-based pharmacokinetic approach for methadone monitoring of opiate addicts: potential clinical utility. Addiction. 2000;95(12):1771–1783.
  • Rodriguez M, Ortega I, Soengas I, et al. Effect of P-glycoprotein inhibition on methadone analgesia and brain distribution in the rat. J Pharm Pharmacol. 2004;56(3):367–374.
  • Kreek MJ, Kalisman M, Irwin M, et al. Biliary secretion of methadone and methadone metabolites in man. Res Commun Chem Pathol Pharmacol. 1980;29(1):67–78.
  • Levi L, Oestreicher PM, Farmilo CG. Nonaqueous titration of narcotics and alkaloids. Bull Narc. 1953;5(1):15–25.
  • Kung CP, Sil BC, Hadgraft J, et al. Preparation, characterization and dermal delivery of methadone. Pharmaceutics. 2019;11:10.
  • Nilsson MI, Widerlöv E, Meresaar U, et al. Effect of urinary pH on the disposition of methadone in man. Eur J Clin Pharmacol. 1982;22(4):337–342.
  • Thomson J. Observations on the urine of the new-born infant. Arch Dis Child. 1944;19(100):169–177.
  • Ward RM, Drover DR, Hammer GB, et al. The pharmacokinetics of methadone and its metabolites in neonates, infants, and children. Paediatr Anaesth. 2014;24(6):591–601.
  • Wiles JR, Isemann B, Mizuno T, et al. Pharmacokinetics of oral methadone in the treatment of neonatal abstinence syndrome: a pilot study. J Pediatr. 2015;167(6):1214–1220.
  • van Donge T, Samiee-Zafarghandy S, Pfister M, et al. Methadone dosing strategies in preterm neonates can be simplified. Br J Clin Pharmacol. 2019;85(6):1348–1356.
  • Rosen TS, Pippenger CE. Pharmacologic observations on the neonatal withdrawal syndrome. J Pediatr. 1976;88(6):1044–1048.
  • Mack G, Thomas D, Giles W, et al. Methadone levels and neonatal withdrawal. J Paediatr Child Health. 1991;27(2):96–100.
  • Meresaar U, Nilsson MI, Holmstrand J, et al. Single dose pharmacokinetics and bioavailability of methadone in man studied with a stable isotope method. Eur J Clin Pharmacol. 1981;20(6):473–478.
  • Dale O, Hoffer C, Sheffels P, et al. Disposition of nasal, intravenous, and oral methadone in healthy volunteers. Clin Pharmacol Ther. 2002;72(5):536–545.
  • Dale O, Sheffels P, Kharasch ED. Bioavailabilities of rectal and oral methadone in healthy subjects. Br J Clin Pharmacol. 2004;58(2):156–162.
  • Foster DJ, Somogyi AA, White JM, et al. Population pharmacokinetics of (R)-, (S)- and rac-methadone in methadone maintenance patients. Br J Clin Pharmacol. 2004;57(6):742–755.
  • Olsen GD, Wendel HA, Livermore JD, et al. Clinical effects and pharmacokinetics of racemic methadone and its optical isomers. Clin Pharmacol Ther. 1977;21(2):147–157.
  • McPhail BT, Emoto C, Fukuda T, et al. Utilizing pediatric physiologically based pharmacokinetic models to examine factors that contribute to methadone pharmacokinetic variability in neonatal abstinence syndrome patients. J Clin Pharmacol. 2020;60(4):453–465.
  • Croom EL, Stevens JC, Hines RN, et al. Human hepatic CYP2B6 developmental expression: the impact of age and genotype. Biochem Pharmacol. 2009;78(2):184–190.
  • Stevens JC, Hines RN, Gu C, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–582.
  • Dyer KR, Foster DJ, White JM, et al. Steady-state pharmacokinetics and pharmacodynamics in methadone maintenance patients: comparison of those who do and do not experience withdrawal and concentration-effect relationships. Clin Pharmacol Ther. 1999;65(6):685–694.
  • Campbell ND, Lovell AM. The history of the development of buprenorphine as an addiction therapeutic. Ann N Y Acad Sci. 2012;1248:124–139.
  • Kraft WK, Gibson E, Dysart K, et al. Sublingual buprenorphine for treatment of neonatal abstinence syndrome: a randomized trial. Pediatrics. 2008;122(3):e601–607.
