18,375
Views
17
CrossRef citations to date
0
Altmetric
Review

Antisense oligonucleotides: absorption, distribution, metabolism, and excretion

, &
Pages 1281-1292 | Received 15 Feb 2021, Accepted 08 Oct 2021, Published online: 22 Oct 2021

References

  • Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020 Jul;19(7):441–442.
  • Leavitt BR, Tabrizi SJ. Antisense oligonucleotides for neurodegeneration. Science. 2020 Mar 27;367(6485):1428–1429. • Comprehensive review on the application of antisense oligonucleotides for neurogeneration.
  • Chan JHP, Lim S, Wong WSF. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006 May-Jun;33(5–6):533–540. • Comprehensive review on pharmacologic properties of antisense oligonucleotides.
  • Mohan A, Fitzsimmons B, Zhao HT, et al. Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain. Pain. 2018;159(1):139–149.
  • Kole R, Collins FS, Erdos MR, et al. inventor methods for treating progeroid laminopathies using oligonucleotide analogues targeting human LMNA. U.S. Patent. 2017 Dec 5;9(833):468–B2.
  • Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017 Sep;15(8):132–143.
  • Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018 Jan;14(1):9–21.
  • Schoch KM, Miller TM. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron. 2017;94(6):1056–1070.
  • VITRAVENE (fomivirsen) injection. For intravitreal use. [Prescribing Information]. Carlsbad CA: Isis Pharmaceuticals, Inc; 1998.
  • MACUGEN (pegaptanib) injection. For intravitreal use. [Prescribing information]. New York NY: Eyetech Pharmaceuticals, Inc; 2004.
  • KYNAMRO (Inhibitor of apolipoprotein. B-100 synthesis) injection, for subcutaneous use. [Prescribing information]. Carslbad CA: Ionis Pharmaceuticals, Inc; 2013.
  • DEFITELIO (defibrotide sodium) injection. For intravenous use. [Prescribing information]. Palo Alto CA: Jazz Pharmaceuticals, Inc; 2016.
  • Tegsedi (inotersen) injection. For subcutaneous use. [Prescribing information]. Carlsbad CA: Ionis Pharmaceuticals, Inc; 2018.
  • Stephenson ML, Zamecnik PC. Inhibition of rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A. 1978;75(1):285–288.
  • Froehler B, Ng P, Matteucci M. Phosphoramidate analogues of DNA: synthesis and thermal stability of heteroduplexes. Nucleic Acids Res. 1988;16(11):4831–4839.
  • Stirchak EP, Summerton JE, Weller DD. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoade otigomers with carbamate internucleoside linkages. Nucleic Acids Res. 1989;17(15):6129–6141.
  • Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997 Jun;7(3):187–195.
  • Summerton J, Weller DD. Inventor uncharged morpholino-based polymers having phosphorous containing chiral intersubunit linkages. U.S. Patent 5185444A. 1993.
  • Summerton JE. Invention and early history of morpholinos: from pipe dream to practical products. Methods Mol Biol. 2017;1565:1–15.
  • Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999 Dec 10;1489(1):141–158.
  • Summerton J, Stein D, Huang SB, et al. Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev. 1997 Apr;7(2):63–70.
  • EXONDYS (eteplirsen) injection. For intravenous use [Prescribing information]. Cambridge MA: Sarepta Therapeutics, Inc; 2020.
  • VYONDYS (golodirsen) injection. For intravenous use. [Prescribing information]. Cambridge MA: Sarepta Therapeutics, Inc; 2021.
  • AMONDYS. 45 (casimersen) injection, for intravenous use [Prescribing information]. Cambridge MA: Sarepta Therapeutics, Inc; 2021.
  • VILTEPSO [vitolarsen] injection. For intravenous use [Prescribing information]. Paramus NJ: NS Pharma, Inc; 2021.
  • Amantana A, Moulton HM, Cate ML, et al. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjug Chem. 2007 Jul-Aug;18(4):1325–1331. • Comprehensive review on pharmacologic properties of PMOs.
