290
Views
2
CrossRef citations to date
0
Altmetric
Review

Elucidating the role of pharmacogenetics in irinotecan efficacy and adverse events in metastatic colorectal cancer patients

&
Pages 1157-1163 | Received 11 Mar 2021, Accepted 26 Aug 2021, Published online: 06 Sep 2021

References

  • Kunimoto T, Nitta K, Tanaka T, et al. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothec in, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 1987;47(22):5944–5947.
  • Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–2342.
  • Van Cutsem E, Köhne C-H, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–1417.
  • Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(31):4706–4713.
  • Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355(9209):1041–1047.
  • Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807–814.
  • Iyer L, King CD, Whitington PF, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11): role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest. 1998;101(4):847–854.
  • Santos A, Zanetta S, Cresteil T, et al. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 2000;6(5):2012–2020.
  • Li M, Seiser EL, Baldwin RM, et al. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenomics J. 2018;18(1):35–42.
  • Han J-Y, Lim H-S, Park YH, et al. Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer. 2009;63(1):115–120.
  • Mathijssen RHJ, Marsh S, Karlsson MO, et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res. 2003;9(9):3246–3253.
  • Filipski E, Berland E, Ozturk N, et al. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition. Toxicol Appl Pharmacol. 2014;274(3):471–479.
  • Iyer L, Ramírez J, Shepard DR, et al. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Cancer Chemother Pharmacol. 2002;49(4):336–341.
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–417.
  • Riera P, Salazar J, Virgili AC, et al. Relevance of CYP3A4*20, UGT1A1*37 and UGT1A1*28 variants in irinotecan-induced severe toxicity. Br J Clin Pharmacol. 2018;84(6):1389–1392.
  • Fernández Salazar JM, Remacha Sevilla A, del Río Conde E, et al. [Distribution of the A(TA)7TAA genotype associated with Gilbert syndrome in the Spanish population]. Med Clin. 2000;115(14):540–541.
  • Barbarino JM, Haidar CE, Klein TE, et al. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet Genomics. 2014;24(3):177–183.
  • Ando Y, Saka H, Ando M, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60(24):6921–6926.
  • Innocenti F, Undevia SD, Iyer L, et al. Genetic Variants in the UDP-glucuronosyltransferase 1A1Gene Predict the Risk of Severe Neutropenia of Irinotecan. J Clin Oncol. 2004;22(8):1382–1388.
  • Rouits E, Boisdron-Celle M, Dumont A, et al. Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res. 2004;10(15):5151–5159.
  • Marcuello E, Altés A, Menoyo A, et al. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer. 2004;91(4):678–682.
  • Toffoli G, Cecchin E, Corona G, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24(19):3061–3068.
  • Hoskins JM, Goldberg RM, Qu P, et al. UGT1A1*28 Genotype and Irinotecan-Induced Neutropenia: dose Matters. JNCI J Natl Cancer Inst. 2007;99(17):1290–1295.
  • Dean L. Irinotecan Therapy and UGT1A1 Genotype [Internet]. Medical Genetics Summaries. National Center for Biotechnology Information (US); 2012 [cited 2017 Jul 14].
  • Akaba K, Kimura T, Sasaki A, et al. Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene: a common missense mutation among Japanese, Koreans and Chinese. Biochem Mol Biol Int. 1998;46(1):21–26.
  • Onoue M, Terada T, Kobayashi M, et al. UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. Int J Clin Oncol. 2009;14(2):136–142.
  • Zhang X, Yin J-F, Zhang J, et al. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis. Cancer Chemother Pharmacol. 2017 Jul 1; 80(1):135–149.
  • Cecchin E, Innocenti F, D’Andrea M, et al. Predictive Role of the UGT1A1, UGT1A7, and UGT1A9 Genetic Variants and Their Haplotypes on the Outcome of Metastatic Colorectal Cancer Patients Treated With Fluorouracil, Leucovorin, and Irinotecan. J Clin Oncol. 2009;27(15):2457–2465.
  • Carlini LE, Meropol NJ, Bever J, et al. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res. 2005;11(3):1226–1236.
  • Hazama S, Mishima H, Tsunedomi R, et al. UGT1A1*6, 1A7*3, and 1A9*22 genotypes predict severe neutropenia in FOLFIRI-treated metastatic colorectal cancer in two prospective studies in Japan. Cancer Sci. 2013;104(12):1662–1669.
