237
Views
11
CrossRef citations to date
0
Altmetric
Review

Coffee in cancer chemoprevention: an updated review

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 69-85 | Received 30 Jun 2020, Accepted 16 Oct 2020, Published online: 06 Nov 2020

References

  • de Melo FHM, Oliveira JS, Sartorelli VOB, et al. Cancer chemoprevention: classic and epigenetic mechanisms inhibiting tumorigenesis. What have we learned so far? Front Oncol. 2018;8:644. PubMed PMID: 30627525; PubMed Central PMCID: PMC6309127
  • Liberto E, Cordero C, Bicchi C. 4(th) conference on cocoa coffee and tea (CoCoTea 2017) - The world in a cup. Food Res Int. 2019 Jan;115:302. PubMed PMID: 30599945.
  • Marko L, Tonje B. Evidence on coffee consumption and pancreatic cancer: not great, not terrible. Eur J Epidemiol. 2019 Aug 27; DOI:10.1007/s10654-019-00556-9. PubMed PMID: 31456080; eng.
  • WRCF. 2018. Worldwide cancer data: global cancer statistics for the most common cancers. Available at: https://wwwwcrforg/dietandcancer/cancer-trends/worldwide-cancer-data 2020.
  • Yu X, Bao Z, Zou J, et al. Coffee consumption and risk of cancers: a meta-analysis of cohort studies. BMC Cancer. 2011 Mar 15;(11):96. . PubMed PMID: 21406107; PubMed Central PMCID: PMCPmc3066123. eng.
  • Sado J, Kitamura T, Kitamura Y, et al. Association between coffee consumption and all-sites cancer incidence and mortality. Cancer Sci. 2017 Oct;108(10):2079–2087. . PubMed PMID: 28746796; PubMed Central PMCID: PMC5623740.
  • Jeon JS, Kim HT, Jeong IH, et al. Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Oct 1;(1064):115–123. . PubMed PMID: 28918319; eng.
  • Belgodoum K, Amira-Guebailia H, Boulmokh Y, et al. HPLC coupled to UV–vis detection for quantitative determination of phenolic compounds and caffeine in different brands of coffee in the Algerian market. J Taiwan Inst Chem Eng. 2014;45:1314–1320.
  • Farah A, de Paulis T, Moreira DP, et al. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees. J Agric Food Chem. 2006 Jan 25;54(2):374–381. PubMed PMID: 16417293; eng.
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359–86. PubMed PMID: 25220842; eng.
  • Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, et al. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. European Food Res and Tech. 2016;242(8):1403–1409.
  • Wang X, Lim L-T. Chapter 27 - Physicochemical characteristics of roasted coffee. In: Preedy VR, editor. Coffee in health and disease prevention. San Diego: Academic Press; 2015. p. 247–254.
  • Coelho C, Ribeiro M, Cruz AC, et al. Nature of phenolic compounds in coffee melanoidins. J Agric Food Chem. 2014 Aug 6;62(31):7843–7853. PubMed PMID: 24998624; eng.
  • Alsabri SG, Mari WO, Younes S, et al. Kinetic and Dynamic Description of Caffeine. J Caffeine Adenosine Res. 2018;8(1):3–9.
  • Farah A, De Paula J. Consumption of chlorogenic acids through coffee and health implications. Beverages. 2019;5(1):11.
  • Clifford MN, Jaganath IB, Ludwig IA, et al. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep. 2017 Dec 13;34(12):1391–1421. PubMed PMID: 29160894.
  • Lang R, Dieminger N, Beusch A, et al. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal Bioanal Chem. 2013 Oct;405(26):8487–8503. PubMed PMID: 23982107; eng.
  • Stalmach A, Williamson G, Crozier A. Impact of dose on the bioavailability of coffee chlorogenic acids in humans. Food Funct. 2014 Aug 5;5(8):1727–1737. PubMed PMID: 24947504.
  • Renouf M, Guy PA, Marmet C, et al. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism. Mol Nutr Food Res. 2010 Jun;54(6):760–766. PubMed PMID: 19937852; eng.
  • De Roos B, Meyboom S, Kosmeijer-Schuil TG, et al. Absorption and urinary excretion of the coffee diterpenes cafestol and kahweol in healthy ileostomy volunteers. J Intern Med. 1998 Dec;244(6):451–460. PubMed PMID: 9893098.
  • Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004 May;79(5):727–747. PubMed PMID: 15113710; eng.
