292
Views
5
CrossRef citations to date
0
Altmetric
Review

Understanding thiopurine methyltransferase polymorphisms for the targeted treatment of hematologic malignancies

, , &
Pages 1187-1198 | Received 25 Jun 2021, Accepted 26 Aug 2021, Published online: 06 Sep 2021

References

  • Lucafò M, Franca R, Selvestrel D, et al. Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opin Drug Metab Toxicol. 2018;14(12):1209–1223.
  • Szumlanski C, Otterness D, Her C, et al. Thiopurine methyltransferase pharmacogenetics: Human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 1996;15(1):17–30.
  • Lee D, Szumlanski C, Houtman J, et al. Thiopurine methyltransferase pharmacogenetics. Cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab Dispos. 1995;23(3):398.
  • Asadov C, Aliyeva G, Mustafayeva K. Thiopurine S-methyltransferase as a pharmacogenetic biomarker: Significance of testing and review of major methods. Cardiovasc Hematol Agents Med Chem. 2017;15(1):23–30.
  • Chadli Z, Kerkeni E, Hannachi I, et al. Distribution of genetic polymorphisms of genes implicated in thiopurine drugs metabolism. Ther Drug Monit. 2018;40(5):5.
  • Franca R, Rebora P, Bertorello N, et al. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. The Pharmacogenomics J. 2017;17(1):4–10.
  • Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype–genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14(7):7.
  • Oliveira E, Quental S, Alves S, et al. Do the distribution patterns of polymorphisms at the thiopurine S-methyltransferase locus in sub-Saharan populations need revision? Hints from Cabinda and Mozambique. Eur J Clin Pharmacol. 2007;63(7):703–706.
  • Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704–714.
  • Tai HL, Krynetski EY, Schuetz EG, et al. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A. 1997;94(12):6444–6449.
  • de la Moureyre CS-V, Debuysère H, Fazio F, et al. Characterization of a variable number tandem repeat region in the thiopurine S-methyltransferase gene promoter. Pharmacogenetics. 1999;9:2.
  • Zukic B, Radmilovic M, Stojiljkovic M, et al. Functional analysis of the role of the TPMT gene promoter VNTR polymorphism in TPMT gene transcription. Pharmacogenomics. 2010;11(4):547–557.
  • Urbančič D, Šmid A, Stocco G, et al. Novel motif of variable number of tandem repeats in TPMT promoter region and evolutionary association of variable number of tandem repeats with TPMT*3 alleles. Pharmacogenomics. 2018;19(17):1311–1322.
  • Alves S, Amorim A, Ferreira F, et al. Influence of the variable number of tandem repeats located in the promoter region of the thiopurine methyltransferase gene on enzymatic activity. Clin Pharmacol Ther. 2001;70(2):165–174.
  • Kotur N, Stankovic B, Kassela K, et al. 6-mercaptopurine influences TPMT gene transcription in a TPMT gene promoter variable number of tandem repeats-dependent manner. Pharmacogenomics. 2012;13(3):283–295.
  • Wu H, Horton JR, Battaile K, et al. Structural basis of allele variation of human thiopurine-S-methyltransferase. Proteins. 2007;67(1):198–208.
  • Peng Y, Feng Q, Wilk D, et al. Structural basis of substrate recognition in thiopurine s-methyltransferase. Biochemistry. 2008;47(23):6216–6225.
  • Hartford C, Vasquez E, Schwab M, et al. Differential effects of targeted disruption of thiopurine methyltransferase on mercaptopurine and thioguanine pharmacodynamics. Cancer Res. 2007;67(10):4965.
  • Urbančič D, Kotar A, Šmid A, et al. Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochim Biophys Acta Gen Subj. 2019;1863(1): 182–190.
  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–777.
  • Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439.
  • Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667–695.
  • Arnér ESJ. Selenoproteins—What unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res. 2010;316(8):1296–1303.
  • Deininger M, Szumlanski CL, Otterness DM, et al. Purine substrates for human thiopurine methyltransferase. Biochem Pharmacol. 1994;48(11):2135–2138.
  • Ranjard L, Nazaret S, Cournoyer B. Freshwater bacteria can methylate selenium through the thiopurine methyltransferase pathway. Appl Environ Microbiol. 2003;69(7):3784–3790.
  • Ranjard L, Prigent-Combaret C, Nazaret S, et al. Methylation of inorganic and organic selenium by the bacterial thiopurine methyltransferase. J Bacteriol. 2002;184(11):3146–3149.
  • Favre-Bonté S, Ranjard L, Champier L, et al. Distribution and genetic diversity of bacterial thiopurine methyltransferases in soils emitting dimethyl selenide. Biochimie. 2006;88(11):1573–1581.