  • Tsunedomi R, Hazama S, Fujita Y, et al. A novel system for predicting the toxicity of irinotecan based on statistical pattern recognition with UGT1A genotypes. Int J Oncol. 2014;45(4):1381–1390.
  • Di Paolo A, Bocci G, Polillo M, et al. Pharmacokinetic and pharmacogenetic predictive markers of irinotecan activity and toxicity. Curr Drug Metab. 2011;12(10):932–943.
  • Salvador-Martín S, García-González X, García MI, et al. Clinical utility of ABCB1 genotyping for preventing toxicity in treatment with irinotecan. Pharmacol Res. 2018;136:133–139.
  • Han J-Y, Lim H-S, Yoo Y-K, et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007;110(1):138–147.
  • Teft WA, Welch S, Lenehan J, et al. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br J Cancer. 2015;112(5):857–865.
  • Glimelius B, Garmo H, Berglund A, et al. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J. 2011;11(1):61–71.
  • Innocenti F, Kroetz DL, Schuetz E, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27(16):2604–2614.
  • Riera P, Artigas-Baleri A, Salazar J, et al. ABCB1 genetic variants as predictors of irinotecan-induced severe gastrointestinal toxicity in metastatic colorectal cancer patients. Front Pharmacol. 2020;11:973.
  • De Mattia E, Toffoli G, Polesel J, et al. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenet Genomics. 2013;23(10):549–557.
  • Chen S, Villeneuve L, Jonker D, et al. ABCC5 and ABCG1 polymorphisms predict irinotecan-induced severe toxicity in metastatic colorectal cancer patients. Pharmacogenet Genomics. 2015;25(12):573–583.
  • Rhodes KE, Zhang W, Yang D, et al. ABCB1, SLCO1B1 and UGT1A1 gene polymorphisms are associated with toxicity in metastatic colorectal cancer patients treated with first-line irinotecan. Drug Metab Lett. 2007;1(1):23–30.
  • Chen S, Sutiman N, Zhang CZ, et al. Pharmacogenetics of irinotecan, doxorubicin and docetaxel transporters in Asian and Caucasian cancer patients: a comparative review. Drug Metab Rev. 2016;48(4):502–540.
  • Akiyama Y, Fujita KI, Ishida H, et al. Association of ABCC2 genotype with efficacy of first-line FOLFIRI in Japanese patients with advanced colorectal cancer. Drug Metab Pharmacokinet. 2012;27(3):325–335.
  • Treenert A, Areepium N, Tanasanvimon S. Effects of ABCC2 and SLCO1B1 Polymorphisms on treatment responses in Thai metastatic colorectal cancer patients treated with Irinotecan-based chemotherapy. Asian Pacific J Cancer Prev. 2018;19(10):2757–2764.
  • Di Martino MT, Arbitrio M, Leone E, et al. Single nucleotide polymorphisms of ABCC5 and ABCG1 transporter genes correlate to irinotecan-associated gastrointestinal toxicity in colorectal cancer patients: a DMET microarray profiling study. Cancer Biol Ther. 2011;12(9):780–787.
  • Huang L, Zhang T, Xie C, et al. SLCO1B1 and SLC19A1 gene variants and irinotecan-induced rapid response and survival: a prospective multicenter pharmacogenetics study of metastatic colorectal cancer. PLoS One. 2013;8(10):e77223.
  • Mathijssen RHJ, de Jong FA, Rhn VS, et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst. 2004;96(21):1585–1592.
  • Kehrer DFS, Mathijssen RHJ, Verweij J, et al. Modulation of irinotecan metabolism by ketoconazole. J Clin Oncol. 2002;20(14):3122–3129.
  • Makihara K, Nakamura S, Miyagi K, et al. Clarithromycin co-administration does not increase irinotecan (CPT-11) toxicity in colorectal cancer patients. Cancer Chemother Pharmacol. 2017;80(3):527–533.
  • Sai K, Saito Y, Fukushima-Uesaka H, et al. Impact of CYP3A4 haplotypes on irinotecan pharmacokinetics in Japanese cancer patients. Cancer Chemother Pharmacol. 2008;62(3):529–537.
