122
Views
0
CrossRef citations to date
0
Altmetric
Review

Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine

, , , , , , , , ORCID Icon, & show all
Pages 181-195 | Received 10 Oct 2023, Accepted 11 Mar 2024, Published online: 20 Mar 2024

References

  • Daali Y. Personalized medicine: pharmacokinetics. J Pers Med. 2022 Oct 6;12(10):1660. doi: 10.3390/jpm12101660
  • Matondo A, Dendera W, Isamura BK, et al. In silico drug repurposing of anticancer drug 5-FU and analogues against SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation, pharmacokinetics and chemical reactivity studies. Adv Appl Bioinforma Chem. 2022 Dec;31:59–77. doi: 10.2147/AABC.S366111
  • Hosen MA, Munia NS, Al-Ghorbani M, et al. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg Chem. 2022 Aug 1;125:105850. doi: 10.1016/j.bioorg.2022.105850
  • Maowa J, Alam A, Rana KM, et al. Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives. Ovidius Univ Annals Chem. 2021 Jan 1;32(1):6–21. doi: 10.2478/auoc-2021-0002
  • Wasmann RE, Svensson EM, Walker AS, et al. Constructing a representative in‐silico population for paediatric simulations: application to HIV‐positive African children. Br J Clin Pharmacol. 2021 Jul;87(7):2847–2854. doi: 10.1111/bcp.14694
  • Alghamdi WA, Antwi S, Enimil A, et al. Population pharmacokinetics of efavirenz in HIV and TB/HIV coinfected children: the significance of genotype-guided dosing. J Antimicrob Chemother. 2019 Sep 1;74(9):2698–706. doi: 10.1093/jac/dkz238
  • Mian P, Nolan B, Van den Anker JN, et al. Mechanistic coupling of a novel in silico cotyledon perfusion model and a physiologically based pharmacokinetic model to predict fetal acetaminophen pharmacokinetics at delivery. Front Pediatr. 2021 Sep 23;9:733520. doi: 10.3389/fped.2021.733520
  • Guo Z, Lou Y, Kong M, et al. A systematic review of phytochemistry, pharmacology and pharmacokinetics on astragali radix: implications for astragali radix as a personalized medicine. Int J Mol Sci. 2019 Mar 22;20(6):1463. doi: 10.3390/ijms20061463
  • Thomas S. Clinical relevance of predictive physiologically based pharmacokinetic methods. Expert Opin Drug Discov. 2008 Jul 1;3(7):725–732. doi: 10.1517/17460441.3.7.725
  • Björkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005 Jun;59(6):691–704. doi: 10.1111/j.1365-2125.2004.02225.x
  • Kawsar SM, Kumer A, Munia NS, et al. Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth. Org Commun. 2022 Apr 1;15(2):184–203. doi: 10.25135/acg.oc.122.2203.2397
  • Amin MR, Yasmin F, Hosen MA, et al. PASS, molecular docking, molecular dynamic simulations & pharmacokinetic predictions of some methyl β-D-galactopyranoside analogs. Molecules. 2021 Nov 20;26(22):7016. doi: 10.3390/molecules26227016
  • Djebaili R, Kenouche S, Daoud I, et al. Investigation of [3H] diazepam derivatives as allosteric modulators of GABAA receptor α1β2γ2 subtypes: combination of molecular docking/dynamic simulations, pharmacokinetics/drug-likeness prediction, and QSAR analysis. Struct Chem. 2023 Jun;34(3):791–823.
  • Pawar V, Patil A, Tamboli F, et al. Harnessing the power of AI in pharmacokinetics and pharmacodynamics: a comprehensive review. AAPS Pharm Sci Tech. 2021;14(2):426–439.
  • Shroff T, Aina K, Maass C, et al. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol. 2022 Mar 2;12(3):210333. doi: 10.1098/rsob.210333
  • Benet LZ, Zia-Amirhosseini P (1995). Basic principles of pharmacokinetics. Toxicol Pathol, 23(2), 115–123. doi: 10.1177/019262339502300203
  • Preskorn SH, Catterson ML. General principles of pharmacokinetics. Antidepressants: past, present and future 2004;35–86.
  • Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet. 1997;32(Suppl 1):1–21. doi: 10.2165/00003088-199700321-00003
  • Huang TY, Yu CP, Hsieh YW, et al. Resveratrol stereoselectively affected (±) warfarin pharmacokinetics and enhanced the anticoagulation effect. Sci Rep. 2020 Sep 28;10(1):15910. doi: 10.1038/s41598-020-72694-0
  • Benet LZ, Kroetz D, Sheiner L, et al. Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination. Goodman And Gilman’s The Pharma Basis Therapeutic. 1996;3:e27.