  • Kraft WK, Dysart K, Greenspan JS, et al. Revised dose schema of sublingual buprenorphine in the treatment of the neonatal opioid abstinence syndrome. Addiction. 2011;106(3):574–580.
  • Takahashi Y, Ishii S, Arizono H, et al. Buprenorphine hydrochloride(BN・HCl)の体内動態(第1報):ラットにBN・HClを皮下投与または経皮投与(TSN-09: BN・HClを含有するテープ)したときの吸収,分布, 代謝, 排泄. [Pharmacokinetics of buprenorphine hydrochloride (BN•HCl) (1): absorption, distribution, metabolism and excretion after percutaneous (TSN-09: BN•HCl containing tape application) or subcutaneous administration of BN•HCl in rats]. Xenobiot Metab Dispos. 2001;16(6):569–583. Japanese.
  • Pöyhiä R, Seppälä T. Liposolubility and protein binding of oxycodone in vitro. Toxicol Pharmacol. 1994;74(1):23–27.
  • Galynker I, Schlyer DJ, Dewey SL, et al. Opioid receptor imaging and displacement studies with [6-O-[11C] methyl]buprenorphine in baboon brain. Nucl Med Biol. 1996;23(3):325–331.
  • Negus SS, Bidlack JM, Mello NK, et al. Delta opioid antagonist effects of buprenorphine in rhesus monkeys. Behav Pharmacol. 2002;13(7):557–570.
  • Leander JD. Buprenorphine is a potent kappa-opioid receptor antagonist in pigeons and mice. Eur J Pharmacol. 1988;151(3):457–461.
  • Wnendt S, Kruger T, Janocha E, et al. Agonistic effect of buprenorphine in a nociceptin/OFQ receptor-triggered reporter gene assay. Mol Pharmacol. 1999;56(2):334–338.
  • Lutfy K, Eitan S, Bryant CD, et al. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J Neurosci. 2003;23(32):10331–10337.
  • Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2(4):395–402.
  • Walsh SL, Preston KL, Stitzer ML, et al. Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther. 1994;55(5):569–580.
  • Bi YA, Kimoto E, Sevidal S, et al. In vitro evaluation of hepatic transporter-mediated clinical drug-drug interactions: hepatocyte model optimization and retrospective investigation. Drug Metab Dispos. 2012;40(6):1085–1092.
  • Picard N, Cresteil T, Djebli N, et al. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33(5):689–695.
  • Ohtani M, Kotaki H, Sawada Y, et al. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther. 1995;272(2):505–510.
  • Ohtani M, Kotaki H, Nishitateno K, et al. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite, norbuprenorphine. J Pharmacol Exp Ther. 1997;281(1):428–433.
  • Chang Y, Moody DE. Glucuronidation of buprenorphine and norbuprenorphine by human liver microsomes and UDP-glucuronosyltransferases. Drug Metab Lett. 2009;3(2):101–107.
  • Brown SM, Holtzman M, Kim T, et al. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active. Anesthesiology. 2011;115(6):1251–1260.
  • Cone EJ, Gorodetzky CW, Yousefnejad D, et al. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos. 1984;12(5):577–581.
  • Brewster D, Humphrey MJ, McLeavy MA. Biliary excretion, metabolism and enterohepatic circulation of buprenorphine. Xenobiotica. 1981;11(3):189–196.
  • McAleer SD, Mills RJ, Polack T, et al. Pharmacokinetics of high-dose buprenorphine following single administration of sublingual tablet formulations in opioid naïve healthy male volunteers under a naltrexone block. Drug Alcohol Depend. 2003;72(1):75–83.
  • Tournier N, Chevillard L, Megarbane B, et al. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010;13(7):905–915.
  • Hassan HE, Myers AL, Coop A, et al. Differential involvement of P-glycoprotein (ABCB1) in permeability, tissue distribution, and antinociceptive activity of methadone, buprenorphine, and diprenorphine: in vitro and in vivo evaluation. J Pharm Sci. 2009;98(12):4928–4940.
  • Brown SM, Campbell SD, Crafford A, et al. P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther. 2012;343(1):53–61.
  • Johnson TN, Jamei M, Rowland-Yeo K. How does in vivo biliary elimination of drugs change with age? Evidence from in vitro and clinical data using a systems pharmacology approach. Drug Metab Dispos. 2016;44(7):1090–1098.