  • Fukumoto Y, Yamada H, Matsuhashi K, et al. Production of a urinary selenium metabolite, trimethylselenonium, by thiopurine S-Methyltransferase and indolethylamine N-methyltransferase. Chem Res Toxicol. 2020;33(9):2467–2474.
  • Eklund BI, Moberg M, Bergquist J, et al. Divergent activities of human glutathione transferases in the bioactivation of azathioprine. Mol Pharmacol. 2006;70(2):747.
  • Franca R, Zudeh G, Pagarin S, et al. Pharmacogenetics of thiopurines. Cancer Drug Resist. 2019;2(2):256–270.
  • Cara C, Peña AS, Sans M, et al. Reviewing the mechanism of action of thiopurine drugs: Towards a new paradigm in clinical practice. Med Sci Monit. 2004;10(11):RA247–54.
  • Shin J-Y, Wey M, Umutesi HG, et al. Thiopurine prodrugs mediate immunosuppressive effects by interfering with rac1 protein function. J Biol Chem. 2016;291(26):13699–13714.
  • Jharap B, De Boer N, Vos R, et al. Biotransformation of 6-thioguanine in inflammatory bowel disease patients: a comparison of oral and intravenous administration of 6-thioguanine. Br J Pharmacol. 2011;163(4):722–731.
  • Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. Journal Clin Invest. 2003;111(8):1133–1145.
  • Melachuri S, Gandrud L, Bostrom B. The association between fasting hypoglycemia and methylated mercaptopurine metabolites in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014;61(6):1003–1006.
  • Karim H, Ghalali A, Lafolie P, et al. Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells. Biochem Biophys Res Commun. 2013;437(2):280–286.
  • Adam De Beaumais T, Fakhoury M, Medard Y, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol. 2011;71(4):575–584.
  • Massimino M, Stella S, Tirro E, et al. ABL1-directed inhibitors for CML: Efficacy, resistance and future perspectives. Anticancer Res. 2020;40(5):2457–2465.
  • Caudle KE, Gammal RS, Whirl-Carrillo M, et al. Evidence and resources to implement pharmacogenetic knowledge for precision medicine. Am J Health Syst Pharm. 2016;73(23):1977–1985.
  • Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 2011;89(3):387–391.
  • Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther. 2013;93(4):324–325.
  • Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5): 1095–1105.
  • Coenen M, Jong D, van Marrewijk C, et al. Identification of patients with variants in TPMT and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology. 2015;149(4):907-17.e7.
  • Yang S-K, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014;46(9):1017–1020.
  • Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–1242.
  • Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48(4):367–373.
  • Chiengthong K, Ittiwut C, Muensri S, et al. NUDT15 c.415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia. Haematologica. 2016;101(1):e24–e26.
  • Tanaka Y, Kato M, Hasegawa D, et al. Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol. 2015;171(1):109–115.
  • Liang DC, Yang CP, Liu HC, et al. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia. Pharmacogenomics J. 2016;16(6):536–539.
  • Lee YJ, Hwang EH, Park JH, et al. NUDT15 variant is the most common variant associated with thiopurine-induced early leukopenia and alopecia in Korean pediatric patients with Crohn’s disease. Eur J Gastroenterol Hepatol. 2016;28(4):4.
  • Asada A, Nishida A, Shioya M, et al. NUDT15 R139C-related thiopurine leukocytopenia is mediated by 6-thioguanine nucleotide-independent mechanism in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2016;51(1):22–29.
  • Kakuta Y, Naito T, Onodera M, et al. NUDT15 R139C causes thiopurine-induced early severe hair loss and leukopenia in Japanese patients with IBD. Pharmacogenomics J. 2016;16(3):280–285.
  • Nishii R, Moriyama T, Janke LJ, et al. Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood. 2018;131(22):2466–2474.
  • Moriyama T, Yang Y-L, Nishii R, et al. Novel variants in NUDT15 and thiopurine intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood. 2017;130(10):1209–1212.
  • Ju HY, Lee JW, Cho HW, et al. DNA-thioguanine nucleotide as a treatment marker in acute lymphoblastic leukemia patients with NUDT15 variant genotypes. PLoS One. 2021;16(1):e0245667–e0245667.
  • Bruneau JC, O’Marcaigh A, Smith OP. Pro-inflammatory and pro-coagulant properties of 6-thioguanine and 6-mercaptopurine: implications for their potential role in the development of sinusoidal obstruction syndrome. Leuk Lymphoma. 2010;51(1):164–167.
  • Vora A, Mitchell CD, Lennard L, et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet. 2006;368(9544):1339–1348.
  • Stork LC, Matloub Y, Broxson E, et al. Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the children’s oncology group CCG-1952 clinical trial. Blood. 2010;115(14):2740–2748.
  • Stoneham S, Lennard L, Coen P, et al. Veno-occlusive disease in patients receiving thiopurines during maintenance therapy for childhood acute lymphoblastic leukaemia. Br J Haematol. 2003;123(1):100–102.
