317
Views
0
CrossRef citations to date
0
Altmetric
Review

Polymorphisms of genes related to phase-I metabolic enzymes affecting the clinical efficacy and safety of clopidogrel treatment

ORCID Icon &
Pages 685-695 | Received 16 Dec 2020, Accepted 29 Apr 2021, Published online: 15 May 2021

References

  • Damman P, Woudstra P, Kuijt WJ, et al. P2Y12 platelet inhibition in clinical practice. J Thromb Thrombolysis. 2012;33(2):143–153.
  • Scott SA, Owusu Obeng A, Hulot JS. Antiplatelet drug interactions with proton pump inhibitors. Expert Opin Drug Metab Toxicol. 2014;10(2):175–189.
  • Showkathali R, Natarajan A. Antiplatelet and antithrombin strategies in acute coronary syndrome: state-of-the-art review. Curr Cardiol Rev. 2012;8(3):239–249.
  • Kheiri B, Osman M, Abdalla A, et al. Clopidogrel and aspirin after ischemic stroke or transient ischemic attack: an updated systematic review and meta-analysis of randomized clinical trials. J Thromb Thrombolysis. 2019;47(2):233–247.
  • Whayne TF. A review of the role of anticoagulation in the treatment of peripheral arterial disease. Int J Angiol. 2012;21(4):187–194.
  • Lovrencic-Huzjan A, Rundek T, Katsnelson M. Recommendations for management of patients with carotid stenosis. Stroke Res Treat. 2012;2012:175869.
  • National Center for Biotechnology Information (2021). PubChem compound summary for CID 60606, Clopidogrel. cited 2021 Apr 21 https://pubchem.ncbi.nlm.nih.gov/compound/Clopidogrel.
  • Zhang H, Lauver DA, Lucchesi BR, et al., Flaten, Hanna K et al. “CYP2C19 drug-drug and drug-gene interactions in ED patients.” The American journal of emergency medicine vol. 34,2 (2016): 245-9. Formation, reactivity, and antiplatelet activity of mixed disulfide conjugates of clopidogrel. Mol Pharmacol. 2013;83(4):848–856.
  • Ancrenaz V, Desmeules J, James R, et al. The paraoxonase-1 pathway is not a major bioactivation pathway of clopidogrel in vitro. Br J Pharmacol. 2012;166(8):2362–2370.
  • Zhang YJ, Li MP, Tang J, et al. Pharmacokinetic and Pharmacodynamic responses to Clopidogrel: evidences and Perspectives. Int J Environ Res Public Health. 2017;14(3):301.
  • Varenhorst C, James S, Erlinge D, et al. Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamic responses to clopidogrel but not prasugrel in aspirin-treated patients with coronary artery disease. Eur Heart J. 2009;30(14):1744–1752.
  • Murayama N, Imai N, Nakane T, et al. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol. 2007;73(12):2020–2026.
  • Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001;52(4):349–355.
  • Strawn JR, Poweleit EA, Ramsey LB. CYP2C19-Guided Escitalopram and Sertraline Dosing in Pediatric Patients: a pharmacokinetic modeling study. J Child Adolesc Psychopharmacol. 2019;29(5):340–347.
  • De Vos A, Van Der Weide J, Loovers HM. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J. 2011;11(5):359–367.
  • Lee SJ. Clinical application of CYP2C19 Pharmacogenetics toward more personalized medicine. Front Genet. 2013;3:318.
  • Liu J, Nie X-Y, Zhang Y, et al. CYP2C19*2 and other allelic variants affecting platelet response to clopidogrel tested by thrombelastography in patients with acute coronary syndrome. Chin Med J (Engl). 2015;128(16):2183–2188.
  • Giusti B, Gori AM, Marcucci R, et al. Determinants to optimize response to clopidogrel in acute coronary syndrome. Pharmgenomics Pers Med. 2010;3:33–50.
  • Scott SA, Sangkuhl K, Shuldiner AR, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics. 2012;22(2):159–165.
  • Al-Jenoobi FI, Alkharfy KM, Alghamdi AM, et al. CYP2C19 genetic polymorphism in Saudi Arabians. Basic Clin Pharmacol Toxicol. 2013;112(1):50–54.
  • Hendrychová T, Anzenbacherová E, Hudeček J, et al. Flexibility of human cytochrome P450 enzymes: molecular dynamics and spectroscopy reveal important function-related variations. Biochim Biophys Acta. 2011;1814(1):58–68.
  • Tabari RG, Marjani A, Ataby OA, et al. Genetic Polymorphism of Cytochrome p450 (2C19) Enzyme in Iranian Turkman Ethnic Group. Oman Med J. 2013;28(4):237–244.