  • Richelle M, Tavazzi I, Offord E. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J Agric Food Chem. 2001 Jul;49(7):3438–3442. . PubMed PMID: 11453788; eng
  • Veronese N, Notarnicola M, Cisternino AM, et al. Coffee intake and liver steatosis: a population study in a Mediterranean area. Front Med. (Lausanne). 2018 Jan 15;10(1). PubMed PMID: 29342916. DOI:10.3390/nu10010089.
  • Yashin A, Yashin Y, Wang JY, et al. Antioxidant and antiradical activity of coffee. Antioxidants (Basel). 2013 Oct 15;2(4):230–245. PubMed PMID: 26784461; PubMed Central PMCID: PMCPmc4665516. eng.
  • Caporaso N, Genovese A, Canela M, et al. Neapolitan coffee brew chemical analysis in comparison to espresso, moka and American brews. Food Res Int. 2014;61:152–160. . PubMed PMID: article
  • Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39. . PubMed PMID: 20933124; eng
  • Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010 May;44(5):479–496. PubMed PMID: 20370557; PubMed Central PMCID: PMCPmc3880197. eng
  • Bøhn SK, Blomhoff R, Paur I. Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Mol Nutr Food Res. 2014 May;58(5):915–930. . PubMed PMID: 24668519; eng.
  • Rathod MA, Patel D, Das A, et al. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee: phenolics and caffeine metabolites. Free Radic Res. 2013 Jul;47(6–7):480–487. PubMed PMID: 23521605; eng.
  • Cavin C, Mace K, Offord EA, et al. Protective effects of coffee diterpenes against aflatoxin B1-induced genotoxicity: mechanisms in rat and human cells. Food Chem Toxicol. 2001 Jun;39(6):549–556. PubMed PMID: 11346484; eng.
  • Huber WW, Scharf G, Rossmanith W, et al. The coffee components kahweol and cafestol induce gamma-glutamylcysteine synthetase, the rate limiting enzyme of chemoprotective glutathione synthesis, in several organs of the rat. Arch Toxicol. 2002 Jan;75(11–12):685–694. PubMed PMID: 11876501; eng.
  • KMM E, Ferreira RG, Narvaez LEM, et al. Chemical and pharmacological aspects of Caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019;9:541. PubMed PMID: 31293975; PubMed Central PMCID: PMCPmc6598430. eng
  • Chiang EP, Tsai SY, Kuo YH, et al. Caffeic acid derivatives inhibit the growth of colon cancer: involvement of the PI3-K/Akt and AMPK signaling pathways. PloS One. 2014;9(6):e99631. PubMed PMID: 24960186; PubMed Central PMCID: PMCPmc4069067. eng
  • Kotowski U, Heiduschka G, Seemann R, et al. Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft [Et Al]. 2015 Jun;191(6):511–517. PubMed PMID: 25575980.
  • Choi MJ, Park EJ, Oh JH, et al. Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation. Chem Biol Interact. 2011 Apr 25;190(2–3):102–108. PubMed PMID: 21334318.
  • Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Caffeic acid Versus Caffeic acid phenethyl ester in the treatment of breast cancer MCF-7 cells: migration Rate inhibition. Integr Cancer Ther. 2018 Dec;17(4):1247–1259. PubMed PMID: 30246565.
  • Rezaei-Seresht H, Cheshomi H, Falanji F, et al. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: an in silico and in vitro study. Avicenna J Phytomed. 2019 Nov-Dec;9(6):574–586. PubMed PMID: 31763216; PubMed Central PMCID: PMCPmc6823530. eng.
  • Murad LD, Soares Nda C, Brand C, et al. Effects of caffeic and 5-caffeoylquinic acids on cell viability and cellular uptake in human colon adenocarcinoma cells. Nutr Cancer. 2015;67(3):532–542. PubMed PMID: 25803129; eng
  • Hirakawa N, Okauchi R, Miura Y, et al. Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci Biotechnol Biochem. 2005 Mar;69(3):653–658. PubMed PMID: 15785001.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. PubMed PMID: 30207593; eng.
  • Mundade R, Imperiale TF, Prabhu L, et al. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience. 2014;1(6):400–406. PubMed PMID: 25594038; PubMed Central PMCID: PMCPmc4284625. eng
  • Calixto JB. Twenty-five years of research on medicinal plants in Latin America: a personal view. J Ethnopharmacol. 2005 Aug 22;100(1–2):131–134. PubMed PMID: 16006081; eng.