  • Bhat R, Chari G, Meller J, et al. Bile flow and composition in preterm, term and infant baboons. Biol Neonate. 1997;72(4):235–242.
  • Lester R. Bile acid metabolism in the fetus and newborn. Ciba Found Symp. 1979;70:99–115.
  • Ng CM, Dombrowsky E, Lin H, et al. Population pharmacokinetic model of sublingual buprenorphine in neonatal abstinence syndrome. Pharmacotherapy. 2015;35(7):670–680.
  • Moore JN, Gastonguay MR, Ng CM, et al. The pharmacokinetics and pharmacodynamics of buprenorphine in neonatal abstinence syndrome. Clin Pharmacol Ther. 2018;103(6):1029–1037.
  • Barrett DA, Simpson J, Rutter N, et al. The pharmacokinetics and physiological effects of buprenorphine infusion in premature neonates. Br J Clin Pharmacol. 1993;36(3):215–219.
  • Mizuno T, McPhail BT, Kamatkar S, et al. Physiologic indirect response modeling to describe buprenorphine pharmacodynamics in newborns treated for neonatal opioid withdrawal syndrome [published online ahead of print]. Clin Pharmacokinet. 2020 Sep 17. DOI:10.1007/s40262-020-00939-2.
  • Kuhlman JJ Jr., Lalani S, Magluilo J Jr., et al. Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J Anal Toxicol. 1996;20(6):369–378.
  • Jensen ML, Foster DJ, Upton RN, et al. Population pharmacokinetics of buprenorphine following a two-stage intravenous infusion in healthy volunteers. Eur J Clin Pharmacol. 2007;63(12):1153–1159.
  • Dong R, Wang H, Li D, et al. Pharmacokinetics of sublingual buprenorphine tablets following single and multiple doses in chinese participants with and without opioid use disorder. Drugs R D. 2019;19(3):255–265.
  • Mendelson J, Upton RA, Everhart ET, et al. Bioavailability of sublingual buprenorphine. J Clin Pharmacol. 1997;37(1):31–37.
  • Bai SA, Xiang Q, Finn A. Evaluation of the pharmacokinetics of single- and multiple-dose buprenorphine buccal film in healthy volunteers. Clin Ther. 2016;38(2):358–369.
  • Harris DS, Jones RT, Welm S, et al. Buprenorphine and naloxone co-administration in opiate-dependent patients stabilized on sublingual buprenorphine. Drug Alcohol Depend. 2000;61(1):85–94.
  • Weinberg DS, Inturrisi CE, Reidenberg B, et al. Sublingual absorption of selected opioid analgesics. Clin Pharmacol Ther. 1988;44(3):335–342.
  • Nath RP, Upton RA, Everhart ET, et al. Buprenorphine pharmacokinetics: relative bioavailability of sublingual tablet and liquid formulations. J Clin Pharmacol. 1999;39(6):619–623.
  • de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.
  • Song G, Sun X, Hines RN, et al. Determination of human hepatic CYP2C8 and CYP1A2 age-dependent expression to support human health risk assessment for early ages. Drug Metab Dispos. 2017;45(5):468–475.
  • Kraft WK. Buprenorphine in neonatal abstinence syndrome. Clin Pharmacol Ther. 2018;103(1):112–119.
  • Saadatmand AR, Tadjerpisheh S, Brockmöller J, et al. The prototypic pharmacogenetic drug debrisoquine is a substrate of the genetically polymorphic organic cation transporter OCT1. Biochem Pharmacol. 2012;83(10):1427–1434.
  • Fukuda T, Chidambaran V, Mizuno T, et al. OCT1 genetic variants influence the pharmacokinetics of morphine in children. Pharmacogenomics. 2013;14(10):1141–1151.
  • Venkatasubramanian R, Fukuda T, Niu J, et al. ABCC3 and OCT1 genotypes influence pharmacokinetics of morphine in children. Pharmacogenomics. 2014;15(10):1297–1309.
  • Chidambaran V, Venkatasubramanian R, Zhang X, et al. ABCC3 genetic variants are associated with postoperative morphine-induced respiratory depression and morphine pharmacokinetics in children. Pharmacogenomics J. 2017;17(2):162–169.
  • Leeder JS, Kearns GL, Spielberg SP, et al. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol. 2010;50(12):1377–1387.