  • Alhazzani AA, Munisamy M, Karunakaran G, et al. Pharmacogenetics of CYP2C19 genetic polymorphism on clopidogrel response in patients with ischemic stroke from Saudi Arabia. Neurosciences (Riyadh). 2017;22(1):31–37.
  • Kim S, Yun Y-M, Chae H-J, et al. Clinical Pharmacogenetic testing and application: laboratory medicine clinical practice guidelines. Ann Lab Med. 2017;37(2):180–193.
  • Han JH, Han J, Lee Y, et al. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population. Asian J Androl. 2015;17(2):285–291.
  • Yamada S, Onda M, Kato S, et al. Genetic differences in CYP2C19 single nucleotide polymorphisms among four Asian populations. J Gastroenterol. 2001;36(10):669–672.
  • Roh HK, Dahl ML, Tybring G, et al. CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics. 1996;6(6):547–551.
  • Kim KA, Song WK, Kim KR, et al. Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. J Clin Pharm Ther. 2010;35(6):697–703.
  • Dorji PW, Tshering G, Na-Bangchang K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: a systematic review. J Clin Pharm Ther. 2019;44(4):508–524.
  • Pang YS, Wong LP, Lee TC, et al. Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects. Br J Clin Pharmacol. 2004;58(3):332–335.
  • Nasyuhana Sani Y, Sheau Chin L, Luen Hui L, et al. The CYP2C19(*)1/(*)2 Genotype does not adequately predict clopidogrel response in healthy Malaysian Volunteers. Cardiol Res Pract. 2013;2013:128795.
  • Jose R, Chandrasekaran A, Sam SS, et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol. 2005;19(1):101–105.
  • Goldstein JA, Ishizaki T, Chiba K, et al. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics. 1997;7(1):59–64.
  • Sviri S, Shpizen S, Leitersdorf E, et al. Phenotypic-genotypic analysis of CYP2C19 in the Jewish Israeli population. Clin Pharmacol Ther. 1999;65(3):275–282.
  • Aynacioglu AS, Sachse C, Bozkurt A, et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther. 1999;66(2):185–192.
  • Hamdy SI, Hiratsuka M, Narahara K, et al. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol. 2002;53(6):596–603.
  • Persson I, Aklillu E, Rodrigues F, et al. S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics. 1996;6(6):521–526.
  • Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003;59(4):303–312.
  • Allabi AC, Gala JL, Desager JP, et al. Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations. Br J Clin Pharmacol. 2003;56(6):653–657.
  • Scordo MG, Caputi AP, D’Arrigo C, et al. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res. 2004;50(2):195–200.
  • Ganoci L, Božina T, Mirošević Skvrce N, et al. Genetic polymorphisms of cytochrome P450 enzymes: CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 in the Croatian population. Drug Metab Pers Ther. 2017;32(1):11–21.
  • Bathum L, Andersen-Ranberg K, Boldsen J, et al. Genotypes for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevitY. Role of CYP2D6 and CYP2C19 in longevity. Eur J Clin Pharmacol. 1998;54(5):427–430.
  • Santos PC, Soares RA, Santos DB, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet. 2011;12(1):13.
  • Bravo-Villalta HV, Yamamoto K, Nakamura K, et al. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study. Eur J Clin Pharmacol. 2005;61(3):179–184.
  • Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–362.
  • Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–857.
  • Harmsze A, Van Werkum JW, Bouman HJ, et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genomics. 2010;20(1):18–25.
  • Gong IY, Crown N, Suen CM, et al. Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response. Eur Heart J. 2012;33(22):2856–2464a.
  • Simon T, Bhatt DL, Bergougnan L, et al. Genetic polymorphisms and the impact of a higher clopidogrel dose regimen on active metabolite exposure and antiplatelet response in healthy subjects. Clin Pharmacol Ther. 2011;90(2):287–295.
  • Sibbing D, Gebhard D, Koch W, et al. Isolated and interactive impact of common CYP2C19 genetic variants on the antiplatelet effect of chronic clopidogrel therapy. J Thromb Haemost. 2010;8(8):1685–1693.
  • Kelly RP, Close SL, Farid NA, et al. Pharmacokinetics and pharmacodynamics following maintenance doses of prasugrel and clopidogrel in Chinese carriers of CYP2C19 variants. Br J Clin Pharmacol. 2012;73(1):93–105.
