368
Views
3
CrossRef citations to date
0
Altmetric
Review

AMPK activators for the prevention and treatment of neurodegenerative diseases

, &
Pages 1199-1210 | Received 18 Jun 2021, Accepted 06 Oct 2021, Published online: 22 Oct 2021

References

  • Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases [Review]. Front Endocrinol (Lausanne). 2018 Jul 19;9:400. doi: https://doi.org/10.3389/fendo.2018.00400. PMID: 30072954; PMCID: PMC6060268.
  • Alzheimer’s Disease International. World alzheimer report 2015: the global impact of dementia: alzheimer’s disease international, London; 2015 [cited 2020 Dec 18]. Available from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
  • United Nations. World population prospects 2019: highlights. Department of Economic and Social Affairs, Population Division. 2019 May 27.
  • Shah H, Albanese E, Duggan C, et al. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 2016;15(12):1285–1294.
  • Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75. e2.
  • Garg G, Singh S, Singh AK, et al. Antiaging effect of metformin on brain in naturally aged and accelerated senescence model of rat. Rejuvenation Res. 2017;20(3):173–182.
  • Markowicz-Piasecka M, Sikora J, Szydłowska A, et al. Metformin–a future therapy for neurodegenerative diseases. Pharm Res. 2017;34(12):2614–2627.
  • Campbell JM, Stephenson MD, De Courten B, et al., Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimers Dis. 65(4): 1225–1236. 2018.
  • Hawley SA, Fullerton MD, Ross FA, et al., The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 336(6083): 918–922. 2012.
  • Nilsson SE, Johansson B, Takkinen S, et al. Does aspirin protect against Alzheimer’s dementia? A study in a Swedish population-based sample aged≥ 80 years. Eur J Clin Pharmacol. 2003;59(4):313–319.
  • Tan M-J, Ye J-M, Turner N, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol. 2008 March 21;15(3):263–273.
  • Fuangchan A, Sonthisombat P, Seubnukarn T, et al. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol. 2011 March 24 134(2):422–428.
  • Nerurkar PV, Orias D, Soares N, et al. Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem. 2019;68:16–32.
  • Przedborski S, Vila M, Jackson-Lewis V. Series Introduction: Neurodegeneration: What is it and where are we? J Clin Invest. 2003;111(1):3–10.
  • National Institute of Environmental Health Sciences. Neurodegenerative diseases: program description 2019 [updated 2019 Sept 10; cited 2021 Jan 4]. Available from: https://www.niehs.nih.gov/research/supported/health/neurodegenerative/index.cfm
  • EU Joint Programme - Neurodegenerative Disease Research. What is neurodegenerative disease?: JPND research. 2019 [cited 2021 January 4]. Available from: https://www.neurodegenerationresearch.eu/what/
  • Portfolio N. Neurodegenerative diseases: springer nature limited. 2021 [cited 2021 Jan 4]. Available from: https://www.nature.com/subjects/neurodegenerative-diseases
  • Knopman DS, Petersen RC, editors. Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clinic Proceedings; 2014: Elsevier.
  • Knopman DS, Boeve BF, Petersen RC, editors. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clinic Proceedings; 2003: Elsevier.
  • T O’Brien J, Thomas A. Vascular dementia. Lancet. 2015;386(10004):1698–1706.
  • Petersen RC. Clinical practice. Mild Cognitive Impairment New England J Med. 2011;364(23):2227.
  • Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–308.
  • Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 2004;117(24):5721–5729.
  • Duyckaerts C, Delatour B, Potier M-C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36.
  • Chen G-F, Xu T-H, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–1235.
  • Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907–913.
  • Guillozet AL, Weintraub S, Mash DC, et al. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol. 2003;60(5):729–736.
  • Cho H, Choi JY, Hwang MS, et al. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016;87(4):375–383.
  • Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.
  • Jeon S-M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245–e245.
  • Hardie D. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obesity. 2008;32(4):S7–S12.
  • O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–355.
  • Curry DW, Stutz B, Andrews ZB, et al. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. J Parkinsons Dis. 2018;8(2):161–181.
  • Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32:15–30.
