272
Views
6
CrossRef citations to date
0
Altmetric
Review

Novel models for the prediction of drug–gene interactions

, , , , , , & show all
Pages 1293-1310 | Received 30 Jul 2021, Accepted 22 Oct 2021, Published online: 15 Nov 2021

References

  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients. JAMA. 1998;279(15):1200.
  • Shehab N, Lovegrove MC, Geller AI, et al. US emergency department visits for outpatient adverse drug events, 2013-2014. JAMA. 2016;316(20):2115.
  • Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol. 2019;12(5):407–442.
  • Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J. 2017;17(5):395–402.
  • Rahawi S, Naik H, Blake KV, et al. Knowledge and attitudes on pharmacogenetics among pediatricians. J Hum Genet. 2020;65(5):437–444.
  • Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200.
  • FDA. Drug label annotations [Internet]. [ cited 2021 Jun 18]. Available from: https://www.pharmgkb.org/fdaLabelAnnotations
  • Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet. 2019;394(10197):521–532.
  • Clark LT, Watkins L, Piña IL, et al. Increasing diversity in clinical trials: overcoming critical barriers. Curr Probl Cardiol. 2019;44(5):148–172.
  • Qato DM, Wilder J, Schumm LP, et al. Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med. 2016;176(4):473–482.
  • Burt HJ, Riedmaier AE, Harwood MD, et al. Abundance of hepatic transporters in Caucasians: a meta-analysis. Drug Metab Dispos. 2016;44(10):1550–1561.
  • Wojtyniak J, Selzer D, Schwab M, et al., Physiologically based precision dosing approach for drug‐drug‐gene interactions: a simvastatin network analysis. Clin Pharmacol Ther. 109(1): 201–211. 2021.
  • European Medicines Agency. Guideline on the use of pharmacogenetic methodologies in the pharmacokinetic evaluation of medicinal products (Draft). EMA/CHMP/37646/2009. 2011.
  • Luzon E, Blake K, Cole S, et al. Physiologically based pharmacokinetic modeling in regulatory decision-making at the european medicines agency. Clin Pharmacol Ther. 2017;102(1):98–105.
  • Zhang X, Yang Y, Grimstein M, et al. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: an update on the 2018‐2019 submissions to the US FDA’s office of clinical pharmacology. J Clin Pharmacol. 2020;60(S1):S160–S178.
  • Mizuno T, Dong M, Taylor ZL, et al. Clinical implementation of pharmacogenetics and model-informed precision dosing to improve patient care. Br J Clin Pharmacol. 2020;2:1–9.
  • Min JS, Bae SK. Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res. 2017;40(12):1356–1379.
  • Marsousi N, Desmeules JA, Rudaz S, et al. Usefulness of PBPK modeling in incorporation of clinical conditions in personalized medicine. J Pharm Sci. 2017;106(9):2380–2391.
  • El-Khateeb E, Burkhill S, Murby S, et al. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm Drug Dispos. 2021;42(4):107–117.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021;18(3):e1003583.
  • Zanger UM, Klein K, Kugler N, et al. Epigenetics and MicroRNAs in pharmacogenetics. 1st ed. Adv. Pharmacol. Elsevier Inc, San Diego, CA; 2018.
  • Zanger UM, Cytochrome SM. P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141.
  • Yee SW, Brackman DJ, Ennis EA, et al., Influence of transporter polymorphisms on drug disposition and response: a perspective from the International Transporter Consortium. Clin Pharmacol Ther. 104(5): 803–817. 2018.
  • Caudle KE, Dunnenberger HM, Freimuth RR, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19(2):215–223.
  • Schwarz UI, Gulilat M, Kim RB. The role of next-generation sequencing in pharmacogenetics and pharmacogenomics. Cold Spring Harb Perspect Med. 2019;9(2):a033027.
  • Gaedigk A, Simon S, Pearce R, et al. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83(2):234–242.