  • Hahn D, Emoto C, Euteneuer JC, et al. Influence of OCT1 ontogeny and genetic variation on morphine disposition in critically ill neonates: lessons from PBPK modeling and clinical study. Clin Pharmacol Ther. 2019;105(3):761–768.
  • Emoto C, Hahn D, Euteneuer JC, et al. Next challenge from the variance in individual physiologically-based pharmacokinetic model-predicted to observed morphine concentration in critically ill neonates. Clin Pharmacol Ther. 2020;107(2):319–320.
  • Kharasch ED, Regina KJ, Blood J, et al. Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance, and metabolism. Anesthesiology. 2015;123(5):1142–1153.
  • Dennis BB, Bawor M, Thabane L, et al. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS One. 2014;9(1):e86114.
  • Ettienne EB, Ofoegbu A, Maneno MK, et al. Pharmacogenomics and opioid use disorder: clinical decision support in an African American cohort. J Natl Med Assoc. 2019;111(6):674–681.
  • Yasiry Z, Shorvon SD. How phenobarbital revolutionized epilepsy therapy: the story of phenobarbital therapy in epilepsy in the last 100 years. Epilepsia. 2012;53(Suppl 8):26–39.
  • Hauptmann A. Luminal in epilepsy. [Luminal bei Epilepsie]. Munch Med Wochenschr. 1912;59:1907–1909. German.
  • Löscher W, Rogawski MA. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia. 2012;53(Suppl 8):12–25.
  • Perlstein MA. Congenital morphinism; a rare cause of convulsions in the newborn. J Am Med Assoc. 1947;135(10):633.
  • Faucette SR, Wang H, Hamilton GA, et al. Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos. 2004;32(3):348–358.
  • Surran B, Visintainer P, Chamberlain S, et al. Efficacy of clonidine versus phenobarbital in reducing neonatal morphine sulfate therapy days for neonatal abstinence syndrome. A prospective randomized clinical trial. J Perinatol. 2013;33(12):954–959.
  • Bio LL, Siu A, Poon CY. Update on the pharmacologic management of neonatal abstinence syndrome. J Perinatol. 2011;31(11):692–701.
  • Kraft WK, Stover MW, Davis JM. Neonatal abstinence syndrome: pharmacologic strategies for the mother and infant. Semin Perinatol. 2016;40(3):203–212.
  • Ehrnebo M, Agurell S, Jalling B, et al. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–193.
  • Taburet AM, Chamouard C, Aymard P, et al. Phenobarbital protein binding in neonates. Dev Pharmacol Ther. 1982;4(Suppl 1):129–134.
  • Painter MJ, Pippenger C, Wasterlain C, et al. Phenobarbital and phenytoin in neonatal seizures: metabolism and tissue distribution. Neurology. 1981;31(9):1107–1112.
  • Kadar D, Tang BK, Conn AW. The fate of phenobarbitone in children in hypothermia and at normal body temperature. Can Anaesth Soc J. 1982;29(1):16–23.
  • Curry AS. A note on a urinary metabolism lite of phenobarbitone. J Pharm Pharmacol. 1955;7(12):1072–1073.
  • Boréus LO, Jalling B, Kållberg N. Phenobarbital metabolism in adults and in newborn infants. Acta Paediatr Scand. 1978;67(2):193–200.
  • Bernus I, Dickinson RG, Hooper WD, et al. Urinary excretion of phenobarbitone and its metabolites in chronically treated patients. Eur J Clin Pharmacol. 1994;46(5):473–475.
  • Bernus I, Dickinson RG, Hooper WD, et al. Inhibition of phenobarbitone N-glucosidation by valproate. Br J Clin Pharmacol. 1994;38(5):411–416.
  • Hargraves JA, Howald WN, Racha JK, et al. Identification of enzymes responsible for the metabolism of phenobarbital [Abstract]. Int Soc Stud Xenobiot Proc. 1996;10:259.
  • Goto S, Seo T, Murata T, et al. Population estimation of the effects of cytochrome P450 2C9 and 2C19 polymorphisms on phenobarbital clearance in Japanese. Ther Drug Monit. 2007;29(1):118–121.
  • Reidenberg P, Glue P, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of phenobarbital. Clin Pharmacol Ther. 1995;58(3):279–287.
  • Mamiya K, Hadama A, Yukawa E, et al. CYP2C19 polymorphism effect on phenobarbitone. Pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol. 2000;55(11–12):821–825.