  • Derijks LJJ, Gilissen LPL, De Boer NKH, et al. 6-Thioguanine-related hepatotoxicity in patients with inflammatory bowel disease: Dose or level dependent? J Hepatol. 2006;44(4):821–822.
  • Weeramange CJ, Binns CM, Chen C, et al. Inhibition of UDP-glucose dehydrogenase by 6-thiopurine and its oxidative metabolites: Possible mechanism for its interaction within the bilirubin excretion pathway and 6TP associated liver toxicity. J Pharm Biomed Anal. 2018;151:106–115.
  • Yoo YG, Na TY, Yang WK, et al. 6-Mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1α resulting in new vessel formation. Oncogene. 2007;26(26):3823–3834.
  • Pols TWH, Bonta PI, Pires NMM, et al. 6-Mercaptopurine inhibits atherosclerosis in apolipoprotein E*3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages. Arterioscler Thromb Vasc Biol. 2010;30(8):1591–1597.
  • Oancea I, Png CW, Das I, et al. A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut. 2013;62(4):594.
  • Toksvang LN, Schmidt MS, Arup S, et al. Hepatotoxicity during 6-thioguanine treatment in inflammatory bowel disease and childhood acute lymphoblastic leukaemia: a systematic review. PLoS One. 2019;14(5):e0212157–e0212157.
  • Escherich G, Richards S, Stork LC, et al. Meta-analysis of randomised trials comparing thiopurines in childhood acute lymphoblastic leukaemia. Leukemia. 2011;25(6):953–959.
  • Stanulla M, Schaeffeler E, Möricke A, et al. Hepatic sinusoidal obstruction syndrome and short-term application of 6-thioguanine in pediatric acute lymphoblastic leukemia. Leukemia. 2021. DOI:https://doi.org/10.1038/s41375-021-01203-7
  • McAtee CL, Schneller N, Brackett J, et al. Treatment-related sinusoidal obstruction syndrome in children with de novo acute lymphoblastic leukemia during intensification. Cancer Chemother Pharmacol. 2017;80(6):1261–1264.
  • Gruhn B, Brodt G, Mentzel H-J, et al. Two cases of veno-occlusive disease/sinusoidal obstruction syndrome after thioguanine treatment for acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2021;Publish Ahead of Print. DOI:https://doi.org/10.1097/MPH.0000000000002172
  • Franca R, Rebora P, Bertorello N, et al. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. Pharmacogenomics J. 2017;17(1):4–10.
  • Liu C, Yang W, Pei D, et al. Genomewide approach validates thiopurine methyltransferase activity is a monogenic pharmacogenomic trait. Clin Pharmacol Ther. 2017;101(3):373–381.
  • Tamm R, Mägi R, Tremmel R, et al. Polymorphic variation in TPMT is the principal determinant of TPMT phenotype: a meta-analysis of three genome-wide association studies. Clin Pharmacol Ther. 2017;101(5):684–695.
  • Stocco G, Yang W, Crews KR, et al. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet. 2012;21(21):4793–4804.
  • Franca R, Stocco G, Favretto D, et al. PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients. Pharmacogenomics J. 2020;20(3):415–425.
  • Smid A, Karas-Kuzelicki N, Jazbec J, et al. PACSIN2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy. Sci Rep. 2016;6(1): 30244-30244. DOI:https://doi.org/10.1038/srep30244
  • Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia. 2021;35(6):1539–1551.
  • Zimdahl Kahlin A, Helander S, Wennerstrand P, et al. Pharmacogenetic studies of thiopurine methyltransferase genotype-phenotype concordance and effect of methotrexate on thiopurine metabolism. Basic Clin Pharmacol Toxicol. 2021;128(1):52–65.
  • Liliemark J, Pettersson B, Peterson C. On the biochemical modulation of 6-mercaptopurine by methotrexate in murine WEHI-3b leukemia cells in vitro. Leuk Res. 1992;16(3):275–280.
  • Milek M, Smid A, Tamm R, et al. Post-translational stabilization of thiopurine S-methyltransferase by S-adenosyl-l-methionine reveals regulation of TPMT*1 and *3C allozymes. Biochem Pharmacol. 2012;83(7):969–976.
  • Hareedy MS, El Desoky ES, Woillard J-B, et al. Genetic variants in 6-mercaptopurine pathway as potential factors of hematological toxicity in acute lymphoblastic leukemia patients. Pharmacogenomics. 2015;16(10):1119–1134.
  • Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther. 2009;85(2):164–172.
  • Matimba A, Li F, Livshits A, et al. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. Pharmacogenomics. 2014;15(4):433–447.
  • Ban H, Andoh A, Imaeda H, et al. The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2010;45(10):1014–1021.
