118
Views
0
CrossRef citations to date
0
Altmetric
Review

Risk factors associated with high-dose methotrexate induced toxicities

, , , &
Pages 263-274 | Received 20 Jan 2024, Accepted 15 Mar 2024, Published online: 19 Mar 2024

References

  • Bedoui Y, Guillot X, Selambarom J, et al. Methotrexate an old drug with new tricks. Int J Mol Sci. 2019 Oct 10;20(20):5023. doi: 10.3390/ijms20205023
  • Chan ES, Cronstein BN Mechanisms of action of methotrexate. Bull Hosp Jt Dis (2013). 2013;71(Suppl 1):S5–8.
  • Koźmiński P, Halik PK, Chesori R, et al. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020 May 14;21(10):3483. doi: 10.3390/ijms21103483
  • Maksimovic V, Pavlovic-Popovic Z, Vukmirovic S, et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep. 2020 Jun;47(6):4699–4708.
  • Alqarni AM, Zeidler MP. How does methotrexate work? Biochem Soc Trans. 2020 Apr 29;48(2):559–567. doi: 10.1042/BST20190803
  • Hanoodi M. Methotrexate. In: Mittal M, editor. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC; 2024. [updated 2023 Aug 16].
  • Zhao Z, Hua Z, Luo X, et al. Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother. 2022 Jun;150:113074. doi: 10.1016/j.biopha.2022.113074
  • Moshikur RM, Ali MK, Wakabayashi R, et al. Methotrexate-based ionic liquid as a potent anticancer drug for oral delivery: in vivo pharmacokinetics, biodistribution, and antitumor efficacy. Int J Pharm. 2021 Oct 25;608:121129. doi: 10.1016/j.ijpharm.2021.121129
  • Fischer M, Siva S, Cook GK, et al. Methotrexate polyglutamate monitoring in patients with crohn’s disease. Clin Pharmacol Drug Dev. 2017 May;6(3):240–245.
  • Mei S, Li X, Jiang X, et al. Population pharmacokinetics of high-dose methotrexate in patients with primary central nervous system lymphoma. J Pharm Sci. 2018 May;107(5):1454–1460.
  • Puig L. Methotrexate: new therapeutic approaches. Actas Dermosifiliogr. 2014 Jul;105(6):583–589. doi: 10.1016/j.ad.2012.11.017
  • Reed DR, Pierce EJ, Sen JM, et al. A prospective study on urine alkalization with an oral regimen consisting of sodium bicarbonate and acetazolamide in patients receiving high-dose methotrexate. Cancer Manag Res. 2019;11:8065–8072. doi: 10.2147/CMAR.S190084
  • Wang CP Monitoring and treatment of acute kidney injury in children with acute lymphoblastic leukemia after high dose methotrexate chemotherapy. Iran J Pharm Res. 2016 Fall;15(4):957–961.
  • Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: a systematic review. Eur J Med Chem. 2018 Oct 5;158:502–516. doi: 10.1016/j.ejmech.2018.09.027
  • Xu M, Wu S, Wang Y, et al. Association between high-dose methotrexate-induced toxicity and polymorphisms within methotrexate pathway genes in acute lymphoblastic leukemia. Front Pharmacol. 2022;13:1003812. doi: 10.3389/fphar.2022.1003812
  • Cheng Y, Chen MH, Zhuang Q, et al. Genetic factors involved in delayed methotrexate elimination in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021 May;68(5):e28858.
  • Giletti A, Esperon P. Genetic markers in methotrexate treatments. Pharmacogenomics J. 2018 Dec;18(6):689–703. doi: 10.1038/s41397-018-0047-z
  • Howard SC, McCormick J, Pui CH, et al. Preventing and managing toxicities of high-dose methotrexate. Oncology. 2016 Dec;21(12):1471–1482. doi: 10.1634/theoncologist.2015-0164
  • Pannu AK. Methotrexate overdose in clinical practice. Curr Drug Metab. 2019;20(9):714–719. doi: 10.2174/1389200220666190806140844
  • Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009 Sep;146(5):489–503. doi: 10.1111/j.1365-2141.2009.07765.x
  • Yang YY, Gao L, Ding N, et al. How to rescue high-dose methotrexate induced nephrotoxicity and literature review about hemodiafiltration? Pak J Pharm Sci. 2020 May;33(3):1163–1167.
  • Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol. 2010 Nov;30(6):570–81. doi: 10.1016/j.semnephrol.2010.09.005
  • Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncology. 2006 Jun;11(6):694–703. doi: 10.1634/theoncologist.11-6-694
  • Elbarbary NS, Ismail EA, Farahat RK, et al. Omega-3 fatty acids as an adjuvant therapy ameliorates methotrexate-induced hepatotoxicity in children and adolescents with acute lymphoblastic leukemia: a randomized placebo-controlled study. Nutrition. 2016 Jan;32(1):41–47. doi: 10.1016/j.nut.2015.06.010
  • Barak AJ, Tuma DJ, Beckenhauer HC Methotrexate hepatotoxicity. J Am Coll Nutr. 1984;3(1):93–96. 10.1080/07315724.1984.10720041
  • Di Martino V, Verhoeven DW, Verhoeven F, et al. Busting the myth of methotrexate chronic hepatotoxicity. Nat Rev Rheumatol. 2023 Feb;19(2):96–110.
  • Hadi NR, Al-Amran FG, Swadi A. Metformin ameliorates methotrexate-induced hepatotoxicity. J Pharmacol Pharmacother. 2012 Jul;3(3):248–253. doi: 10.4103/0976-500X.99426
  • Bath RK, Brar NK, Forouhar FA, et al. A review of methotrexate-associated hepatotoxicity. J Dig Dis. 2014 Oct;15(10):517–524. doi: 10.1111/1751-2980.12184
  • Behairy A, Elkomy A, Elsayed F, et al. Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol. 2024 Mar;397(3):1875–1888.
  • Vagace JM, Caceres-Marzal C, Jimenez M, et al. Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am J Hematol. 2011 Jan;86(1):98–101.
  • Bhojwani D, Bansal R, Wayne AS. Managing therapy-associated neurotoxicity in children with ALL. Hematology Am Soc Hematol Educ Program. 2021 Dec 10;2021(1):376–383. doi: 10.1182/hematology.2021000269
  • Drachtman RA, Cole PD, Golden CB, et al. Dextromethorphan is effective in the treatment of subacute methotrexate neurotoxicity. Pediatr Hematol Oncol. 2002 Jul;19(5):319–27.
  • Lopez-De Suso D, Garcia-Salido A, Andion-Catalan M, et al. Methotrexate-induced stroke-like neurotoxicity: case report, 8 years of experience, and literature review. Pediatr Blood Cancer. 2022 Sep;69(9):e29627.
  • Strizhevskaya AM, Senzhapova ER, Dzamraev AZ, et al. Potential marker of the pharmacodynamic effect of high doses of methotrexate–homocysteine. Patol Fiziol Eksp Ter. 2014 Apr;2(1):40–44. doi: 10.17650/2313-805X.2015.2.1.82-89
  • Derouiche F, Bôle-Feysot C, Naïmi D, et al. Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta. Biochem Biophys Res Commun. 2014 Sep 26;452(3):740–5. doi: 10.1016/j.bbrc.2014.08.141
  • Hasan T, Arora R, Bansal AK, et al. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med. 2019 Feb 21;51(2):1–13. doi: 10.1038/s12276-019-0216-4
  • Kim KY, Shin KY, Chang KA. Potential biomarkers for post-stroke cognitive impairment: a systematic review and meta-analysis. Int J Mol Sci. 2022 Jan 6;23(2):602. doi: 10.3390/ijms23020602
  • Gonzalez-Ibarra F, Eivaz-Mohammadi S, Surapaneni S, et al. Methotrexate induced pancytopenia. Case Rep Rheumatol. 2014; 2014:679580.
  • Hamed KM, Dighriri IM, Baomar AF, et al. Overview of methotrexate toxicity: a comprehensive literature review. Cureus. 2022 Sep;14(9):e29518.
  • Georgiou KR, Scherer MA, King TJ, et al. Deregulation of the CXCL12/CXCR4 axis in methotrexate chemotherapy-induced damage and recovery of the bone marrow microenvironment. Int J Exp Pathol. 2012 Apr;93(2):104–114.