  • Hadama A, Ieiri I, Morita T, et al. P-hydroxylation of phenobarbital: relationship to (S)-mephenytoin hydroxylation (CYP2C19) polymorphism. Ther Drug Monit. 2001;23(2):115–118.
  • Lee SM, Chung JY, Lee YM, et al. Effects of cytochrome P450 (CYP)2C19 polymorphisms on pharmacokinetics of phenobarbital in neonates and infants with seizures. Arch Dis Child. 2012;97(6):569–572.
  • Glue P, Banfield CR, Perhach JL, et al. Pharmacokinetic interactions with felbamate. In vitro-in vivo correlation. Clin Pharmacokinet. 1997;33(3):214–224.
  • Maynert EW. The alcoholic metabolites of pentobarbital and amobarbital in man. J Pharmacol Exp Ther. 1965;150(1):118–121.
  • Nelson E, Powell JR, Conrad K, et al. Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol. 1982;22(2–3):141–148.
  • Klaassen CD. Biliary excretion of barbiturates. Br J Pharmacol. 1971;43(1):161–166.
  • Yang ZH, Liu XD. P-glycoprotein-mediated efflux of phenobarbital at the blood-brain barrier evidence from transport experiments in vitro. Epilepsy Res. 2008;78(1):40–49.
  • Viswanathan CT, Booker HE, Welling PG. Bioavailability of oral and intramuscular phenobarbital. J Clin Pharmacol. 1978;18(2–3):100–105.
  • Wilensky AJ, Friel PN, Levy RH, et al. Kinetics of phenobarbital in normal subjects and epileptic patients. Eur J Clin Pharmacol. 1982;23(1):87–92.
  • Heimann G, Gladtke E. Pharmacokinetics of phenobarbital in childhood. Eur J Clin Pharmacol. 1977;12(4):305–310.
  • Pitlick W, Painter M, Pippenger C. Phenobarbital pharmacokinetics in neonates. Clin Pharmacol Ther. 1978;23(3):346–350.
  • Fischer JH, Lockman LA, Zaske D, et al. Phenobarbital maintenance dose requirements in treating neonatal seizures. Neurology. 1981;31(8):1042–1044.
  • Gilman ME, Toback JW, Gal P, et al. Individualizing phenobarbital dosing in neonates. Clin Pharm. 1983;2(3):258–262.
  • Grasela TH Jr., Donn SM. Neonatal population pharmacokinetics of phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 1985;8(6):374–383.
  • Touw DJ, Graafland O, Cranendonk A, et al. Clinical pharmacokinetics of phenobarbital in neonates. Eur J Pharm Sci. 2000;12(2):111–116.
  • Filippi L, la Marca G, Cavallaro G, et al. Phenobarbital for neonatal seizures in hypoxic ischemic encephalopathy: a pharmacokinetic study during whole body hypothermia. Epilepsia. 2011;52(4):794–801.
  • van den Broek MP, Groenendaal F, Toet MC, et al. Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: a thermopharmacological approach. Clin Pharmacokinet. 2012;51(10):671–679.
  • Shellhaas RA, Ng CM, Dillon CH, et al. Population pharmacokinetics of phenobarbital in infants with neonatal encephalopathy treated with therapeutic hypothermia. Pediatr Crit Care Med. 2013;14(2):194–202.
  • Marsot A, Brevaut-Malaty V, Vialet R, et al. Pharmacokinetics and absolute bioavailability of phenobarbital in neonates and young infants, a population pharmacokinetic modelling approach. Fundam Clin Pharmacol. 2014;28(4):465–471.
  • Völler S, Flint RB, Stolk LM, et al. Model-based clinical dose optimization for phenobarbital in neonates: an illustration of the importance of data sharing and external validation. Eur J Pharm Sci. 2017;109S:S90–S97.
  • Moffett BS, Weingarten MM, Galati M, et al. Phenobarbital population pharmacokinetics across the pediatric age spectrum. Epilepsia. 2018;59(7):1327–1333.
  • Krahl ME. The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids. J Phys Chem. 1940;44(4):449–463.