  • Tanaka Y, Manabe A, Fukushima H, et al. Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(4):380–384.
  • van Egmond R, Chin P, Zhang M, et al. High TPMT enzyme activity does not explain drug resistance due to preferential 6-methylmercaptopurine production in patients on thiopurine treatment. Aliment Pharmacol Ther. 2012;35(10):1181–1189.
  • Moriyama T, Yang W, Smith C, et al. Comprehensive characterization of pharmacogenetic variants in TPMT and NUDT15 in children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2021;Publish Ahead of Print. DOI:https://doi.org/10.1097/FPC.0000000000000453
  • Roberts RL, Wallace MC, Seinen ML, et al. Nonsynonymous polymorphism in guanine monophosphate synthetase is a risk factor for unfavorable thiopurine metabolite ratios in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(12):2606–2612.
  • Hindorf U, Appell ML. Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function. J Crohns Colitis. 2012;6(6):655–659.
  • Zimdahl Kahlin A, Helander S, Skoglund K, et al. Comprehensive study of thiopurine methyltransferase genotype, phenotype, and genotype-phenotype discrepancies in Sweden. Biochem Pharmacol. 2019;164:263–272.
  • Anglicheau D, Sanquer S, Loriot M-A, et al. Thiopurine methyltransferase activity: new conditions for reversed-phase high-performance liquid chromatographic assay without extraction and genotypic–phenotypic correlation. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;773(2):119–127.
  • Krynetski EY, Evans WE. Genetic polymorphism of thiopurine S-Methyltransferase: Molecular mechanisms and clinical importance. Pharmacology. 2000;61(3):136–146.
  • Wu F, Melis R, McMillin GA, et al. Retrospective data analysis of the influence of age and sex on TPMT activity and its phenotype–genotype correlation. J Appl Lab Med. 2019;3(5):827–838.
  • Gibson J, Russ TC, Clarke T-K, et al. A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS Genet. 2019;15(11):e1008104–e1008104.
  • De Boer NKH, van Bodegraven AA, de Graaf P, et al. Paradoxical elevated thiopurine S-Methyltransferase activity after pancytopenia during azathioprine therapy: potential influence of red blood cell age. Ther Drug Monit. 2008;30:3.
  • Lennard L, Chew TS, Lilleyman JS. Human thiopurine methyltransferase activity varies with red blood cell age. Br J Clin Pharmacol. 2001;52(5):539–546.
  • Rostami-Hodjegan A, Lennard L, Lilleyman JS. The accumulation of mercaptopurine metabolites in age fractionated red blood cells. Br J Clin Pharmacol. 1995;40(3):217–222.
  • Ingelman-Sundberg M, Mkrtchian S, Zhou Y, et al. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics. 2018;12(1): 26-26. DOI:https://doi.org/10.1186/s40246-018-0157-3
  • Zhou Y, Dagli Hernandez C, Lauschke VM. Population-scale predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier. Br J Cancer. 2020;123(12):1782-1789.
  • Lauschke VM, Ingelman-Sundberg M. Precision medicine and rare genetic variants. Trends Pharmacol Sci. 2016;37(2):85–86.
  • Lauschke VM, Ingelman-Sundberg M. How to consider rare genetic variants in personalized drug therapy. ClinPharmacol Ther. 2018;103(5):745–748.
  • Relling MV, Hancock ML, Rivera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S -Methyltransferase gene locus. J Natl Cancer Inst. 1999;91(23):2001–2008.
  • Erb N, Harms DO, Janka-Schaub G. Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer Chemother Pharmacol. 1998;42(4):266–272.
  • Lancaster D, Patel N, Lennard L, et al. Leucocyte versus erythrocyte thioguanine nucleotide concentrations in children taking thiopurines for acute lymphoblastic leukaemia. Cancer Chemother Pharmacology. 2002;50(1):33–36.
  • Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118(4):705–713.
  • Bhatia S, Landier W, Hageman L, et al. Systemic exposure to thiopurines and risk of relapse in children with acute lymphoblastic leukemia: a children’s oncology group study. JAMA Oncol. 2015;1(3):287–295.
  • Landier W, Hageman L, Chen Y, et al. Mercaptopurine ingestion habits, red cell thioguanine nucleotide levels, and relapse risk in children with acute lymphoblastic leukemia: a report from the children’s oncology group study AALL03N1. J Clin Oncol. 2017;35(15):1730–1736.
  • Nielsen SN, Grell K, Nersting J, et al. DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): a prospective substudy of a phase 3 trial. Lancet Oncol. 2017;18(4):515–524.
  • Larsen RH, Utke Rank C, Grell K, et al. Increments in DNA-thioguanine level during thiopurine enhanced maintenance therapy of acute lymphoblastic leukemia. Haematologica. 2021. DOI:https://doi.org/10.3324/haematol.2020.278166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.