  • Foster DM, Vicini P. Noncompartmental and compartmental approaches to pharmacokinetic data analysis. In: Huang SM, Lertora JJL, Vicini P, et al., editors. Atkinson’s principles of clinical pharmacology 2022 Jan 1. Academic Press; 2022. p. 113–135.
  • Kumer A, Chakma U, Rana MM, et al. Investigation of the new inhibitors by sulfadiazine and modified derivatives of α-d-glucopyranoside for white spot syndrome virus disease of shrimp by in silico: quantum calculations, molecular docking, ADMET and molecular dynamics study. Molecules. 2022 Jun 8;27(12):3694. doi: 10.3390/molecules27123694
  • Akash S, Baeza J, Mahmood S, et al. Development of a new drug candidate for the inhibition of Lassa virus glycoprotein and nucleoprotein by modification of evodiamine as promising therapeutic agents. Front Microbiol. 2023;14:14. doi: 10.3389/fmicb.2023.1206872
  • Amin MR, Yasmin F, Dey S, et al. Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations. Glycoconj J. 2022;2021(2):1–30. doi: 10.1007/s10719-021-10039-3
  • de Groot MJ, Kirton SB, Sutcliffe MJ. In silico methods for predicting ligand binding determinants of cytochromes P450. Curr Top Med Chem. 2004 Dec 1;4(16):1803–1824. doi: 10.2174/1568026043387061
  • Andrade CH, Silva DC, Braga RC (2014). In silico prediction of drug metabolism by P450. Curr Drug Metab, 15(5), 514–525. doi: 10.2174/1389200215666140908102530
  • de Groot MJ. Designing better drugs: predicting cytochrome P450 metabolism. Drug Discovery Today. 2006;11(13–14):601–606.
  • Putta S, Beroza P. Shapes of things: computer modelling of molecular shape in drug discovery. Curr Top Med Chem. 2007;7(15):1514–1524. doi: 10.2174/156802607782194770
  • Modi S. Computational approaches to the understanding of ADMET properties and problems. Drug Discovery Today. 2003 Jul 1;8(14):621–623. doi: 10.1016/S1359-6446(03)02739-9
  • Li D, Wang Y, Han K. Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coord Chem Rev. 2012 Jun 1;256(11–12):1137–1150. doi: 10.1016/j.ccr.2012.01.016
  • Taxak N, Prasad KC, Bharatam PV. Mechanistic insights into the bioactivation of phenacetin to reactive metabolites: a DFT study. Comput Theor Chem. 2013 Mar 1;1007:48–56. doi: 10.1016/j.comptc.2012.11.018
  • Cheng F, Li W, Zhou Y, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;3099–3105.
  • Paliwal A, Jain S, Paliwal S. Molecular modeling, docking, and QSAR studies on a series of N-arylsulfonyl-N-2-pyridinyl-piperazines analogs acting as anti-diabetic agents. Trends Sci. 2023 Mar 19;20(7):5472. doi: 10.48048/tis.2023.5472
  • Patel S, Shukla J, Jain S, et al. Repositioning of tubocurarine as analgesic and anti-inflammatory agent: exploring beyond myorelaxant activity. Biochem Pharmacol. 2022 Nov 1;205:115248. doi: 10.1016/j.bcp.2022.115248
  • Qureshi R, Irfan M, Gondal TM, et al. AI in drug discovery and its clinical relevance. Heliyon. 2023 Jun 26;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575
  • Macalino SJ, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015 Sep;38(9):1686–1701. doi: 10.1007/s12272-015-0640-5
  • Cui Q, Karplus M. Catalysis and specificity in enzymes: a study of triosephosphate isomerase and comparison with methyl glyoxal synthase. Adv Protein Chem. 2003 Jan 1;66:315–372.
  • Doss CG, Chakraborty C, Narayan V, et al. Computational approaches and resources in single amino acid substitutions analysis toward clinical research. Adv Protein Chem Struct Biol. 2014 Jan 1;94:365–423.