  • Gan Y, Wu J, Zhang S, et al. Association of coffee consumption with risk of colorectal cancer: a meta-analysis of prospective cohort studies. Oncotarget. 2017 Mar 21;8(12):18699–18711. PubMed PMID: 27078843; PubMed Central PMCID: PMCPmc5386640. eng.
  • Shimizu M. Multifunctions of dietary polyphenols in the regulation of intestinal inflammation. J Food Drug Anal. 2017 Jan;25(1):93–99. PubMed PMID: 28911547; eng
  • Nakayama T, Funakoshi-Tago M, Tamura H. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs. Oncol Lett. 2017 Jul;14(1):1109–1114. PubMed PMID: 28693281; PubMed Central PMCID: PMCPmc5494607. eng
  • Isshiki M, Umezawa K, Tamura H. Coffee induces breast cancer resistance protein expression in Caco-2 cells. Biol Pharm Bull. 2011;34(10):1624–1627. PubMed PMID: 21963506; eng.
  • Choi DW, Lim MS, Lee JW, et al. The cytotoxicity of Kahweol in HT-29 human colorectal cancer cells is mediated by apoptosis and suppression of heat shock protein 70 expression. Biomol Ther (Seoul). 2015 Mar;23(2):128–133. PubMed PMID: 25767680; PubMed Central PMCID: PMCPmc4354313. eng.
  • Schmit SL, Rennert HS, Rennert G, et al. Coffee consumption and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2016;25(4):634–639. PubMed PMID: 27196095; eng.
  • Hu Y, Ding M, Yuan C, et al. Association between coffee intake after diagnosis of colorectal cancer and reduced mortality. Gastroenterology. 2018 Mar;154(4):916–926.e9. PubMed PMID: 29158191; PubMed Central PMCID: PMCPmc5847429. eng.
  • Sartini M, Bragazzi NL. Coffee consumption and risk of colorectal cancer: a systematic review and meta-analysis of prospective studies. Nutrients. 2019 Mar 24;11(3). doi: 10.3390/nu11030694. PubMed PMID: 30909640.
  • Micek A, Gniadek A, Kawalec P, et al. Coffee consumption and colorectal cancer risk: a dose-response meta-analysis on prospective cohort studies. Int J Food Sci Nutr. 2019 Dec;70(8):986–1006. PubMed PMID: 30922134; eng.
  • Loftfield E, Freedman ND, Inoue-Choi M, et al. A prospective investigation of coffee drinking and bladder cancer incidence in the United States. Epidemiology. 2017 Sep;28(5):685–693. PubMed PMID: 28768299; PubMed Central PMCID: PMCPmc5604321. eng.
  • Salomone F, Galvano F, Li Volti G. Molecular bases underlying the hepatoprotective effects of coffee. Nutrients. 2017 Jan 23;9(1):85. PubMed PMID: 28124992; PubMed Central PMCID: PMCPmc5295129. eng.
  • Tamura T, Hishida A, Wakai K. Coffee consumption and liver cancer risk in Japan: a meta-analysis of six prospective cohort studies. Nagoya J Med Sci. 2019 Feb;81(1):143–150. PubMed PMID: 30962663; PubMed Central PMCID: PMCPmc6433635. eng.
  • Yu C, Cao Q, Chen P, et al. An updated dose-response meta-analysis of coffee consumption and liver cancer risk. Sci Rep. 2016 Dec 2;(6):37488. PubMed PMID: 27910873; PubMed Central PMCID: PMCPmc5133591. eng.
  • Setiawan VW, Wilkens LR, Lu SC, et al. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology. 2015 Jan;148(1):118–125. quiz e15. PubMed PMID: 25305507; PubMed Central PMCID: PMCPmc4274222. eng.
  • Aleksandrova K, Bamia C, Drogan D, et al. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European prospective investigation into cancer and nutrition. Am J Clin Nutr. 2015 Dec;102(6):1498–1508. PubMed PMID: 26561631; PubMed Central PMCID: PMCPmc4658462. eng.
  • Kennedy OJ, Roderick P, Buchanan R, et al. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open. 2017 May 9;7(5):e013739. PubMed PMID: 28490552; PubMed Central PMCID: PMCPmc5730000. eng.
  • Grosso G, Godos J, Galvano F, et al. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017 Aug 21;(37):131–156. . PubMed PMID: 28826374; eng.