  • Collet JP, Hulot JS, Anzaha G, et al., CLOVIS-2 Investigators. High doses of clopidogrel to overcome genetic resistance: the randomized crossover CLOVIS-2 (Clopidogrel and Response Variability Investigation Study 2). JACC Cardiovasc Interv. 2011;4(4):392–402.
  • Jinnai T, Horiuchi H, Makiyama T, et al. Impact of CYP2C19 polymorphisms on the antiplatelet effect of clopidogrel in an actual clinical setting in Japan. Circ J. 2009;73(8):1498–1503.
  • Hochholzer W, Trenk D, Fromm MF, et al. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol. 2010;55(22):2427–2434.
  • Jeong YH, Kim IS, Park Y, et al. Carriage of cytochrome 2C19 polymorphism is associated with risk of high post-treatment platelet reactivity on high maintenance-dose clopidogrel of 150 mg/day: results of the ACCEL-DOUBLE (accelerated platelet inhibition by a double dose of clopidogrel according to gene Polymorphism) study. JACC Cardiovasc Interv. 2010;3(7):731–741.
  • Kang MK, Jeong YH, Yoon SE, et al. Pre-procedural platelet reactivity after clopidogrel loading in korean patients undergoing scheduled percutaneous coronary intervention. J Atheroscler Thromb. 2010;17(11):1122–1131.
  • Bouman HJ, Harmsze AM, Van Werkum JW, et al. Variability in on-treatment platelet reactivity explained by CYP2C19*2 genotype is modest in clopidogrel pretreated patients undergoing coronary stenting. Heart. 2011;97(15):1239–1244.
  • Yamamoto K, Hokimoto S, Chitose T, et al. Impact of CYP2C19 polymorphism on residual platelet reactivity in patients with coronary heart disease during antiplatelet therapy. J Cardiol. 2011;57(2):194–201.
  • Kim IS, Jeong YH, Park Y, et al. Interaction analysis between genetic polymorphisms and pharmacodynamic effect in patients treated with adjunctive cilostazol to dual antiplatelet therapy: results of the ACCEL-TRIPLE (accelerated platelet inhibition by triple antiplatelet therapy according to gene polymorphism) study. Br J Clin Pharmacol. 2012;73(4):629–640.
  • Tang XF, Wang J, Zhang JH, et al. Effect of the CYP2C19 2 and 3 genotypes, ABCB1 C3435T and PON1 Q192R alleles on the pharmacodynamics and adverse clinical events of clopidogrel in Chinese people after percutaneous coronary intervention. Eur J Clin Pharmacol. 2013;69(5):1103–1112.
  • Wu H, Qian J, Xu J, et al. Effects of CYP2C19 variant alleles on postclopidogrel platelet reactivity and clinical outcomes in an actual clinical setting in China. Pharmacogenet Genomics. 2012;22(12):887–890.
  • Zou JJ, Xie HG, Chen SL, et al. Influence of CYP2C19 loss-of-function variants on the antiplatelet effects and cardiovascular events in clopidogrel-treated Chinese patients undergoing percutaneous coronary intervention. Eur J Clin Pharmacol. 2013;69(4):771–777.
  • Simon T, Verstuyft C, Mary-Krause M, et al., French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI) Investigators.Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–375 .
  • Li Y, Tang HL, Hu YF, et al. The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost. 2012;10(2):199–206.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141.
  • Pan ST, Xue D, Li ZL, et al. Computational Identification of the Paralogs and Orthologs of human Cytochrome P450 Superfamily and the Implication in drug discovery. Int J Mol Sci. 2016;17(7):1020.
  • Hirota T, Ieiri I, Takane H, et al. Allelic expression imbalance of the human CYP3A4 gene and individual phenotypic status. Hum Mol Genet. 2004 December 1;13(23):2959–2969.
  • Zhou XY, Hu XX, Wang CC, et al. Enzymatic activities of CYP3A4 Allelic Variants on Quinine 3-Hydroxylation In Vitro. Front Pharmacol. 2019;10:591.
  • Okubo M, Murayama N, Shimizu M, et al. The CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci. 2013;38(3):349–354.
  • Hamzeiy H, Vahdati-Mashhadian N, Edwards HJ, et al. Mutation analysis of the human CYP3A4 gene 5ʹ regulatory region: population screening using non-radioactive SSCP. Mutat Res. 2002;500(1–2):103–110.
  • Yang W, Zhao D, Han S, et al. CYP3A4*1G regulates CYP3A4 intron 10 enhancer and promoter activity in an allelic-dependent manner. Int J Clin Pharmacol Ther. 2015;53(8):647–657.