  • Kazmi SR, Jun R, Yu MS, et al. In silico approaches and tools for the prediction of drug metabolism and fate: a review. Comput Biol Med. 2019 Mar 1;106:54–64. doi: 10.1016/j.compbiomed.2019.01.008
  • Kumer A, Chakma U, Chandro A, et al. Modified D-glucofuranose computationally screening for inhibitor of breast cancer and triple breast cancer: Chemical descriptor, molecular docking, molecular dynamics and QSAR. J Chil Chem Soc. 2022 Sep;67(3):5623–5635. doi: 10.4067/S0717-97072022000305623
  • Kesar S, Paliwal S, Sharma S, et al. In-silico QSAR modelling of predicted rho kinase inhibitors against cardio vascular diseases. Curr Comput Aided Drug Des. 2019 Oct 1;15(5):421–432. doi: 10.2174/1573409915666190307163437
  • Michielan L, Moro S. Pharmaceutical perspectives of nonlinear QSAR strategies. J Chem Inf Model. 2010 Jun 1;50(6):961–978. doi: 10.1021/ci100072z
  • Wu Z, Lei T, Shen C, et al. ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. J Chem Inf Model. 2019 Oct 23;59(11):4587–601. doi: 10.1021/acs.jcim.9b00801
  • Akash S, Abdelkrim G, Bayil I, et al. Antimalarial drug discovery against malaria parasites through haplopine modification: an advanced computational approach. J Cellular Mol Med. 2023 Sep 19;27(20):3168–3188. doi: 10.1111/jcmm.17940
  • Al Mashud MA, Kumer A, Mukerjee N, et al. Mechanistic inhibition of monkeypox and Marburg virus infection by O-rhamnosides and kaempferol-o-rhamnosides derivatives: a new-fangled computational approach. Front Cell Infect Microbiol. 2023 May 24;13:1188763. doi: 10.3389/fcimb.2023.1188763
  • Jones HM, Rowland‐Yeo K. Basic concepts in physiologically based pharmacokinetic modelling in drug discovery and development. CPT Pharmacom Syst Pharma. 2013 Aug;2(8):1–2. doi: 10.1038/psp.2013.41
  • Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Delivery Rev. 2001 Oct 1;50:S41–67. doi: 10.1016/S0169-409X(01)00179-X
  • Willmann S, Schmitt W, Keldenich J, et al. A physiological model for the estimation of the fraction dose absorbed in humans. J Med Chem. 2004 Jul 29;47(16):4022–4031. doi: 10.1021/jm030999b
  • Sugano K. Introduction to computational oral absorption simulation. Expert opinion on drug metabolism & toxicology. Expert Opin Drug Metab Toxicol. 2009 Mar 1;5(3):259–293. doi: 10.1517/17425250902835506
  • Pang KS, Durk MR. Physiologically-based pharmacokinetic modelling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):591–615. doi: 10.1007/s10928-010-9185-x
  • Aronson JK. Moving about. Br J Clin Pharmacol. 2005 Mar;59(3):263. doi: 10.1111/j.1365-2125.2005.02399.x
  • Teorell T Kinetics of distribution of substances administered to the body, I: the extravascular modes of administration. Arch Int Pharmacodyn Ther. 1937;57:205–225.
  • Aarons L. Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. Br J Clin Pharmacol. 2005 Dec;60(6):581. doi: 10.1111/j.1365-2125.2005.02560.x
  • Akash S, Kumer A, Rahman MM, et al. Development of new bioactive molecules to treat breast and lung cancer with natural myricetin and its derivatives: a computational and SAR approach. Front Cell Infect Microbiol. 2022;12:1400. doi: 10.3389/fcimb.2022.952297
  • Watanabe T, Kusuhara H, Maeda K, et al. Physiologically based pharmacokinetic modelling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther. 2009 Feb 1;328(2):652–662. doi: 10.1124/jpet.108.146647
  • Olsen L, Oostenbrink C, Jørgensen FS. Prediction of cytochrome P450 mediated metabolism. Adv Drug Delivery Rev. 2015 Jun 23;86:61–71. doi: 10.1016/j.addr.2015.04.020
  • Yin H, Anders MW, Korzekwa KR, et al. Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes. Proc Nat Acad Sci. 1995 Nov 21;92(24):11076–11080. doi: 10.1073/pnas.92.24.11076
  • Meunier B, De Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004 Sep 8;104(9):3947–3980. doi: 10.1021/cr020443g