  • Ruderman NB, Xu XJ, Nelson L, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab. 2010;298:E751–E760.
  • Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocrine Metab Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2015;15(3):196–205.
  • Assefa BT, Tafere GG, Wondafrash DZ, et al. The bewildering effect of AMPK activators in alzheimer’s disease: review of the current evidence. Biomed Res Int. 2020;2020:1–18.
  • Won J-S, Im Y-B, Kim J, et al. Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem Biophys Res Commun. 2010;399(4):487–491.
  • Caberlotto L, Lauria M, Nguyen T-P, et al. The central role of AMP-kinase and energy homeostasis impairment in Alzheimer’s disease: a multifactor network analysis. PLoS One. 2013;8(11):e78919.
  • Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem. 2010;285(12):9100–9113.
  • Lu J, Wu D, Zheng Y, et al. Quercetin activates AMP‐activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol‐induced neurotoxicity. J Pathol. 2010;222(2):199–212.
  • Yang -T-T, Shih Y-S, Chen Y-W, et al. Glucose regulates amyloid β production via AMPK. J Neural Transm. 2015;122(10):1381–1390.
  • Cai Z, Li B, Li K, et al. Down-regulation of amyloid-β through AMPK activation by inhibitors of GSK-3β in SH-SY5Y and SH-SY5Y-AβPP695 cells. J Alzheimers Dis. 2012;29(1):89–98.
  • Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2018;69:351–363.
  • Chiang M-C, Cheng Y-C, Chen S-J, et al. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res. 2016;347(2):322–331.
  • Garza-Lombó C, Schroder A, Reyes-Reyes EM, et al. mTOR/AMPK signaling in the brain: cell metabolism, proteostasis and survival. Curr Opin Toxicol. 2018;8:102–110.
  • Kim J, Park Y-J, Jang Y, et al. AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells. Brain Res. 2011;1418:42–51.
  • Kim H-S, Moon S, Paik J-H, et al. Activation of the 5′-AMP-activated protein kinase in the cerebral cortex of young senescence-accelerated P8 mice and association with GSK3β-and PP2A-dependent inhibition of p-tau 396 expression. J Alzheimers Dis. 2015;46(1):249–259.
  • Julien C, Tremblay C, Émond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68(1):48–58.
  • Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Nat Acad Sci. 2010 107(50):21830–21835.
  • Pérez-Revuelta B, Hettich M, Ciociaro A, et al. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis. 2014;5(5):e1209–e1209.
  • Duka V, Lee J-H, Credle J, et al. Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. PLoS One. 2013;8(9):e75025.
  • Min S-W, Cho S-H, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010;67(6):953–966.
  • Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–1060.
  • Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med. 2011;89(7):667–676.
  • Massey AC, Zhang C, Cuervo AM. Chaperone‐mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–235.
  • Li L, Zhang X, Le W. Autophagy dysfunction in Alzheimer’s disease. Neurodegen Dis. 2010;7(4):265–271.
  • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–1721.
  • Wei Y, Zhou J, Wu J, et al. ERβ promotes Aβ degradation via the modulation of autophagy. Cell Death Dis. 2019;10(8):1–13.
  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–997.
  • Chen J-L, Luo C, Pu D, et al. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp Neurol. 2019;311:44–56.
  • Jiang T, Yu JT, Zhu XC, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre‐activation of AMPK‐dependent autophagy. Br J Pharmacol. 2014;171(13):3146–3157.
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–141.
  • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–1023.
  • Peixoto CA, de Oliveira WH, da Racho Araújo SM, et al. AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol. 2017;298:31–41.
  • Mairet-Coello G, Courchet J, Pieraut S, et al. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron. 2013;78(1):94–108.
  • Wang X, Zimmermann HR, Ma T. Therapeutic potential of AMP-activated protein kinase in Alzheimer’s disease. J Alzheimers Dis. 2019;68(1):33–38.
  • Bettcher BM, Kramer JH. Longitudinal inflammation, cognitive decline, and Alzheimer’s disease: a mini‐review. Clin Pharmacol Ther. 2014;96(4):464–469.
  • Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007;7(2):161–167.
  • Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–934.
  • Darweesh SK, Wolters FJ, Ikram MA, et al. Inflammatory markers and the risk of dementia and Alzheimer’s disease: a meta-analysis. Alzheimers Dement. 2018;14(11):1450–1459.
  • Nguyen JC, Killcross AS, Jenkins TA. Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci. 2014;8:375.
  • Nikolaev A, McLaughlin T, O’Leary DD, et al. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457(7232):981–989.
  • Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989;12(8):553–564.
  • Goodarzi MO, Bryer‐Ash M. Metformin revisited: re‐evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obesity Metab. 2005;7(6):654–665.
  • Viollet B, Guigas B, Garcia NS, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. 2012;122(6):253–270.
  • Lin HZ, Yang SQ, Chuckaree C, et al. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med. 2000;6(9):998–1003.
  • Hundal RS, Inzucchi SE. Metformin. Drugs. 2003;63(18):1879–1894.
  • Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. Bmj. 2005;330(7503):1304–1305.
  • Kasznicki J, Sliwinska A, Drzewoski J. Metformin in cancer prevention and therapy. Ann Transl Med. 2014;2:6.
  • Bugianesi E, Gentilcore E, Manini R, et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol. 2005;100(5):1082–1090.
  • Campbell JM, Bellman SM, Stephenson MD, et al. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44.
  • International AsD. About alzheimer’s and dementia. 2020.
  • Hsu -C-C, Wahlqvist ML, Lee M-S, et al. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–493.
  • Cheng C, Lin C-H, Tsai Y-W, et al. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol Ser A Biomed Sci Med Sci. 2014;69(10):1299–1305.
  • Orkaby AR, Cho K, Cormack J, et al. Metformin vs sulfonylurea use and risk of dementia in US veterans aged≥ 65 years with diabetes. Neurology. 2017;89(18):1877–1885.
  • Ng TP, Feng L, Yap KB, et al. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61–68.
  • Yokoyama H, Ogawa M, Honjo J, et al. Risk factors associated with abnormal cognition in Japanese outpatients with diabetes, hypertension or dyslipidemia. Diabetol Int. 2015;6(4):268–274.
  • Shi Q, Liu S, Fonseca VA, et al. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open. 2019;9(7):e024954.
  • Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology. 2011;60(6):910–920.
  • Imfeld P, Bodmer M, Jick SS, et al. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population‐based case–control study. J Am Geriatr Soc. 2012;60(5):916–921.
  • Moore EM, Mander AG, Ames D, et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care. 2013;36(10):2981–2987.
  • De Jager J, Kooy A, Lehert P, et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ. 2010 May 20;340:c2181. doi: https://doi.org/10.1136/bmj.c2181. PMID: 20488910; PMCID: PMC2874129.
  • Reinstatler L, Qi YP, Williamson RS, et al. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: the national health and nutrition examination survey, 1999–2006. Diabetes Care. 2012;35(2):327–333.
  • Luchsinger JA, Perez T, Chang H, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501–514.
  • Koenig AM, Mechanic-Hamilton D, Xie SX, et al. Effects of the insulin sensitizer metformin in Alzheimer’s disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord. 2017;31(2):107.
  • Lin Y, Wang K, Ma C, et al. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front Aging Neurosci. 2018;10:227.
  • Luchsinger JA, de la Torre JC. Type 2 diabetes, related conditions, in relation and dementia: an opportunity for prevention? J Alzheimers Dis. 2010;20(3):723–736.
  • Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–665.
  • Zhou G, Myers R, Li Y, et al., Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 108(8): 1167–1174. 2001.
  • Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013;56(9):1898–1906.
  • Fujita Y, Hosokawa M, Fujimoto S, et al. Metformin suppresses hepatic gluconeogenesis and lowers fasting blood glucose levels through reactive nitrogen species in mice. Diabetologia. 2010;53(7):1472–1481.
  • He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab. 2015;21(2):159–162.
  • Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120(7):2355–2369.
  • Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–1646.
  • Zhang C-S, Jiang B, Li M, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014;20(3):526–540.
  • Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(3):607–614.