  • Karnes JH, Rettie AE, Somogyi AA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA‐B genotypes and phenytoin dosing: 2020 update. Clin Pharmacol Ther. 2021;109(2):302–309.
  • Henricks LM, Lunenburg CA, Meulendijks D, et al. Translating DPYD genotype into DPD phenotype: using the DPYD gene activity score. Pharmacogenomics. 2015;16(11):1275–1284.
  • Caudle KE, Sangkuhl K, Whirl‐Carrillo M, et al. Standardizing CYP 2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch pharmacogenetics working group. Clin Transl Sci. 2020;13(1):116–124.
  • Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.
  • Cunha-Junior GF, De Marco L, Bastos-Rodrigues L, et al. 13C-uracil breath test to predict 5-fluorouracil toxicity in gastrointestinal cancer patients. Cancer Chemother Pharmacol. 2013;72(6):1273–1282.
  • Bains RK, Kovacevic M, Plaster CA, et al. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet. 2013;14(1):34.
  • Li R, Barton HA. Explaining ethnic variability of transporter substrate pharmacokinetics in healthy Asian and Caucasian subjects with allele frequencies of OATP1B1 and BCRP: a mechanistic modeling analysis. Clin Pharmacokinet. 2018;57(4):491–503.
  • Shaw K, Amstutz U, Kim RB, et al. Clinical practice recommendations on genetic testing of CYP2C9 and VKORC1 variants in warfarin therapy. Ther Drug Monit. 2015;37(4):428–436.
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–417.
  • Whirl‐Carrillo M, Huddart R, Gong L, et al. An evidence‐based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2021;110(3):563–572.
  • VIPs: Very important pharmacogenes [Internet]. [ cited 2021 Sep 29]. Available from: https://www.pharmgkb.org/vips
  • Pavlos R, Mallal S, Phillips E. HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics. 2012;13(11):1285–1306.
  • Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet. 2012;27(1):68–84.
  • Hiratsuka M. Genetic polymorphisms and in vitro functional characterization of CYP2C8, CYP2C9, and CYP2C19 allelic variants. Biol Pharm Bull. 2016;39(11):1748–1759.
  • Xu C, Quinney SK, Guo Y, et al. CYP2B6 pharmacogenetics–based in vitro–in vivo extrapolation of efavirenz clearance by physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2013;41(12):2004–2011.
  • Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos. 2007;35(8):1292–1300.
  • Niwa T, Hata T. The effect of genetic polymorphism on the inhibition of azole antifungal agents against CYP2C9-mediated metabolism. J Pharm Sci. 2016;105(3):1345–1348.
  • Keskitalo JE, Zolk O, Fromm MF, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203.
  • Xu C, Ogburn ET, Guo Y, et al. Effects of the CYP2B6*6 allele on catalytic properties and inhibition of CYP2B6 in vitro: implication for the mechanism of reduced efavirenz metabolism and other CYP2B6 substrates in vivo. Drug Metab Dispos. 2012;40(4):717–725.
  • Han X-M, Ouyang D-S, Chen X-P, et al. Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol. 2002;54(5):540–543.
  • Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol. 2004;57(4):487–494.
  • Brynne N, Svanström C, Aberg-Wistedt A, et al. Fluoxetine inhibits the metabolism of tolterodine-pharmacokinetic implications and proposed clinical relevance. Br J Clin Pharmacol. 1999;48(4):553–563.
  • Makino Y, Makihara-Ando R, Ogawa T, et al. Individual optimal dose of amrubicin to prevent severe neutropenia in Japanese patients with lung cancer. Cancer Sci. 2019;110(11):3573–3583.
  • Habtewold A, Amogne W, Makonnen E, et al. Pharmacogenetic and pharmacokinetic aspects of CYP3A induction by efavirenz in HIV patients. Pharmacogenomics J. 2013;13(6):484–489.