  • Shim SG, Jun DW, Kim EK, et al. Caffeine attenuates liver fibrosis via defective adhesion of hepatic stellate cells in cirrhotic model. J Gastroenterol Hepatol. 2013 Dec;28(12):1877–1884. PubMed PMID: 23808892; eng.
  • Wang Z, Gu C, Wang X, et al. Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med Oncol. 2019 Oct 29;36(12):97. PubMed PMID: 31664534.
  • Seo HY, Kim MK, Lee SH, et al. Kahweol ameliorates the liver inflammation through the Inhibition of NF-κB and STAT3 activation in primary Kupffer cells and primary hepatocytes. Nutrients. 2018 Jul 4;10(7):863. PubMed PMID: 29973533; PubMed Central PMCID: PMCPmc6073512. eng.
  • Yan Y, Liu N, Hou N, et al. Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. J Nutr Biochem. 2017 Aug;46:68–73. PubMed PMID: 28458139; eng.
  • Iwamoto H, Izumi K. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells. The Prostate. PubMed PMID: 30569541. Apr 2019;79(5):468–479.
  • Pounis G, Tabolacci C, Costanzo S, et al. Reduction by coffee consumption of prostate cancer risk: evidence from the Moli-sani cohort and cellular models. Int J Cancer. 2017 Jul 1;141(1):72–82. PubMed PMID: 28436066.
  • Chen X, Zhao Y, Tao Z, et al. Coffee consumption is associated with a lower risk of prostate cancer: a meta-analysis. 2020.
  • Xia J, Chen J, Xue JX, et al. An up-to-date meta-analysis of coffee consumption and risk of prostate cancer. Urol J. 2017 Aug 29;14(5):4079–4088. PubMed PMID: 28853102; eng
  • Wang A, Wang S, Zhu C, et al. Coffee and cancer risk: A meta-analysis of prospective observational studies. Sci Rep. 2016 Sep 26;(6):33711. PubMed PMID: 27665923; PubMed Central PMCID: PMCPmc5036059. eng.
  • Sen A, Papadimitriou N, Lagiou P, et al. Coffee and tea consumption and risk of prostate cancer in the European prospective investigation into cancer and nutrition. Int J Cancer. 2019 Jan 15;144(2):240–250. PubMed PMID: 29943826.
  • Gregg JR, Lopez DS, Reichard C, et al. Coffee, caffeine metabolism genotype and disease progression in patients with localized prostate cancer managed with active surveillance. J Urol. 2019 Feb;201(2):308–314. PubMed PMID: 30179617; eng.
  • Taylor AE, Martin RM, Geybels MS, et al. Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. Int J Cancer. 2017 Jan 15;140(2):322–328. PubMed PMID: 27741566; PubMed Central PMCID: PMCPmc5132137. eng.
  • Gebre-Medhin M, Kindblom LG, Wennbo H, et al. Growth hormone receptor is expressed in human breast cancer. Am J Pathol. 2001 Apr;158(4):1217–1222. PubMed PMID: 11290538; PubMed Central PMCID: PMCPmc1891910. eng.
  • Fagherazzi G, Touillaud MS, Boutron-Ruault MC, et al. No association between coffee, tea or caffeine consumption and breast cancer risk in a prospective cohort study. Public Health Nutr. 2011 Jul;14(7):1315–1320. PubMed PMID: 21466740; eng.
  • Ganmaa D, Willett WC, Li TY, et al. Coffee, tea, caffeine and risk of breast cancer: a 22-year follow-up. Int J Cancer. 2008 May 1;122(9):2071–2076. PubMed PMID: 18183588; PubMed Central PMCID: PMCPmc4186696. eng.
  • Lafranconi A, Micek A, Galvano F, et al. Coffee decreases the risk of endometrial cancer: a dose-response meta-analysis of prospective cohort studies. Nutrients. 2017 Nov 9;9(11):1223. PubMed PMID: 29120352.
  • Sánchez-Quesada C, Romanos-Nanclares A, Navarro AM, et al. Coffee consumption and breast cancer risk in the SUN project. Eur J Nutr. 2020 Jan 18; DOI:10.1007/s00394-020-02180-w. [ PubMed PMID: 31955220].
  • Lee PMY, Chan WC, Kwok CC, et al. Associations between coffee products and breast cancer risk: a case-control study in Hong Kong Chinese women. Sci Rep. 2019 Sep 3;9(1):12684. PubMed PMID: 31481730; PubMed Central PMCID: PMCPmc6722060. eng.