  • Rydberg P, Gloriam DE, Zaretzki J, et al. Smartcyp: a 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Med Chem Lett. 2010 Jun 10;1(3):96–100. doi: 10.1021/ml100016x
  • Mayeno AN, Robinson JL, Reisfeld B. Rapid estimation of activation enthalpies for cytochrome‐P450‐mediated hydroxylations. J Comput Chem. 2011 Mar;32(4):639–657. doi: 10.1002/jcc.21649
  • Rydberg P, Rostkowski M, Gloriam DE, et al. The contribution of atom accessibility to site of metabolism models for cytochromes P450. Mol Pharmaceut. 2013 Apr 1;10(4):1216–1223. doi: 10.1021/mp3005116
  • Zaretzki J, Bergeron C, Rydberg P, et al. RS-predictor: a new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4. J Chem Inf Model. 2011 Jul 25;51(7):1667–1689. doi: 10.1021/ci2000488
  • Madian AG, Wheeler HE, Jones RB, et al. Relating human genetic variation to variation in drug responses. Trends Genet. 2012 Oct 1;28(10):487–495. doi: 10.1016/j.tig.2012.06.008
  • Jukic M, Milosavljević F, Molden E, et al. Pharmacogenomics in treatment of depression and psychosis: an update. Trends Pharmacol Sci. 2022 Dec 1;43(12):1055–1069. doi: 10.1016/j.tips.2022.09.011
  • Li Y, Meng Q, Yang M, et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2019 Nov 1;9(6):1113–1144. doi: 10.1016/j.apsb.2019.10.001
  • Ahmed S, Zhou Z, Zhou J, et al. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Int J Genomics Proteomics. 2016 Oct 1;14(5):298–313. doi: 10.1016/j.gpb.2016.03.008
  • Xing X, Ma P, Huang Q, et al. Predicting pharmacokinetics variation of faropenem using a pharmacometabonomic approach. J Proteome Res. 2019 Oct 16;19(1):119–128. doi: 10.1021/acs.jproteome.9b00436
  • Simper GS, GG H, Celik AA, et al. Carbamazepine-mediated adverse drug reactions: CBZ-10,11-epoxide but not Carbamazepine induces the alteration of peptides presented by HLA-B * 15: 02. J Immunol Res. 2018 Sep 13;2018:1–12. doi: 10.1155/2018/5086503
  • Haukamp FJ, Hartmann ZM, Pich A, et al. HLA-B* 57: 01/Carbamazepine-10, 11-epoxide association triggers upregulation of the NFκB and JAK/STAT pathways. Cells. 2023 Feb 21;12(5):676. doi: 10.3390/cells12050676
  • Phillips EJ, Sukasem C, Whirl‐Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018 Apr;103(4):574–581.
  • Narendra G, Choudhary S, Raju B, et al. Role of genetic polymorphisms in drug-metabolizing enzyme-mediated toxicity and pharmacokinetic resistance to anti-cancer agents: a review on the pharmacogenomics aspect. Clin Pharmacokinet. 2022 Nov;61(11):1495–1517. doi: 10.1007/s40262-022-01174-7
  • Jain N, Nagaich U, Pandey M, et al. Predictive genomic tools in disease stratification and targeted prevention: a recent update in personalized therapy advancements. EPMA J. 2022 Dec;13(4):561–80.
  • Rahman M, Schellhorn HE. Metabolomics of infectious diseases in the era of personalized medicine. Front Mol Biosci. 2023 May 18;10:1120376. doi: 10.3389/fmolb.2023.1120376
  • Wu H, Zuo Z, Li Y, et al. Anatomic characteristics of shoulder based on MRI accurately predict incomplete rotator cuff injuries in patients: relevance for predictive, preventive, and personalized healthcare strategies. EPMA J. 2023 Jul;13(3):1–8. doi: 10.1007/s13167-023-00333-5
  • Kulkova J, Kulkov I, Rohrbeck R, et al. Medicine of the future: how and who is going to treat us? Futures. 2023 Feb 1;146:103097. doi: 10.1016/j.futures.2023.103097
  • James JE, Joseph G. “It’s personalized, but it’s still bucket based”: the promise of personalized medicine vs. The reality of genomic risk stratification in a breast cancer screening trial. New Genet Soc. 2022 Jul 3;41(3):228–253. doi: 10.1080/14636778.2022.2115348
  • Viceconti M, Pappalardo F, Rodriguez B, et al. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods. 2021 Jan 1;185:120–127. doi: 10.1016/j.ymeth.2020.01.011
  • Braakman S, Pathmanathan P, Moore H. Evaluation framework for systems models. CPT Pharmacometrics Syst Pharmacol. 2022 Mar;11(3):264–289. doi: 10.1002/psp4.12755