  • Les Laboratoires Servier. Servier medical art [Internet] [cited 2021 Jul 1]. Available from: https://smart.servier.com/
  • Sherwin CMT, Kiang TKL, Spigarelli MG, et al. Fundamentals of population pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(9):573–590.
  • Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):e6.
  • Lehr T, Schaefer H-G, Staab A. Integration of high-throughput genotyping data into pharmacometric analyses using nonlinear mixed effects modeling. Pharmacogenet Genomics. 2010;20(7):442–450.
  • Peters SA. Physiologically-based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. Hoboken: John Wiley & Sons, Inc; 2012.
  • Johnson JA. Predictability of the effects of race or ethnicity on pharmacokinetics of drugs. Int J Clin Pharmacol Ther. 2000;38(2):53–60.
  • Zhang Y, Zhao S, Wang C, et al. Application of a physiologically based pharmacokinetic model to characterize time-dependent metabolism of voriconazole in children and support dose optimization. Front Pharmacol. 2021;12(March):636097.
  • Bentz J, O’Connor MP, Bednarczyk D, et al. Variability in P-Glycoprotein inhibitory potency (IC 50) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013;41(7):1347–1366.
  • Yang J, He MM, Niu W, et al. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes. Br J Clin Pharmacol. 2012;73(2):268–284.
  • Rüdesheim S, Wojtyniak J-G, Selzer D, et al. Physiologically based pharmacokinetic modeling of metoprolol enantiomers and α-hydroxymetoprolol to describe CYP2D6 drug-gene interactions. Pharmaceutics. 2020;12(12):1200.
  • Song IS, Shin HJ, Shim EJ, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–562.
  • Zolk O, Solbach TF, König J, et al. Functional characterization of the human organic cation transporter 2 variant p.270Ala>ser. Drug Metab Dispos. 2009;37(6):1312–1318.
  • Chen Y, Li S, Brown C, et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet Genomics. 2009;19(7):497–504.
  • Hanke N, Türk D, Selzer D, et al. A comprehensive whole-body physiologically based pharmacokinetic drug–drug–gene interaction model of metformin and cimetidine in healthy adults and renally impaired individuals. Clin Pharmacokinet. 2020;59(11):1419–1431.
  • Christensen MMH, Pedersen RS, Stage TB, et al. A gene–gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet Genomics. 2013;23(10):526–534.
  • Wang Z-J, Yin OQP, Tomlinson B, et al. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18(7):637–645.
  • Marok FZ, Fuhr LM, Hanke N, et al. Physiologically based pharmacokinetic modeling of bupropion and its metabolites in a CYP2B6 drug-drug-gene interaction network. Pharmaceutics. 2021;13(3):331.
  • Moré JJ. The Levenberg-Marquardt algorithm: Implementation and theory. Numerical Analysis. Springer, Berlin, Heidelberg. 1978.
  • Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program. 1989;45(1–3):503–528.
  • Björck Å. Numerical methods for least squares problems. Society for Industrial and Applied Mathematics; New York, 1996.
  • Rios LM, Sahinidis NV. Derivative-free optimization: a review of algorithms and comparison of software implementations. J Glob Optim. 2013;56(3):1247–1293.
  • Gross JC, Parks GT. Optimization by moving ridge functions: derivative-free optimization for computationally intensive functions. In: Eng Optim. 2021. p. 1–23.
  • Raue A, Schilling M, Bachmann J, et al. Lessons learned from quantitative dynamical modeling in systems biology. hernandez-Lemus E, editor. PLoS One. 2013;8(9):e74335.
  • Aoki Y, Hayami K, Toshimoto K, et al. Cluster gauss–newton method. Optim Eng. 2020.
  • Beck A. Introduction to nonlinear optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA. 2014.
  • Ogungbenro K, Aarons L. CRESim & Epi-CRESim project groups. Physiologically based pharmacokinetic model for 6-mercpatopurine: exploring the role of genetic polymorphism in TPMT enzyme activity. Br J Clin Pharmacol. 2015;80(1):86–100.