  • De Mattia E, Polesel J, Roncato R, et al. Germline polymorphisms in the nuclear receptors pxr and vdr as novel prognostic markers in metastatic colorectal cancer patients treated with folfiri. Front Oncol. 2019;9:1312.
  • De Mattia E, Cecchin E, Montico M, et al. Association of STAT-3 rs1053004 and VDR rs11574077 With FOLFIRI-related gastrointestinal toxicity in metastatic colorectal cancer patients. Front Pharmacol. 2018;9:367.
  • Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14(2):120–129.
  • Han FF, Guo CL, Yu D, et al. Associations between UGT1A1*6 or UGT1A1*6/*28 polymorphisms and irinotecan-induced neutropenia in Asian cancer patients. Cancer Chemother Pharmacol. 2014;73(4):779–788.
  • Yang Y, Zhou M, Hu M, et al. UGT1A1*6 and UGT1A1*28 polymorphisms are correlated with irinotecan-induced toxicity: a meta-analysis. Asia Pac J Clin Oncol. 2018;14(5):e479–89.
  • Toffoli G, Cecchin E, Gasparini G, et al., Genotype-driven phase i study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 28(5): 866–871. 2010.
  • Marcuello E, Páez D, Paré L, et al., A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer. 105(1): 53–57. 2011.
  • Toffoli G, Sharma MR, Marangon E, et al. Genotype-guided dosing study of folfiri plus bevacizumab in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23(4):918–924.
  • Páez D, Tobeña M, Fernández-Plana J, et al., Pharmacogenetic clinical randomised phase II trial to evaluate the efficacy and safety of FOLFIRI with high-dose irinotecan (HD-FOLFIRI) in metastatic colorectal cancer patients according to their UGT1A 1 genotype. Br J Cancer. 120(2): 190–195. 2019.
  • Tsai HL, Huang CW, Lin YW, et al. Determination of the UGT1A1 polymorphism as guidance for irinotecan dose escalation in metastatic colorectal cancer treated with first-line bevacizumab and FOLFIRI (PURE FIST). Eur J Cancer. 2020;138:19–29.
  • Kim KP, Hong YS, Lee JL, et al., A phase i study of UGT1A1 *28/*6 genotype-directed dosing of irinotecan (CPT-11) in Korean patients with metastatic colorectal cancer receiving FOLFIRI. Oncol. 88(3): 164–172. 2015.
  • Fujii H, Yamada Y, Watanabe D, et al. Dose adjustment of irinotecan based on UGT1A1 polymorphisms in patients with colorectal cancer. Cancer Chemother Pharmacol. 2019;83(1):123–129.
  • Irinotecan EFG drug label. Agencia Española de Medicamentos y productos sanitarios [ Accession date: 05/17/2021].
  • Irinotecan (CAMPTOSAR) drug label. Food and Drug Administration. [ Accession date: 01/17/2021].
  • Health Canada/Santé Canada. Product Monograph Camptosar. 2019. [ Accession date: 02/25/2021].
  • Pharmaceuticals and Medical Devices Agency (PMDA). PMDA Label for irinotecan and UGT1A1. 2014. [ Accession date: 02/25/2021].
  • Royal Dutch Pharmacists Association (KNMP). Dutch Pharmacogenetics Working Group (DPWG). Pharmacogenetic Guidelines [Internet]. Netherlands. Irinotecan – UGT1A1.
  • M-c E-G, Boyer J-C, Thomas F, et al., UGT1A1 genotype and irinotecan therapy: general review and implementation in routine practice. Fundam Clin Pharmacol. 29(3): 219–237. 2015.
  • Roncato R, Cecchin E, Montico M, et al. Cost evaluation of irinotecan-related toxicities associated with the ugt1a1*28 patient genotype. Clin Pharmacol Ther. 2017;102(1):123–130.
  • Wei X, Cai J, Sun H, et al. Cost-effectiveness analysis of UGT1A1*6/*28 genotyping for preventing FOLFIRI-induced severe neutropenia in Chinese colorectal cancer patients. Pharmacogenomics. 2019;20(4):241–249.
  • Pichereau S, Le Louarn A, Lecomte T, et al. Cost-effectiveness of UGT1A1*28 genotyping in preventing severe neutropenia following FOLFIRI therapy in colorectal cancer. J Pharm Pharm Sci. 2010;13(4):615–625.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.