  • M-y E-M, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–228.
  • Oliveira WH, Nunes AK, MER F, et al. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res. 2016;1644:149–160.
  • Barini E, Antico O, Zhao Y, et al. Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy. Mol Neurodegener. 2016;11(1):16.
  • Allard JS, Perez EJ, Fukui K, et al. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice. Behav Brain Res. 2016;301:1–9.
  • Sapkota B, Subramanian A, Priamvada G, et al. Association of APOE polymorphisms with diabetes and cardiometabolic risk factors and the role of APOE genotypes in response to anti-diabetic therapy: results from the AIDHS/SDS on a South Asian population. J Diabetes Complications. 2015 Nov-Dec;29(8):1191–1197.
  • Zhang J, Lin Y, Dai X, et al. Metformin treatment improves the spatial memory of aged mice in an apoe genotype–dependent manner. FASEB J. 2019;33(6):7748–7757.
  • Sahra IB, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 2011;71(13):4366–4372.
  • Chen SC, Brooks R, Houskeeper J, et al. Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Mol Cell Endocrinol. 2017 Jan;15(440):57–68.
  • Sena CM, Matafome P, Louro T, et al. Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol. 2011;163(2):424–437.
  • Liu NH, Zhu L, Zhang XB, et al. Metformin with propofol enhances the scavenging ability of free radicals and inhibits lipid peroxidation in mice. Eur Rev Med Pharmacol Sci. 2019 Jun;23(11):4980–4987.
  • Zheng Z, Chen H, Li J, et al. Sirtuin 1–mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes. 2012;61(1):217–228.
  • Vlot AC, Dempsey DMA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206.
  • Higgs GA, Salmon JA, Henderson B, et al. Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Nat Acad Sci. 1987;84(5):1417–1420.
  • Patrono C, Baigent C. Role of aspirin in primary prevention of cardiovascular disease. Nat Rev Cardiol. 2019;16(11):675–686.
  • Cuzick J, Otto F, Baron JA, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10(5):501–507.
  • Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9(5):259.
  • Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62(7):2164–2172.
  • Ryan J, Storey E, Murray AM, et al. Randomized placebo-controlled trial of the effects of aspirin on dementia and cognitive decline. Neurology. 2020;95(3):e320–e331.
  • Group AC. Aspirin in Alzheimer’s disease (AD2000): a randomised open-label trial. Lancet Neurol. 2008;7(1):41–49.
  • Matsumoto C, Ogawa H, Saito Y, et al. Sex difference in effects of low-dose aspirin on prevention of dementia in patients with type 2 diabetes: a long-term follow-up study of a randomized clinical trial. Diabetes Care. 2020;43(2):314–320.
  • Meyer JS, Rogers RL, McClintic K, et al. Randomized clinical trial of daily aspirin therapy in multi‐infarct dementia: a pilot study. J Am Geriatr Soc. 1989;37(6):549–555.
  • Kern S, Skoog I, Östling S, et al. Does low-dose acetylsalicylic acid prevent cognitive decline in women with high cardiovascular risk? A 5-year follow-up of a non-demented population-based cohort of Swedish elderly women. BMJ Open. 2012;2:5.
  • Chang C-W, Horng J-T, Hsu -C-C, et al. Mean daily dosage of aspirin and the risk of incident Alzheimer’s dementia in patients with type 2 diabetes mellitus: a nationwide retrospective cohort study in Taiwan. J Diabetes Res. 2016;2016:9027484. doi: https://doi.org/10.1155/2016/9027484. Epub 2016 Oct 27. PMID: 27868071; PMCID: PMC5102734.
  • Jonker C, Comijs H, Smit J. Does aspirin or other NSAIDs reduce the risk of cognitive decline in elderly persons? Results from a population-based study. Neurobiol Aging. 2003;24(4):583–588.
  • Kang JH, Grodstein F. Regular use of nonsteroidal anti-inflammatory drugs and cognitive function in aging women. Neurology. 2003;60(10):1591–1597.