  • Betts C, Saleh AF, Arzumanov AA, et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids. 2012 Aug 14;1:e38.
  • Gait MJ, Arzumanov AA, McClorey G, et al. Cell-penetrating peptide conjugates of steric blocking oligonucleotides as therapeutics for neuromuscular diseases from a historical perspective to current prospects of treatment. Nucleic Acid Ther. 2019 Feb;29(1):1–12.
  • Tsoumpra MK, Fukumoto S, Matsumoto T, et al. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine. 2019 Jul;45:630–645.
  • Warren TK, Whitehouse CA, Wells J, et al. Delayed time-to-treatment of an antisense morpholino oligomer is effective against lethal Marburg virus infection in cynomolgus macaques. PLoS Negl Trop Dis. 2016;10(2):e0004456.
  • Warren TK, Whitehouse CA, Wells J, et al. A single phosphorodiamidate morpholino oligomer targeting VP24 protects rhesus monkeys against lethal Ebola virus infection. mBio. 2015 Feb 10;6(1):e02344–14.
  • Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017 Mar;35(3):222–229.
  • Wojciech JS, Gerald Z. Synthesis, separation, and stereochemistry of diastereomeric oligodeoxyribonucleotides having a 5′-terminal internucleotide phosphorothioate linkage. Tetrahedron Lett. 1984;25(46):5275–5278.
  • Abeydeera ND, Egli M, Cox N, et al. Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Res. 2016;44(17):8052–8064.
  • Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000 Apr;10(2):117–121.
  • Lan W, Hu Z, Shen J, et al. Structural investigation into physiological DNA phosphorothioate modification. Sci Rep. 2016 May 12;6:25737.
  • de Smet MD, Meenken CJ, Van den horn GJ. Fomivirsen - a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul Immunol Inflamm. 1999 Dec;7(3–4):189–198.
  • Oberemok VV, Laikova KV, Repetskaya AI, et al. A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: we should continue the journey. Molecules. 2018;23(6):1302.
  • Benizri S, Gissot A, Martin A, et al. Bioconjugated oligonucleotides: recent developments and therapeutic applications. Bioconjug Chem. 2019 Feb 20;30(2):366–383. • Comprehensive review on two approaches for inhibiting specific genes using oligonucleotides—antisense DNA (ASO) and RNA interference (RNAi).
  • Freier SM. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 1997;25(22):4429–4443.
  • Lubini P, Zürcher W, Egli M. Stabilizing effects of the RNA 2ʹ-substituent: crystal structure of an oligodeoxynucleotide duplex containing 2ʹ-O-methylated adenosines. Chem Biol. 1994 Sep;1(1):39–45.
  • Yoo BH, Bochkareva E, Bochkarev A, et al. 2ʹ-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004;32(6):2008–2016.
  • Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012 Jan 20;11(2):125–140.
  • Nishina T, Numata J, Nishina K, et al. Chimeric antisense oligonucleotide conjugated to alpha-tocopherol. Mol Ther Nucleic Acids. 2015 Jan;13(4):e220.
  • Sardone V, Zhou H, Muntoni F, et al. Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules. 2017 Apr 5;22(4):563.
  • Veedu RN, Wengel J. Locked nucleic acid nucleoside triphosphates and polymerases: on the way towards evolution of LNA aptamers. Mol Biosyst. 2009 Aug;5(8):787–792.
  • Hong D, Kurzrock R, Kim Y, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015 Nov 18;7(314):314ra185.
  • Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–939.
  • Geary RS, Baker BF, Crooke ST. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (Kynamro®): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin Pharmacokinet. 2015 Feb;54(2):133–146.
  • Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018 Feb 28;46(4):1584–1600.
  • Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378(9791):595–605. •• Phase 2, dose-escalation study in ambulant patients with Duchenne muscular dystrophy aged 5-15 years with amenable deletions in DMD receiving intravenous infusions of AVI-4658.