  • Klein K, Zanger UM. Pharmacogenomics of Cytochrome P450 3A4: recent Progress Toward the “Missing Heritability” Problem. Front Genet. 2013 Feb 25;4(12). 10.3389/fgene.2013.00012.
  • Rui LIU, Zhou Z-Y, Chen Y-B, et al. Associations of CYP3A4, NR1I2, CYP2C19 and P2RY12 polymorphisms with clopidogrel resistance in Chinese patients with ischemic stroke. Acta Pharmacol Sin. 2016;37(7):882–888.
  • Yi X, Lin J, Wang Y, et al. Association of Cytochrome P450 Genetic variants with Clopidogrel resistance and outcomes in acute ischemic stroke. J Atheroscler Thromb. 2016;23(10):1188–1200.
  • Danielak D, Karaźniewicz-Łada M, Wiśniewska K, et al. Impact of CYP3A4*1G Allele on Clinical Pharmacokinetics and Pharmacodynamics of Clopidogrel. Eur J Drug Metab Pharmacokinet. 2017;42(1):99–107.
  • Frére C, Cuisset T, Gaborit B, et al. The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-ST acute coronary syndrome. J Thromb Haemost. 2009;7(8):1409–1411.
  • Geisler T, Schaeffeler E, Dippon J, et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics. 2008;9(9):1251–1259.
  • Holmberg MT, Tornio A, Paile-Hyvärinen M, et al. CYP3A4*22 impairs the elimination of Ticagrelor, but has no significant effect on the bioactivation of Clopidogrel or Prasugrel. Clin Pharmacol Ther. 2019;105(2):448–457.
  • Hakkola J, Hukkanen J, Turpeinen M, et al. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol. 2020;94(11):3671–3722.
  • Niedrig DF, Rahmany A, Heib K, et al. Clinical relevance of a 16-Gene pharmacogenetic panel test for medication management in a Cohort of 135 patients. Preprints 2021, 2021040509
  • Liu J, Chen H, Wang SH, et al. Functional characterization of the defective CYP2C9 variant CYP2C9*18. Pharmacol Res Perspect. 2021;9(1):e00718.
  • Sagreiya H, Berube C, Wen A, et al. Extending and evaluating a warfarin dosing algorithm that includes CYP4F2 and pooled rare variants of CYP2C9. Pharmacogenet Genomics. 2010;20(7):407–413.
  • Hong X, Zhang S, Mao G, et al. CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. Eur J Clin Pharmacol. 2005;61(9):627–634.
  • Jin T, Xun X, Du S, et al. Genetic polymorphisms analysis of drug-metabolizing enzyme CYP2C9 in the Uyghur population. Xenobiotica. 2016;46(8):709–714.
  • Takahashi H, Wilkinson GR, Caraco Y, et al. Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients. Clin Pharmacol Ther. 2003;73(3):253–263.
  • Ota T, Kamada Y, Hayashida M, et al. Combination analysis in genetic polymorphisms of drug-metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Int J Med Sci. 2015;12(1):78–82.
  • Yoon YR, Shon JH, Kim MK, et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol. 2001;51(3):277–280.
  • Lee HW, Lim MS, Lee J, et al. Frequency of CYP2C9 variant alleles, including CYP2C9*13 in a Korean population and effect on glimepiride pharmacokinetics. J Clin Pharm Ther. 2012;37(1):105–111.
  • Kurose K, Sugiyama E, Saito Y. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet. 2012;27(1):9–54.
  • Ahmed S, Altaf N, Ejaz M, et al. Variations in the frequencies of polymorphisms in the CYP2C9 gene in six major ethnicities of Pakistan. Sci Rep. 2020;10(1):19370.
  • Mirghani RA, Chowdhary G, Elghazali G. Distribution of the major cytochrome P450 (CYP) 2C9 genetic variants in a Saudi population. Basic Clin Pharmacol Toxicol. 2011;109(2):111–114.
  • Hashemi-Soteh SM, Shahabi-Majd N, Gholizadeh AR, et al. Allele and genotype frequencies of CYP2C9 within an Iranian population (Mazandaran). Genet Test Mol Biomarkers. 2012;16(7):817–821.
  • Gra O, Mityaeva O, Berdichevets I, et al. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet Test Mol Biomarkers. 2010;14(3):329–342.
  • Serpe L, Canaparo R, Scordo MG, et al. Pharmacogenetics of drug-metabolizing enzymes in Italian populations. Drug Metab Pers Ther. 2015;30(2):107–120.
  • Pedersen RS, Verstuyft C, Becquemont L, et al. Cytochrome P4502C9 (CYP2C9) genotypes in a Nordic population in Denmark. Basic Clin Pharmacol Toxicol. 2004;94(3):151–152.