  • Yang Y-H, Chiu -C-C, Teng H-W, et al. Aspirin and risk of dementia in patients with late-onset depression: a population-based cohort study. Biomed Res Int. 2020Jan 29;2020:1704879. doi: https://doi.org/10.1155/2020/1704879. PMID: 32090069; PMCID: PMC7008294.
  • Broe GA, Grayson DA, Creasey HM, et al. Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch Neurol. 2000;57(11):1586–1591.
  • Din FV, Valanciute A, Houde VP, et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142(7):1504–1515. e3.
  • Henry WS, Laszewski T, Tsang T, et al. Aspirin suppresses growth in PI3K-mutant breast cancer by activating AMPK and inhibiting mTORC1 signaling. Cancer Res. 2017;77(3):790–801.
  • O’Brien AJ, Villani LA, Broadfield LA, et al. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem J. 2015;469(2):177–187.
  • Preston S, Arnold M, Beller E, et al. Comparative analgesic and anti‐inflammatory properties of sodium salicylate and acetylsalicylic acid (aspirin) in rheumatoid arthritis. Br J Clin Pharmacol. 1989;27(5):607–611.
  • Day R, Graham G, Bieri D, et al. Concentration‐response relationships for salicylate‐induced ototoxicity in normal volunteers. Br J Clin Pharmacol. 1989;28(6):695–702.
  • Grilli M, Pizzi M, Memo M, et al. Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science. 1996;274(5291):1383–1385.
  • Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265(5174):956–959.
  • Steinberg GR, Dandapani M, Hardie DG. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol Metab. 2013;24(10):481–487.
  • Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–235.
  • Vane J, Bakhle Y, Botting R. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38(1):97–120.
  • Vane J, Botting R. The mechanism of action of aspirin. Thromb Res. 2003;110(5–6):255–258.
  • Amann R, Peskar BA. Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol. 2002;447(1):1–9.
  • Din F, Dunlop M, Stark L. Evidence for colorectal cancer cell specificity of aspirin effects on NF κ B signalling and apoptosis. Br J Cancer. 2004;91(2):381–388.
  • Grosser N, Schröder H. Aspirin protects endothelial cells from oxidant damage via the nitric oxide-cGMP pathway. Arterioscler Thromb Vasc Biol. 2003;23(8):1345–1351.
  • Jung S-B, Kim C-S, Naqvi A, et al. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res. 2010;107(7):877–887.
  • Kuhn W, Müller T, Büttner T, et al. Antioxidative properties of aspirin: dose dependence and clinical implications. Eur J Neurol. 1996 May;3(3):275–277.
  • Aubin N, Curet O, Deffois A, et al. Aspirin and salicylate protect against MPTP‐induced dopamine depletion in mice. J Neurochem. 1998;71(4):1635–1642.
  • Mohanakumar KP, Muralikrishnan D, Thomas B. Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity. Brain Res. 2000;864(2):281–290.
  • Thakur P, Nehru B. Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience. 2013;231:420–431.
  • Farina N, Llewellyn D, Isaac MGEKN, et al. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2017:1.
  • Krause D, Roupas P. Effect of vitamin intake on cognitive decline in older adults: evaluation of the evidence. J Nutr Health Aging. 2015;19(7):745–753.
  • Boothby LA, Doering PL. Vitamin C and vitamin E for Alzheimer’s disease. Ann Pharmacother. 2005;39(12):2073–2080.
  • McCleery J, Abraham RP, Denton DA, et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev. 2018;2019(11). https://doi.org/10.1002/14651858.CD011905.pub2.
  • Burckhardt M, Herke M, Wustmann T, et al. Omega‐3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016(4). https://doi.org/10.1002/14651858.CD009002.pub3.
  • Grover J, Yadav S. Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol. 2004;93(1):123–132.
  • Raman A, Lau C. Anti-diabetic properties and phytochemistry of momordica charantia L. (Cucurbitaceae) Phytomedicine. 1996;2(4):349–362.
  • Ooi CP, Yassin Z, Hamid TA. Momordica charantia for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2012Aug 15;(8):CD007845. doi: https://doi.org/10.1002/14651858.CD007845.pub3. PMID: 22895968.