  • Musuamba FT, Skottheim Rusten I, Lesage R, et al. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: building model credibility. CPT Pharmacometrics Syst Pharmacol. 2021 Aug;10(8):804–825. doi: 10.1002/psp4.12669
  • Kollipara S, Ahmed T, Bhattiprolu AK, et al. In vitro and In silico biopharmaceutic regulatory guidelines for generic bioequivalence for oral products: Comparison among various regulatory agencies. Biopharma Drug Dispos. 2021 Jul;42(7):297–318. doi: 10.1002/bdd.2292
  • Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discovery Today. 2021 Feb 1;26(2):511–524. doi: 10.1016/j.drudis.2020.12.009
  • Brogi S, Ramalho TC, Kuca K, et al. In silico methods for drug design and discovery. Front Chem. 2020 Aug 7;8:612. doi: 10.3389/fchem.2020.00612
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov. 2005 Aug 1;4(8):649–663. doi: 10.1038/nrd1799
  • Seidel T, Wieder O, Garon A, et al. Applications of the pharmacophore concept in natural product inspired drug design. Mol Inform. 2020 Nov;39(11):2000059. doi: 10.1002/minf.202000059
  • Sun D, Gao W, Hu H, et al. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022 Jul 1;12(7):3049–3062. doi: 10.1016/j.apsb.2022.02.002
  • Pellizzer EP, Lemos CA, Almeida DA, et al. Biomechanical analysis of different implant-abutments interfaces in different bone types: an in silico analysis. Mater Sci Eng C. 2018 Sep 1;90:645–650. doi: 10.1016/j.msec.2018.05.012
  • Chen HY, Tien WS, Chambers SD, et al. Search for an optimal design of a bioprosthetic venous valve: in silico and in vitro studies. Eur J Vasc Endovascular Surg. 2019 Jul 1;58(1):112–119. doi: 10.1016/j.ejvs.2018.12.008
  • Kar S, Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin Drug Discov. 2020 Dec 1;15(12):1473–1487. doi: 10.1080/17460441.2020.1798926
  • Viceconti M, Henney A, Morley-Fletcher E. In silico clinical trials: how computer simulation will transform the biomedical industry. Int J Clin Trials. 2016;3(2):37–46. doi: 10.18203/2349-3259.ijct20161408
  • Niederer SA, Lumens J, Trayanova NA. Computational models in cardiology. Nat Rev Cardiol. 2019 Feb;16(2):100–111. doi: 10.1038/s41569-018-0104-y
  • Pappalardo F, Russo G, Tshinanu FM, et al. In silico clinical trials: concepts and early adoptions. Brief Bioinform. 2019 Sep;20(5):1699–708. doi: 10.1093/bib/bby043
  • Trayanova N, Plank G, Rodríguez B. What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm. 2006 Oct 1;3(10):1232–1235. doi: 10.1016/j.hrthm.2006.04.015
  • Passini E, Britton OJ, Lu HR, et al. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front Physiol. 2017 Sep 12;8:668. doi: 10.3389/fphys.2017.00668
  • Srivastava S, Jayaswal N, Kumar S, et al. Unveiling the potential of proteomic and genetic signatures for precision therapeutics in lung cancer management. Cell Signal. 2024 Jan 1;113:110932. doi: 10.1016/j.cellsig.2023.110932
  • Srivastava S, Bagang N, Yadav S, et al. Evolution of β-catenin-independent wnt–GSK3–mTOR signalling in regulation of energy metabolism in isoproterenol-induced cardiotoxicity model. Inflammation Res. 2021 Jul;70(7):743–747.
  • Taheri Moghadam S, Sadoughi F, Velayati F, et al. The effects of clinical decision support system for prescribing medication on patient outcomes and physician practice performance: a systematic review and meta-analysis. BMC Med Inform Decis Mak. 2021 Dec;21(1):1–26. doi: 10.1186/s12911-020-01376-8
  • Jia CY, Li JY, Hao GF, et al. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today. 2020 Jan 1;25(1):248–258. doi: 10.1016/j.drudis.2019.10.014
  • Jing X, Ji P, Schrieber SJ, et al. Update on therapeutic protein–drug interaction: information in labeling. Clin Pharmacokinet. 2020 Jan;59(1):25–36. doi: 10.1007/s40262-019-00810-z
  • Thakur A, Parvez MM, Leeder JS, et al. Ontogeny of drug-metabolizing enzymes. Enzyme Kinetic Drug Metabol Fundament Appl. 2021;2342:551–593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.