  • Rosendahl AH, Perks CM, Zeng L, et al. Caffeine and Caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin Cancer Res off J Am Assoc Cancer Res. 2015 Apr 15;21(8):1877–1887. PubMed PMID: 25691730; eng.
  • Cárdenas C, Quesada AR, Medina MA. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PloS One. 2011;6(8):e23407. PubMed PMID: 21858104; PubMed Central PMCID: PMCPmc3153489. eng
  • Shashni B, Sharma K, Singh R, et al. Coffee component hydroxyl hydroquinone (HHQ) as a putative ligand for PPAR gamma and implications in breast cancer. BMC Genomics. 2013;14(Suppl 5 (Suppl5)):S6. . PubMed PMID: 24564733; PubMed Central PMCID: PMCPmc3852186. eng
  • Njoku K, Abiola J, Russell J, et al. Endometrial cancer prevention in high-risk women. Best Pract Res Clin Obstetrics Gynaecol. 2020 May;65:66–78. PubMed PMID: 32107136; eng.
  • Giri A, Sturgeon SR, Luisi N, et al. Caffeinated coffee, decaffeinated coffee and endometrial cancer risk: a prospective cohort study among US postmenopausal women. Nutrients. 2011 Nov;3(11):937–950. PubMed PMID: 22254087; PubMed Central PMCID: PMCPmc3257719. eng.
  • Kiyama R. Estrogenic activity of coffee constituents. Nutrients. 2019 Jun 21;11(6):1401. . PubMed PMID: 31234352; PubMed Central PMCID: PMCPmc6628280. eng.
  • Arthur R, Kirsh VA, Rohan TE. Associations of coffee, tea and caffeine intake with risk of breast, endometrial and ovarian cancer among Canadian women. Cancer Epidemiol. 2018 Oct;56:75–82. PubMed PMID: 30075330; eng.
  • Zhou Q, Luo ML, Li H, et al. Coffee consumption and risk of endometrial cancer: a dose-response meta-analysis of prospective cohort studies. Sci Rep. 2015 Aug 25;(5):13410. . PubMed PMID: 26302813; PubMed Central PMCID: PMCPmc4548216. eng.
  • Lukic M, Guha N, Licaj I, et al. Coffee drinking and the risk of endometrial cancer: an updated meta-analysis of observational studies. Nutr Cancer. 2018 May-Jun;70(4):513–528. PubMed PMID: 29708405.
  • Bjørngaard JH, Nordestgaard AT, Taylor AE, et al. Heavier smoking increases coffee consumption: findings from a Mendelian randomization analysis. Int J Epidemiol. 2017 Dec 1;46(6):1958–1967. PubMed PMID: 29025033; PubMed Central PMCID: PMCPmc5837196. eng.
  • Freedman ND, Park Y, Abnet CC, et al. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012 May 17;366(20):1891–1904. PubMed PMID: 22591295; PubMed Central PMCID: PMCPmc3439152. eng.
  • Zhu J, Zheng W, Sinha R, et al. Abstract 632: associations of coffee and tea consumption with lung cancer risk: a pooled analysis of 17 cohort studies involving over 1.2 million participants. Cancer Res. 2019;79(13 Supplement):632–632.
  • Xie Y, Qin J, Nan G, et al. Coffee consumption and the risk of lung cancer: an updated meta-analysis of epidemiological studies. Eur J Clin Nutr. 2016 Feb;70(2):199–206. PubMed PMID: 26081490; eng.
  • Galarraga V, Boffetta P. Coffee drinking and risk of lung cancer-a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2016 Jun;25(6):951–957. . PubMed PMID: 27021045; eng
  • Narita S, Saito E. Coffee consumption and lung cancer risk: the Japan public health center-based prospective study. J Epidemiol. 2018 Apr 5;28(4) :207–213. PubMed PMID: 29151475.
  • Min J, Shen H, Xi W, et al. Synergistic anticancer activity of combined use of caffeic acid with Paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell Physiol Biochem. 2018;48(4):1433–1442. PubMed PMID: 30064123; eng
  • Yamagata K, Izawa Y, Onodera D, et al. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem. 2018 Apr;441(1–2):9–19. PubMed PMID: 28875417; eng.