  • Alam MA, Uddin R, Subhan N, et al. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids. 2015;2015:496169. doi: https://doi.org/10.1155/2015/496169. Epub 2015 Jan 12. PMID: 25650336; PMCID: PMC4306384.
  • Dandawate PR, Subramaniam D, Padhye SB, et al. Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med. 2016;14(2):81–100.
  • Nakamura S, Murakami T, Nakamura J, et al. Structures of new cucurbitane-type triterpenes and glycosides, karavilagenins and karavilosides, from the dried fruit of Momordica charantia L. in Sri Lanka. Chem Pharm Bull. 2006;54(11):1545–1550.
  • Kwatra D, Venugopal A, Standing D, et al. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance. J Pharm Sci. 2013;102(12):4444–4454.
  • Chang C-I, Tseng H-I, Liao Y-W, et al. In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24. Food Chem. 2011;125(2):521–528.
  • Farooqi AA, Khalid S, Tahir F, et al. Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways. Food Chem Toxicol. 2018;119:98–105.
  • Ali L, Khan AKA, Mamun MIR, et al. Studies on hypoglycemic effects of fruit pulp, seed, and whole plant of Momordica charantia on normal and diabetic model rats. Planta Med. 1993;59(5):408–412.
  • Day C, Cartwright T, Provost J, et al. Hypoglycaemic effect of Momordica charantia extracts. Planta Med. 1990;56(5):426–429.
  • Inayat UR, Khan RU, Khalil UR, et al. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J. 2015;14:13.
  • Cunnick JE, Sakamoto K, Chapes SK, et al. Induction of tumor cytotoxic immune cells using a protein from the bitter melon (Momordica charantia). Cell Immunol. 1990;126(2):278–289.
  • Leung L, Birtwhistle R, Kotecha J, et al. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr. 2009;102(12):1703–1708.
  • Bourinbaiar AS, Leehuang S. Potentiation of anti-HIV activity of anti-inflammatory drugs, dexamethasone and indomethacin, by MAP30, the antiviral agent from bitter melon. Biochem Biophys Res Commun. 1995;208(2):779–785.
  • Muhammad N, Steele R, Isbell TS, et al. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget. 2017;8(39):66226.
  • Yung MM, Ross FA, Hardie DG, et al. Bitter melon (Momordica charantia) extract inhibits tumorigenicity and overcomes cisplatin-resistance in ovarian cancer cells through targeting AMPK signaling cascade. Integr Cancer Ther. 2016;15(3):376–389.
  • Kwatra D, Subramaniam D, Ramamoorthy P, et al. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid Based Complement Alternat Med. 2013;2013:1–14.
  • Kaur M, Deep G, Jain AK, et al. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis. 2013;34(7):1585–1592.
  • Grossmann ME, Mizuno NK, Dammen ML, et al. Eleostearic acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev Res. 2009;2(10):879–886.
  • Joshi A, Soni P, Malviya S, et al. Memory enhancing activity of Momordica charantia by scopolamine induced amnesia in rats. IJCAP. 2017;2:11–18.
  • Huang H-J, Chen S-L, Chang Y-T, et al. Administration of Momordica charantia enhances the neuroprotection and reduces the side effects of LiCl in the treatment of Alzheimer’s disease. Nutrients. 2018;10(12):1888.
  • Kim KB, Lee S, Kang I, et al. Momordica charantia ethanol extract attenuates H2O2-induced cell death by its antioxidant and anti-apoptotic properties in human neuroblastoma SK-N-MC cells. Nutrients. 2018;10(10):1368.
  • Gong J, Sun F, Li Y, et al. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology. 2015;91:123–134.
  • Ma J, Fan H, Cai H, et al. Promotion of Momordica Charantia polysaccharides on neural stem cell proliferation by increasing SIRT1 activity after cerebral ischemia/reperfusion in rats. Brain Res Bull. 2021;170:254–263.
  • Malik ZA, Singh M, Sharma P. Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. J Ethnopharmacol. 2011;133(2):729–734.
  • Yu Y, Zhang XH, Ebersole B, et al. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci Rep. 2013;3:3142.