  • Rodriguez L, Zecchi V, Cini M. Studio in vitro della partizione di farmaci in sistemi trifasici. Nota II – partizione di alcuni barbiturici e loro sali sodici nel sistema: soluzione tampone pH 7,4/n-ottanolo/soluzione tampone pH 7,4. [In vitro study of the partition of drugs in triphasic systems. Note II – partition of various barbiturates and their sodium salts in the system: solution buffered at pH 7.4/n-octanol/solution buffered at pH 7.4]. Farmaco Prat. 1979;34(9):371–377. Italian.
  • Morselli PL, Franco-Morselli R, Bossi L. Clinical pharmacokinetics in newborns and infants. Age-related differences and therapeutic implications. Clin Pharmacokinet. 1980;5(6):485–527.
  • Yukawa E, Suematsu F, Yukawa M, et al. Population pharmacokinetic investigation of phenobarbital by mixed effect modelling using routine clinical pharmacokinetic data in Japanese neonates and infants. J Clin Pharm Ther. 2005;30(2):159–163.
  • Alonso Gonzalez AC, Ortega Valin L, Santos Buelga D, et al. Dosage programming of phenobarbital in neonatal seizures. J Clin Pharm Ther. 1993;18(4):267–270.
  • Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–974.
  • Bhargava VO, Garrettson LK. Development of phenobarbital glucosidation in the human neonate. Dev Pharmacol Ther. 1988;11(1):8–13.
  • Michel D, Zimmermann W, Nassehi A, et al. Erste Beobachtungen über einen antihypertensiven Effekt von 2-(2,6-Dichlorphenylamino)-2-imidazolin-hydrochlorid am Menschen. [Preliminary observations on the antihypertensive effect of 2-(2,6-dichlorphenylamino)-2-imidazoline hydrochloride in man]. Dtsch Med Wochenschr. 1966;91(35):1540–1547. German.
  • Hoder EL, Leckman JF, Ehrenkranz R, et al. Clonidine in neonatal narcotic-abstinence syndrome. N Engl J Med. 1981;305(21):1284.
  • Agthe AG, Kim GR, Mathias KB, et al. Clonidine as an adjunct therapy to opioids for neonatal abstinence syndrome: a randomized, controlled trial. Pediatrics. 2009;123(5):e849–856.
  • Meddock RP, Bloemer D. Evaluation of the cardiovascular effects of clonidine in neonates treated for neonatal abstinence syndrome. J Pediatr Pharmacol Ther. 2018;23(6):473–478.
  • Bada HS, Sithisarn T, Gibson J, et al. Morphine versus clonidine for neonatal abstinence syndrome. Pediatrics. 2015;135(2):e383–391.
  • Gold MS, Redmond DE Jr., Kleber HD. Clonidine blocks acute opiate-withdrawal symptoms. Lancet. 1978;2(8090):599–602.
  • Hoder EL, Leckman JF, Poulsen J, et al. Clonidine treatment of neonatal narcotic abstinence syndrome. Psychiatry Res. 1984;13(3):243–251.
  • Brusseau C, Burnette T, Heidel RE. Clonidine versus phenobarbital as adjunctive therapy for neonatal abstinence syndrome. J Perinatol. 2020;40(7):1050–1055.
  • Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988;14(5):287–310.
  • Timmermans PB, Brands A, van Zwieten PA. Lipophilicity and brain disposition of clonidine and structurally related imidazolidines. Naunyn Schmiedebergs Arch Pharmacol. 1977;300(3):217–226.
  • Conway EL, Jarrott B. Clonidine distribution in the rat: temporal relationship between tissue levels and blood pressure response. Br J Pharmacol. 1980;71(2):473–478.
  • Davies DS, Wing AM, Reid JL, et al. Pharmacokinetics and concentration-effect relationships of intervenous and oral clonidine. Clin Pharmacol Ther. 1977;21(5):593–601.
  • Arndts D, Doevendans J, Kirsten R, et al. New aspects of the pharmacokinetics and pharmacodynamics of clonidine in man. Eur J Clin Pharmacol. 1983;24(1):21–30.
  • Claessens AJ, Risler LJ, Eyal S, et al. CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010;38(9):1393–1396.
  • Cloesmeijer ME, van den Oever HLA, RAA M, et al. Optimising the dose of clonidine to achieve sedation in intensive care unit patients with population pharmacokinetics. Br J Clin Pharmacol. 2020;86(8):1620–1631.
  • Fujimura A, Ebihara A, Ohashi K, et al. Comparison of the pharmacokinetics, pharmacodynamics, and safety of oral (Catapres) and transdermal (M-5041T) clonidine in healthy subjects. J Clin Pharmacol. 1994;34(3):260–265.