  • Salman S, Sy SKB, Ilett KF, et al. Population pharmacokinetic modeling of tramadol and its O-desmethyl metabolite in plasma and breast milk. Eur J Clin Pharmacol. 2011;67(9):899–908.
  • Willmann S, Edginton AN, Coboeken K, et al. Risk to the breast-fed neonate from codeine treatment to the mother: a quantitative mechanistic modeling study. Clin Pharmacol Ther. 2009;86(6):634–643.
  • Xu R, Kong W, An X, et al. Physiologically-based pharmacokinetic-pharmacodynamics model characterizing CYP2C19 polymorphisms to predict clopidogrel pharmacokinetics and its anti-platelet aggregation effect following oral administration to coronary artery disease patients with or without diabetes. Front Pharmacol. 2020;11:593982.
  • Itohara K, Yano I, Tsuzuki T, et al., A minimal physiologically-based pharmacokinetic model for tacrolimus in living-donor liver transplantation: perspectives related to liver regeneration and the cytochrome P450 3A5 (CYP3A5) genotype. CPT Pharmacometrics Syst Pharmacol. 8(8): 587–595. 2019.
  • Puszkiel A, Arellano C, Vachoux C, et al., Model‐based quantification of impact of genetic polymorphisms and co‐medications on pharmacokinetics of tamoxifen and six metabolites in breast cancer. Clin Pharmacol Ther. 109(5): 1244–1255. 2021.
  • Kharasch ED, Crafford A. Common polymorphisms of CYP2B6 influence stereoselective bupropion disposition. Clin Pharmacol Ther. 2019;105(1):142–152.
  • Zakaria Z, Badhan RKS. The impact of CYP2B6 polymorphisms on the interactions of efavirenz with lumefantrine: implications for paediatric antimalarial therapy. Eur J Pharm Sci. 2018 April;119:90–101.
  • Loisios-Konstantinidis I, Cristofoletti R, Jamei M, et al., Physiologically based pharmacokinetic/pharmacodynamic modeling to predict the impact of CYP2C9 genetic polymorphisms, co-medication and formulation on the pharmacokinetics and pharmacodynamics of flurbiprofen. Pharmaceutics. 12(11): 1049. 2020.
  • Cordes H, Thiel C, Aschmann HE, et al., A physiologically based pharmacokinetic model of isoniazid and its application in individualizing tuberculosis chemotherapy. Antimicrob Agents Chemother. 60(10): 6134–6145. 2016.
  • Lima JJ, Matsushima N, Kissoon N, et al. Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes. Clin Pharmacol Ther. 2004;76(1):27–37.
  • Verstuyft C, Delavenne X, Rousseau A, et al. A pharmacokinetic–pharmacodynamic model for predicting the impact of CYP2C9 and VKORC1 polymorphisms on fluindione and acenocoumarol during induction therapy. Clin Pharmacokinet. 2012;51(1):41–53.
  • Papachristos A, Karatza E, Kalofonos H, et al. Pharmacogenetics in model-based optimization of bevacizumab therapy for metastatic colorectal cancer. Int J Mol Sci. 2020;21(11):3753.
  • Dickschen KJR, Willmann S, Hempel G, et al., Addressing adherence using genotype-specific PBPK modeling-impact of drug holidays on tamoxifen and endoxifen plasma levels. Front Pharmacol. 8(MAR): 67. 2017.
  • Yin A, Ettaieb MHT, Swen JJ, et al. Population pharmacokinetic and pharmacogenetic analysis of mitotane in patients with adrenocortical carcinoma: towards individualized dosing. Clin Pharmacokinet. 2021;60(1):89–102.
  • Kerkhofs TM, Baudin E, Terzolo M, et al. Comparison of two mitotane starting dose regimens in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(12):4759–4767.