  • Wang G, Bhoopalan V, Wang D, et al. The effect of caffeine on cisplatin-induced apoptosis of lung cancer cells. Exp Hematol Oncol. 2015;4:5. PubMed PMID: 25937999; PubMed Central PMCID: PMCPmc4417201. eng
  • Huang S, Wang LL, Xue NN, et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics. 2019;9(23):6745–6763. . PubMed PMID: 31660066; PubMed Central PMCID: PMCPmc6815948. eng
  • Antoni S, Ferlay J, Soerjomataram I, et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017 Jan;71(1):96–108. PubMed PMID: 27370177; eng.
  • Clavel J, Cordier S. Coffee consumption and bladder cancer risk. Int J Cancer. 1991 Jan 21;47(2):207–212. PubMed PMID: 1988365; eng.
  • Yu EYW, Dai Y, Wesselius A. Coffee consumption and risk of bladder cancer: a pooled analysis of 501,604 participants from 12 cohort studies in the bladder cancer epidemiology and nutritional determinants (BLEND) international study. PubMed PMID: 31927701. Jun 2020;35(6):523–535.
  • Dai ZW, Cai KD, Li FR, et al. Association between coffee consumption and risk of bladder cancer in a meta-analysis of 16 prospective studies. Nutr Metab (Lond). 2019;16:66. PubMed PMID: 31528185.
  • Sitarz R, Skierucha M, Mielko J, et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–248. PubMed PMID: 29445300; PubMed Central PMCID: PMCPmc5808709. eng.
  • Shimamoto T, Yamamichi N, Kodashima S, et al. No association of coffee consumption with gastric ulcer, duodenal ulcer, reflux esophagitis, and non-erosive reflux disease: a cross-sectional study of 8,013 healthy subjects in Japan. PloS One. 2013;8(6):e65996. PubMed PMID: 23776588; PubMed Central PMCID: PMCPmc3680393. eng
  • Ivankovic S, Seibel J, Komitowski D, et al. Caffeine-derived N-nitroso compounds. V. Carcinogenicity of mononitrosocaffeidine and dinitrosocaffeidine in bd-ix rats. Carcinogenesis. 1998 May;19(5):933–937. PubMed PMID: 9635885.
  • Deng W, Yang H, Wang J, et al. Coffee consumption and the risk of incident gastric cancer–a meta-analysis of prospective cohort studies. Nutr Cancer. 2016;68(1):40–47. PubMed PMID: 26710312; eng
  • Li L, Gan Y, Wu C, et al. Coffee consumption and the risk of gastric cancer: a meta-analysis of prospective cohort studies. BMC Cancer. 2015 Oct 19;(15):733. PubMed PMID: 26481317; PubMed Central PMCID: PMCPmc4615385. eng.
  • Liu H, Hua Y, Zheng X, et al. Effect of coffee consumption on the risk of gastric cancer: a systematic review and meta-analysis of prospective cohort studies. PloS One. 2015;10(5):e0128501. . PubMed PMID: 26023935; PubMed Central PMCID: PMCPmc4449182. eng.
  • Juliusson G, Hough R. Leukemia. Prog Tumor Res. 2016;43:87–100. . PubMed PMID: 27595359; eng
  • Oh JH, Lee JT, Yang ES, et al. The coffee diterpene kahweol induces apoptosis in human leukemia U937 cells through down-regulation of Akt phosphorylation and activation of JNK. Apoptosis. 2009 Nov;14(11):1378–1386. PubMed PMID: 19768546; eng.
  • Safa M, Bashash D, Hamidpoor M. Induction of cell death and decreased cell proliferation in acute promyelocytic leukemia cells (NB4) by caffeine [Research]. Sci J Iran Blood Transfusion Org. 2016;12(4):331–339. eng.
  • Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46(2):101–123. . PubMed PMID: 16507475; eng
  • Parodi S, Merlo DF, Stagnaro E. Coffee and tea consumption and risk of leukaemia in an adult population: a reanalysis of the Italian multicentre case-control study. Cancer Epidemiol. 2017 Apr;47:81–87. PubMed PMID: 28153669; eng.
  • Ugai T, Matsuo K. Coffee and green tea consumption and subsequent risk of acute myeloid leukemia and myelodysplastic syndromes in Japan. Int J Cancer. 2018 Mar 15;142(6):1130–1138. PubMed PMID: 29076523.