  • Prakash TP, Mullick AE, Lee RG, et al. Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Res. 2019 Jul 9;47(12):6029–6044.
  • Zanardi TA, Korbmacher B, Boone L, et al. Safety, pharmacokinetic, and pharmacodynamic evaluation of a 2ʹ-(2-Methoxyethyl)-D-ribose antisense oligonucleotide-triantenarry N-Acetyl-galactosamine conjugate that targets the human transmembrane protease serine 6. J Pharmacol Exp Ther. 2021 Apr;377(1):51–63.
  • Yu RZ, Gunawan R, Post N, et al. Disposition and pharmacokinetics of a GalNAc3-conjugated antisense oligonucleotide targeting human lipoprotein (a) in monkeys. Nucleic Acid Ther. 2016 Dec;26(6):372–380.
  • Javanbakht H, Mueller H, Walther J, et al. Liver-targeted anti-HBV single-stranded oligonucleotides with locked nucleic acid potently reduce HBV gene expression in vivo. Mol Ther Nucleic Acids. 2018 Jun;1(11):441–454.
  • Lee SH, Castagner B, Leroux JC. Is there a future for cell-penetrating peptides in oligonucleotide delivery? Eur J Pharm Biopharm. 2013 Sep;85(1):5–11.
  • Moulton HM, Moulton JD. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta. 2010 Dec;1798(12):2296–2303.
  • Sazani P, Van Ness KP, Weller DL, et al. Repeat-dose toxicology evaluation in cynomolgus monkeys of AVI-4658, a phosphorodiamidate morpholino oligomer (PMO) drug for the treatment of Duchenne muscular dystrophy. Int J Toxicol. 2011 May;30(3):313–321. •• Toxicology evaluation in primates using AVI-4658, a phosphorodiamidate morpholino oligomer (PMO) drug designed to restore dystrophin expression.
  • Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev. 2006 Nov 15;58(11):1203–1223.
  • Geary RS, Henry SP, Grillone LR. Fomivirsen. Clin Pharm. 2002;41(4):255–260.
  • Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018 Feb 15;378(7):625–635.
  • Rigo F, Chun SJ, Norris DA, et al. Pharmacology of a central nervous system delivered 2ʹ-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther. 2014 Jul;350(1):46–55.
  • Borgonetti V, Galeotti N. Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain. Pain. 2021 May 1;162(5):1500–1510.
  • Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007 Mar 2;315(5816):1243–1249.
  • Kanazawa T, Akiyama F, Kakizaki S, et al. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013 [2013 Dec 01];34(36):9220–9226.
  • Geary RS, Khatsenko O, Bunker K, et al. Absolute bioavailability of 2ʹ-O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats. J Pharmacol Exp Ther. 2001 Mar;296(3):898–904.
  • Arora V, Knapp DC, Reddy MT, et al. Bioavailability and efficacy of antisense morpholino oligomers targeted to c-myc and cytochrome P-450 3A2 following oral administration in rats. J Pharm Sci. 2002 Apr;91(4):1009–1018.
  • Fisher J, TK H, Pescador R, et al. Study on pharmacokinetics of radioactive labelled defibrotide after oral or intravenous administration in rats. Thromb Res. 1996 Jan 1;81(1):55–63.
  • Aziz MT, Kakadiya PP, Kush SM, et al. Defibrotide: an oligonucleotide for sinusoidal obstruction syndrome. Ann Pharmacother. 2017 [2018 Feb 01];52(2):166–174.
  • Banks WA, Farr SA, Butt W, et al. Delivery across the blood-brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J Pharmacol Exp Ther. 2001 Jun;297(3):1113–1121.
  • Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016 Aug 19;44(14):6518–6548.
  • Jansson-Lofmark R, Gennemark P. Inferring half-lives at the effect site of oligonucleotide drugs. Nucleic Acid Ther. 2018 Dec;28(6):319–325.