  • Almurjan A, Macfarlane H, Badhan RKS. Precision dosing-based optimisation of paroxetine during pregnancy for poor and ultrarapid CYP2D6 metabolisers: a virtual clinical trial pharmacokinetics study. J Pharm Pharmacol. 2020;72(8):1049–1060.
  • Liu Y, Qiu T, Liu Y, et al. Model-based voriconazole dose optimization in Chinese adult patients with hematologic malignancies. Clin Ther. 2019;41(6):1151–1163.
  • ClinCalc LLC. No clincalc drugStats database. [Internet] [cited 2021 Jul 1]. 2021. Available from: https://clincalc.com/DrugStats/
  • Türk D, Hanke N, Wolf S, et al. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug-drug-gene interactions: a modeling network of gemfibrozil, repaglinide, pioglitazone, rifampicin, clarithromycin and itraconazole. Clin Pharmacokinet. 2019;58(12):1595–1607.
  • Zandvliet AS, Huitema ADR, Copalu W, et al. CYP2C9 and CYP2C19 polymorphic forms are related to increased indisulam exposure and higher risk of severe hematologic toxicity. Clin Cancer Res. 2007;13(10):2970–2976.
  • Hamberg A-K, Dahl M-L, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81(4):529–538.
  • Sasaki T, Tabuchi H, Higuchi S, et al. Warfarin-dosing algorithm based on a population pharmacokinetic/ pharmacodynamic model combined with Bayesian forecasting. Pharmacogenomics. 2009;10(8):1257–1266.
  • Andrews LM, Hesselink DA, Rhn VS, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol. 2019;85(3):601–615.
  • Andrews LM, Hesselink DA, van Gelder T, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediatric renal transplantation. Clin Pharmacokinet. 2018;57(4):475–489.
  • Andrews LM, Bcm DW, Cornelissen EAM, et al. A population pharmacokinetic model does not predict the optimal starting dose of tacrolimus in pediatric renal transplant recipients in a prospective study: lessons learned and model improvement. Clin Pharmacokinet. 2020;59(5):591–603.
  • Frechen S, Solodenko J, Wendl T, et al. A generic framework for the physiologically‐based pharmacokinetic platform qualification of PK‐Sim and its application to predicting cytochrome P450 3A4–mediated drug–drug interactions. CPT Pharmacometrics Syst Pharmacol. 2021;10(6):633–644.
  • Gaedigk A, Dinh JC, Jeong H, et al. Ten years’ experience with the CYP2D6 activity score: a perspective on future investigations to improve clinical predictions for precision therapeutics. J Pers Med. 2018;8(2):1–15.
  • Ito T, Kato M, Chiba K, et al. Estimation of the interindividual variability of cytochrome 2D6 activity from urinary metabolic ratios in the literature. Drug Metab Pharmacokinet. 2010;25(3):243–253.
  • Chiba K, Kato M, Ito T, et al. Inter-individual variability of in vivo CYP2D6 activity in different genotypes. Drug Metab Pharmacokinet. 2012;27(4):405–413.
  • Kato M, Chiba K, Ito T, et al. Prediction of interindividual variability in pharmacokinetics for CYP3A4 substrates in humans. Drug Metab Pharmacokinet. 2010;25(4):367–378.
  • U.S. Food and Drug Administration. Aristada (aripiprazole lauroxil) Clinical Pharmacology Review. [Internet]. 2014 [cited 2021 Jul 1]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207533Orig1s000ClinPharmR.pdf
  • U.S. Food and Drug Administration. Cerdelga (eliglustat tartrate) clinical pharmacology review. [Internet]. 2014 [cited 2021 Jul 1]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205494Orig1s000ClinPharmR.pdf
  • Darwich AS, Ogungbenro K, Vinks AA, et al., Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 101(5): 646–656. 2017.
  • U-PGx [Internet]. [ cited 2021 Jul 2]. Available from: https://upgx.eu/
  • ERACoSysMed [Internet]. [ cited 2021 Jul 2]. Available from: https://www.eracosysmed.eu/home

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.