  • Orsi L, Rudant J, Ajrouche R, et al. Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy, and childhood acute leukemia: the ESTELLE study. Cancer Causes Control. 2015 Jul;26(7):1003–1017. PubMed PMID: 25956268.
  • Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2(1):16022.
  • Ran HQ, Wang JZ, Sun CQ. Coffee consumption and pancreatic cancer risk: an update meta-analysis of cohort studies. Pak J Med Sci. 2016 Jan-Feb;32(1):253–259. PubMed PMID: 27022386; PubMed Central PMCID: PMCPmc4794517. eng.
  • Nie K, Xing Z, Huang W, et al. Coffee intake and risk of pancreatic cancer: an updated meta-analysis of prospective studies. Minerva Med. 2016 Aug;107(4):270–278. PubMed PMID: 27348445; eng.
  • Zhou CD, Kuan AS, Reeves GK, et al. Coffee and pancreatic cancer risk among never-smokers in the UK prospective million women study. Int J Cancer. 2019 Sep 15;145(6):1484–1492. PubMed PMID: 30426487; PubMed Central PMCID: PMC6767387.
  • Lima CS, Spindola DG, Bechara A, et al. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacothe. 2017 Aug;92:1045–1054. PubMed PMID: 28618649.
  • Buldak RJ, Hejmo T, Osowski M, et al. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro. Molecules. 2018 Dec 13;23(12):3309. PubMed PMID: 30551667; PubMed Central PMCID: PMC6321559.
  • Burgos-Moron E, Calderon-Montano JM, Orta ML, et al. The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I- and II-DNA complexes in cells. J Agric Food Chem. 2012 Aug 1;60(30):7384–7391. PubMed PMID: 22793503.
  • Tsai CM, Yen GC, Sun FM, et al. Assessment of the anti-invasion potential and mechanism of select cinnamic acid derivatives on human lung adenocarcinoma cells. Mol Pharm. 2013 May 6;10(5):1890–1900. PubMed PMID: 23560439.
  • Park JJ, Hwang SJ, Park JH, et al. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1alpha/AKT pathway. Cell Oncol. 2015 Apr;38(2):111–118. PubMed PMID: 25561311.
  • Brautigan DL, Gielata M, Heo J, et al. Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2018 Oct 28;505(2):612–617. PubMed PMID: 30278886.
  • Iwai K, Kishimoto N, Kakino Y, et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem. 2004 Jul 28;52(15):4893–4898. PubMed PMID: 15264931.
  • Nawrot P, Jordan S, Eastwood J, et al. Effects of caffeine on human health. Food Addit Contam. 2003 Jan;20(1):1–30. PubMed PMID: 12519715; eng.
  • Derossi A, Ricci I. How grinding level and brewing method (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. PubMed PMID: 29230816. Jun 2018;98(8):3198–3207.
  • Van’t Hoff W. Caffeine in pregnancy. Lancet. 1982 May 1;1(8279):1020. . PubMed PMID: 6122833; eng.
  • Committee ES, More S, Bampidis V, et al. Genotoxicity assessment of chemical mixtures. Efsa J. 2019;17(1):e05519.
  • Fimognari C, Ferruzzi L, Turrini E, et al. Metabolic and toxicological considerations of botanicals in anticancer therapy. Expert Opin Drug Metab Toxicol. 2012 Jul;8(7):819–832. PubMed PMID: 22540949; eng.
  • Nehlig A, Debry G. Potential genotoxic, mutagenic and antimutagenic effects of coffee: a review. Mutat Res. 1994 Apr;317(2):145–162. . PubMed PMID: 7511793; eng
  • Loomis D, Guyton KZ, Grosse Y, et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 2016 Jul;17(7):877–878. PubMed PMID: 27318851; eng.
  • Wang Q, Chen X, Ren Y, et al. Toxicokinetics and internal exposure of acrylamide: new insight into comprehensively profiling mercapturic acid metabolites as short-term biomarkers in rats and Chinese adolescents. Arch Toxicol. 2017 May;91(5):2107–2118. PubMed PMID: 27738744.
  • Chain E. Scientific Opinion on acrylamide in food. Efsa J. 2015;13(6):4104.
  • Hogervorst JGF, van den Brandt PA, Godschalk RWL, et al. Interactions between dietary acrylamide intake and genes for ovarian cancer risk. Eur J Epidemiol. 2017 May;32(5):431–441. PubMed PMID: 28391539; PubMed Central PMCID: PMC5506210.