  • Janas MM, Jiang Y, Duncan RG, et al. Exposure to siRNA-GalNAc conjugates in systems of the standard test battery for genotoxicity. Nucleic Acid Ther. 2016 Dec;26(6):363–371.
  • Janas MM, Zlatev I, Liu J, et al. Safety evaluation of 2ʹ-deoxy-2ʹ-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Res. 2019 Apr 23;47(7):3306–3320.
  • Nucleases: YW. Diversity of structure, function and mechanism. Q Rev Biophys. 2011;44(1):1–93.
  • Noseda G, Fragiacomo C, Ferrari D. Pharmacokinetics of defibrotide in healthy volunteers. Haemostasis. 1986;16:26–30.
  • Biogen. Spinraza [prescribing information] https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209531lbl.pdf; Available to cited 2021 Jul 6. Cambridge, MA2016.
  • Geary RS. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol. 2009 Apr;5(4):381–391. • Comprehensive review on pharmacologic properties of antisense oligonucleotides.
  • Shemesh CS, Yu RZ, Gaus HJ, et al. Elucidation of the biotransformation pathways of a Galnac3-conjugated antisense oligonucleotide in rats and monkeys. Mol Ther Nucleic Acids. 2016 May 10;5:e319.
  • Kazmi F, Yerino P, McCoy C, et al. An assessment of the in vitro inhibition of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and transporters by phosphodiester- or phosphorothioate-linked oligonucleotides. Drug Metab Dispos. 2018 Aug;46(8):1066–1074.
  • Geary RS, Bradley JD, Watanabe T, et al. Lack of pharmacokinetic interaction for ISIS 113715, a 2ʹ-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. Clin Pharmacokinet. 2006;45(8):789–801.
  • Li Z, Hard ML, Grundy JS, et al. Lack of clinical pharmacodynamic and pharmacokinetic drug-drug interactions between warfarin and the antisense oligonucleotide mipomersen. J Cardiovasc Pharmacol. 2014 Aug;64(2):164–171.
  • Villalona-Calero MA, Ritch P, Figueroa JA, et al. A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2004 Sep 15;10(18 Pt 1):6086–6093.
  • Yu RZ, Geary RS, Flaim JD, et al. Lack of pharmacokinetic interaction of mipomersen sodium (ISIS 301012), a 2ʹ-O-methoxyethyl modified antisense oligonucleotide targeting apolipoprotein B-100 messenger RNA, with simvastatin and ezetimibe. Clin Pharmacokinet. 2009;48(1):39–50.
  • Shemesh CS, Yu RZ, Warren MS, et al. Assessment of the drug interaction potential of unconjugated and GalNAc3-conjugated 2′-MOE-ASOs. Mol Ther Nucleic Acids. 2017 [2017 Dec 15];9:34–47.
  • Hanson G. Inventor peptide oligonucleotide conjugates. U.S. Patent 9,161,948. 2015. patent US9161948. October 20.
  • Tocchetti P, Tudone E, Marier J-F, et al. Pharmacokinetic profile of defibrotide in patients with renal impairment. Drug Des Devel Ther. 2016;10:2631–2641.
  • Yu RZ, Kim TW, Hong A, et al. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos. 2007 Mar;35(3):460–468.
  • Heald AE, Iversen PL, Saoud JB, et al. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against Ebola virus and Marburg virus: results of two single-ascending-dose studies. Antimicrob Agents Chemother. 2014 Nov;58(11):6639–6647.
  • Carver MP, Charleston JS, Shanks C, et al. Toxicological characterization of exon skipping phosphorodiamidate morpholino oligomers (PMOs) in non-human primates. J Neuromuscul Dis. 2016 Aug 30;3(3):381–393.
  • Mahmood I. Pharmacokinetic allometric scaling of oligonucleotides. Nucleic Acid Ther. 2011 Oct;21(5):315–321.
  • Yu RZ, Grundy JS, Henry SP, et al. Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2ʹ-o-(2-methoxyethyl) modifications. Mol Ther Nucleic Acids. 2015 Jan 20;4:e218.