  • Iseli TJ, Turner N, Zeng X-Y, et al. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. PLoS One. 2013;8(4):e62309.
  • Zha Q-B, Zhang X-Y, Lin Q-R, et al. Cucurbitacin E induces autophagy via downregulating mTORC1 signaling and upregulating AMPK activity. PloS One. 2015;10(5):e0124355.
  • Chen G-C, Su H-M, Lin Y-S, et al. A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD+/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. J Nutr Biochem. 2016;33:28–35.
  • Raish M, Ahmad A, Ansari MA, et al. Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int J Biol Macromol. 2018;111:193–199.
  • Jones LD, Pangloli P, Krishnan HB, et al. BG-4, a novel bioactive peptide from Momordica charantia, inhibits lipopolysaccharide-induced inflammation in THP-1 human macrophages. Phytomedicine. 2018;42:226–232.
  • Horax R, Hettiarachchy N, Chen P. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe). J Agric Food Chem. 2010;58(7):4428–4433.
  • Kumar R, Balaji S, Sripriya R, et al. In vitro evaluation of antioxidants of fruit extract of Momordica charantia L. On Fibroblasts and Keratinocytes J Agric Food Chem. 2010;58(3):1518–1522.
  • Wu S-J, Ng L-T. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var abbreviata Ser) in Taiwan LWT-Food Sci Technol. 2008;41(2):323–330.
  • Tsai T-H, Huang W-C, Ying H-T, et al. Wild bitter melon leaf extract inhibits Porphyromonas gingivalis-induced inflammation: identification of active compounds through bioassay-guided isolation. Molecules. 2016;21(4):454.
  • Choo C, Waisundara VY, Hoon LY. Bittergourd (Momordica charantia) scavenges free radicals by enhancing the expression of superoxide dismutase in in vitro models of diabetes and cancer. CyTA-J Food. 2014;12(4):378–382.
  • Shurrab NT, Arafa E-SA. Metformin: a review of its therapeutic efficacy and adverse effects. Obes Med. 2020;17:100186.
  • Åhsberg K, Höglund P, Kim W-H, et al. Impact of aspirin, NSAIDs, warfarin, corticosteroids and SSRIs on the site and outcome of non-variceal upper and lower gastrointestinal bleeding. Scand J Gastroenterol. 2010;45(12):1404–1415.
  • Sostres C, Lanas A. Gastrointestinal effects of aspirin. Nat Clin Pract Gastroenterol Hepatol. 2011;8(7):385–394.
  • Brien J-A. Ototoxicity associated with salicylates. Drug Saf. 1993;9(2):143–148.
  • Palmer BF, Clegg DJ. Salicylate toxicity. N Engl J Med. 2020;382(26):2544–2555.
  • Wang GS, Hoyte C. Review of biguanide (Metformin) toxicity. J Intensive Care Med. 2019;34(11–12):863–876.
  • Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm. 2003;60(4):356–359.
  • Müller T, Mueller BK, Riederer P. Perspective: treatment for disease modification in chronic neurodegeneration. Cells. 2021;10(4):873.
  • Infante-Garcia C, Ramos-Rodriguez JJ, Hierro-Bujalance C, et al. Antidiabetic polypill improves central pathology and cognitive impairment in a mixed model of Alzheimer’s disease and type 2 diabetes. Mol Neurobiol. 2018;55(7):6130–6144.
  • Paseban M, Mohebbati R, Niazmand S, et al. Comparison of the neuroprotective effects of aspirin, atorvastatin, captopril and metformin in diabetes mellitus. Biomolecules. 2019 Mar 27;9:4.
  • Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. 2021 March 01.
  • Chao J, Dai Y, Verpoorte R, et al. Major achievements of evidence-based traditional Chinese medicine in treating major diseases. Biochem Pharmacol. 2017;139:94–104.
  • Pan S-Y, Litscher G, Gao S-H, et al. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med. 2014;2014:525340. doi: https://doi.org/10.1155/2014/525340. Epub 2014 Apr 27. PMID: 24872833; PMCID: PMC4020364.
  • Yuan H, Ma Q, Ye L, et al. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5)559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.