  • Dorado P, Berecz R, Norberto MJ, et al. CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur JClin Pharmacol. 2003;59(3):221–225.
  • Kudzi W, Ahorhorlu SY, Dzudzor B, et al. Genetic polymorphisms of patients on stable warfarin maintenance therapy in a Ghanaian population. BMC Res Notes. 2016;9(1):507.
  • Abu Ghosh Z, Alamia S, Shaul C, et al. Comparison of CYP2C9 activity in Ethiopian and Non-Ethiopian Jews using phenytoin as a probe. Front Pharmacol. 2020;11:566842.
  • Selim TE, Azzam HA, Ghoneim HR, et al. Pharmacogenetic Warfarin Dosing Algorithms: validity in Egyptian patients. Acta Haematol. 2018;139(4):255–262.
  • Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost. 2007;5(12):2429–2436.
  • Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016;6(5):413–425.
  • Ding Y, Li Q, Feng Q, et al. CYP2B6 genetic polymorphisms influence chronic obstructive pulmonary disease susceptibility in the Hainan population. Int J Chron Obstruct Pulmon Dis. 2019 Sep 5;14:2103–2115.
  • Zanger UM, Klein K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet. 2013 Mar;4(24):5.
  • GeorgeKassimis, Kassimis G, Davlouros P, Xanthopoulou I, et al. CYP2C19*2 and other genetic variants affecting platelet response to clopidogrel in patients undergoing percutaneous coronary intervention. Thromb Res. 2012 April;129(4):441–446.
  • Han Y, Lv HH, Liu X, et al. Influence of genetic polymorphisms on clopidogrel response and clinical outcomes in patients with acute ischemic stroke CYP2C19 genotype on clopidogrel response. CNS Neurosci Ther. 2015;21(9):692–697.
  • Park JJ, Park KW, Kang J, et al. Genetic determinants of clopidogrel responsiveness in Koreans treated with drug-eluting stents. Int J Cardiol. 2013;163(1):79–86.
  • Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999 Jun;36(6):425–438.
  • Chen Y, Liu W-H, Chen B-L, et al. Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. Ann Pharmacother. 2010 Jun;44(6):1038–1045.
  • Sutrisna E. The Impact of CYP1A2 and CYP2E1 genes polymorphism on theophylline response. J Clin Diagn Res. 2016;10(11):FE01–FE03.
  • Zhou M, Maitra SR, Wang P, et al. The potential role of transcription factor aryl hydrocarbon receptor in downregulation of hepatic cytochrome P-450 during sepsis. Int J Mol Med. 2008;21(4):423–428.
  • Ito M, Katono Y, Oda A, et al. Functional characterization of 20 allelic variants of CYP1A2. Drug Metab Pharmacokinet. 2015;30(3):247–252.
  • Thorn CF, Aklillu E, Klein TE, et al. PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics. 2012;22(1):73–77.
  • Park KW, Park JJ, Jeon K-H, et al. Enhanced clopidogrel responsiveness in smokers: smokers’ paradox is dependent on cytochrome P450 CYP1A2 status. Arterioscler Thromb Vasc Biol. 2011 Mar;31(3):665–671.
  • Cresci S, Depta JP, Lenzini PA, et al. Cytochrome p450 gene variants, race, and mortality among clopidogrel-treated patients after acute myocardial infarction. Circulation. Cardiovascular genetics. 2014;7(3):277–286.
  • https://www.accessdata.fda.gov/drugsatfda_docs/label/ 192010/020839s042lbl.pdf [cited 2021 Apr 16]. Available from:
  • Royal Dutch Pharmacists Association (KNMP). Dutch Pharmacogenetics Working Group (DPWG). Pharmacogenetic Guidelines [Internet]. Netherlands. Clopidogrel – CYP2C19. 2017. [cited 2021 Apr 16]. Available from: http://kennisbank.knmp.nl[AccessisrestrictedtoKNMPmembership]
  • Mega JL, Hochholzer W, Frelinger AL, et al. Dosing Clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011;306(20):2221–2228.
  • Zhu Y, Zhou J. In vitro biotransformation studies of 2-oxo-clopidogrel: multiple thiolactone ring-opening pathways further attenuate prodrug activation. Chem Res Toxicol. 2013 Jan 18;26(1):179–190.
  • Hagihara K, Kazui M, Kurihara A, et al. Glutaredoxin is involved in the formation of the pharmacologically active metabolite of clopidogrel from its GSH conjugate. Drug Metab Dispos. 2012 Sep;40(9):1854–1859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.