  • Je Y. Dietary acrylamide intake and risk of endometrial cancer in prospective cohort studies. Arch Gynecol Obstet. 2015 Jun;291(6):1395–1401. . PubMed PMID: 25516180
  • Bertuzzi T, Martinelli E, Mulazzi A, et al. Acrylamide determination during an industrial roasting process of coffee and the influence of asparagine and low molecular weight sugars. Food Chem. 2020 Jan 15;(303):125372. . PubMed PMID: 31446360.
  • Pugajeva I, Jaunbergs J, Bartkevics V. Development of a sensitive method for the determination of acrylamide in coffee using high-performance liquid chromatography coupled to a hybrid quadrupole Orbitrap mass spectrometer. Food Addit Contam Part A, Chem Anal Control Exposure Risk Assess. 2015;32(2):170–179. PubMed PMID: 25530195.
  • Esposito F, Fasano E, De Vivo A, et al. Processing effects on acrylamide content in roasted coffee production. Food Chem. 2020 Jul 30; 319:126550. PubMed PMID: 32169765.
  • Maronpot RR, Thoolen RJ, Hansen B. Two-year carcinogenicity study of acrylamide in Wistar Han rats with in utero exposure. Exp Toxicol Pathol: Official Journal of the Gesellschaft Fur Toxikologische Pathologie. 2015 Feb;672:189–195.. PubMed PMID: 25553597.
  • Eisenbrand G. Revisiting the evidence for genotoxicity of acrylamide (AA), key to risk assessment of dietary AA exposure. Arch Toxicol. 2020 Sep;94(9):2939–2950. PubMed PMID: 32494932; PubMed Central PMCID: PMC7415744.
  • Kotemori A, Ishihara J, Zha L, et al. Dietary acrylamide intake and risk of breast cancer: the Japan public health center-based prospective study. Cancer Sci. 2018 Mar;109(3):843–853. PubMed PMID: 29288560; PubMed Central PMCID: PMC5834785.
  • Kotemori A, Ishihara J, Zha L, et al. Dietary acrylamide intake and the risk of endometrial or ovarian cancers in Japanese women. Cancer Sci. 2018 Oct;109(10):3316–3325. PubMed PMID: 30063274; PubMed Central PMCID: PMC6172050.
  • Park SY, Freedman ND, Haiman CA, et al. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann Intern Med. 2017 Aug 15;167(4):228–235. PubMed PMID: 28693036; eng.
  • Reyes CM, Cornelis MC. Caffeine in the diet: country-level consumption and guidelines. Nutrients. 2018 Nov 15;10(11):1772. . PubMed PMID: 30445721; PubMed Central PMCID: PMCPmc6266969. eng.
  • Guertin KA, Loftfield E, Boca SM, et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr. 2015 May;101(5):1000–1011. PubMed PMID: 25762808; PubMed Central PMCID: PMCPmc4409687. eng.
  • Jaquet M, Rochat I, Moulin J, et al. Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol. 2009 Mar 31;130(2):117–121. PubMed PMID: 19217682; eng.
  • Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol. 2015 Oct 7;21(37):10609–10620. PubMed PMID: 26457021; PubMed Central PMCID: PMCPmc4588083. eng.
  • Campos-Vega R, Oomah BD, Loarca-Piña G, et al. Common beans and their non-digestible fraction: cancer inhibitory activity-an overview. Foods. 2013 Aug 2;2;(3):374–392. PubMed PMID: 28239123; PubMed Central PMCID: PMCPmc5302293. eng. DOI:10.3390/foods2030374.
  • López-Barrera DM, Vázquez-Sánchez K, Loarca-Piña MG, et al. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. 2016 Dec 1;(212):282–290. PubMed PMID: 27374534; eng.
  • Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009 Aug 12;57(15):6485–6501. PubMed PMID: 19580283; eng.
  • Russell W, Duthie G. Plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc. 2011 Aug;70(3):389–396. . PubMed PMID: 21781364; eng.
  • Cowan TE, Palmnäs MS, Yang J, et al. Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem. 2014 Apr;25(4):489–495. PubMed PMID: 24629912; eng.
  • Moco S, Martin FP, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012 Oct 5;11(10):4781–4790. PubMed PMID: 22905879; eng.
  • Pérez-Burillo S, Rajakaruna S, Pastoriza S, et al. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem. 2020 Jun 30;(316):126309. . PubMed PMID: 32059165; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.