  • Xie HG, Cao YJ, Gauda EB, et al. Clonidine clearance matures rapidly during the early postnatal period: a population pharmacokinetic analysis in newborns with neonatal abstinence syndrome. J Clin Pharmacol. 2011;51(4):502–511.
  • Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.
  • Stevens JC, Marsh SA, Zaya MJ, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos. 2008;36(8):1587–1593.
  • Frisk-Holmberg M, Paalzow L, Edlund PO. Clonidine kinetics in man–evidence for dose dependency and changed pharmacokinetics during chronic therapy. Br J Clin Pharmacol. 1981;12(5):653–658.
  • Mizuno T, Dong M, Taylor ZL, et al. Clinical implementation of pharmacogenetics and model-informed precision dosing to improve patient care [published online ahead of print]. Br J Clin Pharmacol. 2020 Jun 11. DOI:10.1111/bcp.14426.
  • Laffont CM, Gomeni R, Heidbreder C, et al. Population pharmacokinetic modeling after repeated administrations of RBP-6000, a new, subcutaneously injectable, long-acting, sustained-release formulation of buprenorphine, for the treatment of opioid use disorder. J Clin Pharmacol. 2016;56(7):806–815.
  • Maxwell LG, Fraga MV, Malavolta CP. Assessment of pain in the newborn: an update. Clin Perinatol. 2019;46(4):693–707.
  • Büttner W, Finke W. Analysis of behavioural and physiological parameters for the assessment of postoperative analgesic demand in newborns, infants and young children: a comprehensive report on seven consecutive studies. Paediatr Anaesth. 2000;10(3):303–318.
  • Välitalo PA, van Dijk M, Krekels EH, et al. Pain and distress caused by endotracheal suctioning in neonates is better quantified by behavioural than physiological items: a comparison based on item response theory modelling. Pain. 2016;157(8):1611–1617.
  • Slater R, Cantarella A, Franck L, et al. How well do clinical pain assessment tools reflect pain in infants? PLoS Med. 2008;5(6):e129.
  • Slater R, Worley A, Fabrizi L, et al. Evoked potentials generated by noxious stimulation in the human infant brain. Eur J Pain. 2010;14(3):321–326.
  • Gjerstad AC, Wagner K, Henrichsen T, et al. Skin conductance versus the modified COMFORT sedation score as a measure of discomfort in artificially ventilated children. Pediatrics. 2008;122(4):e848–853.
  • Magnano CL, Gardner JM, Karmel BZ. Differences in salivary cortisol levels in cocaine-exposed and noncocaine-exposed NICU infants. Dev Psychobiol. 1992;25(2):93–103.
  • Limjoco J, Zawadzki L, Belden M, et al. Amplitude-integrated EEG use in neonatal abstinence syndrome: a pilot study. J Matern Fetal Neonatal Med. 2020;33(21):3565–3570.
  • Schubach NE, Mehler K, Roth B, et al. Skin conductance in neonates suffering from abstinence syndrome and unexposed newborns. Eur J Pediatr. 2016;175(6):859–868.
  • Rodriguez N, Vining M, Bloch-Salisbury E. Salivary cortisol levels as a biomarker for severity of withdrawal in opioid-exposed newborns. Pediatr Res. 2020;87(6):1033–1038.
  • Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21(3):291–301.
  • van Hoogdalem MW, Johnson TN, McPhail BT, et al. Physiologically-based pharmacokinetic modeling of sublingual buprenorphine in newborns with neonatal abstinence syndrome: implication of biliary clearance ontogeny on pharmacokinetic variability. Eleventh American Conference on Pharmacometrics (ACoP11); 2020 Nov 9–13; Aurora (CO).
  • Chetty M, Rose RH, Abduljalil K, et al. Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability. Front Pharmacol. 2014;5:258.
  • Vinks AA, Peck RW, Neely M, et al. Development and implementation of electronic health record-integrated model-informed clinical decision support tools for the precision dosing of drugs. Clin Pharmacol Ther. 2020;107(1):129–135.
  • Darwich AS, Ogungbenro K, Vinks AA, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–656.
  • Vinks AA, Punt NC, Menke F, et al. Electronic health record-embedded decision support platform for morphine precision dosing in neonates. Clin Pharmacol Ther. 2020;107(1):186–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.