  • Fan J, Su YW, Hassanshahi M, et al. β-catenin signaling is important for osteogenesis and hematopoiesis recovery following methotrexate chemotherapy in rats. J Cell Physiol. 2021 May;236(5):3740–3751.
  • Heil SG. Genetics of high-dose methotrexate-induced oral mucositis: current perspectives. Pharmacogenomics. 2019 Jun;20(9):621–623. doi: 10.2217/pgs-2019-0062
  • Oosterom N, Griffioen PH, den Hoed MAH, et al. Global methylation in relation to methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. PLoS One. 2018;13(7):e0199574. doi: 10.1371/journal.pone.0199574
  • Van der Beek JN, Oosterom N, Pieters R, et al. The effect of leucovorin rescue therapy on methotrexate-induced oral mucositis in the treatment of paediatric ALL: a systematic review. Critical Reviews In Oncology/Hematology. 2019 Oct;142:1–8. doi: 10.1016/j.critrevonc.2019.07.003
  • Chiu YM, Chen DY. Infection risk in patients undergoing treatment for inflammatory arthritis: non-biologics versus biologics. Expert Rev Clin Immunol. 2020 Feb;16(2):207–228. doi: 10.1080/1744666X.2019.1705785
  • Altz-Smith M, Kendall LG Jr., Stamm AM. Cryptococcosis associated with low-dose methotrexate for arthritis. Am J Med. 1987 Jul;83(1):179–81. doi: 10.1016/0002-9343(87)90517-1
  • McLean-Tooke A, Aldridge C, Waugh S, et al. Methotrexate, rheumatoid arthritis and infection risk: what is the evidence? Rheumatology (Oxford). 2009 Aug;48(8):867–871.
  • Joerger M, Huitema AD, Krähenbühl S, et al. Methotrexate area under the curve is an important outcome predictor in patients with primary CNS lymphoma: a pharmacokinetic-pharmacodynamic analysis from the IELSG no. 20 trial. Br J Cancer. 2010 Feb 16;102(4):673–677.
  • Kasenda B, Rehberg M, Thürmann P, et al. The prognostic value of serum methotrexate area under curve in elderly primary CNS lymphoma patients. Ann Hematol. 2012 Aug;91(8):1257–64.
  • Joerger M, Ferreri AJ, Krähenbühl S, et al. Dosing algorithm to target a predefined AUC in patients with primary central nervous system lymphoma receiving high dose methotrexate. Br J Clin Pharmacol. 2012 Feb;73(2):240–247.
  • Koch HJ. Population methods in drug development and related fields. Clin Pharmacokinet. 1996 Aug;31(2):164. doi: 10.2165/00003088-199631020-00007
  • Ferreri AJ, Guerra E, Regazzi M, et al. Area under the curve of methotrexate and creatinine clearance are outcome-determining factors in primary CNS lymphomas. Br J Cancer. 2004 Jan 26;90(2):353–8. doi: 10.1038/sj.bjc.6601472
  • Bezabeh S, Mackey AC, Kluetz P, et al. Accumulating evidence for a drug-drug interaction between methotrexate and proton pump inhibitors. Oncology. 2012;17(4):550–554. doi: 10.1634/theoncologist.2011-0431
  • Boerrigter E, Crul M. A non-interventional retrospective cohort study of the interaction between methotrexate and proton pump inhibitors or aspirin. Ann Pharm Fr. 2017 Sep;75(5):344–348. doi: 10.1016/j.pharma.2017.06.002
  • Narumi K, Sato Y, Kobayashi M, et al. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm Drug Dispos. 2017 Dec;38(9):501–508.
  • Ranchon F, Vantard N, Henin E, et al. Delayed methotrexate elimination: incidence, interaction with antacid drugs, and clinical consequences? Hematol Oncol. 2018 Apr;36(2):399–406.
  • Reeves DJ, Moore ES, Bascom D, et al. Retrospective evaluation of methotrexate elimination when co-administered with proton pump inhibitors. Br J Clin Pharmacol. 2014 Sep;78(3):565–71.
  • Suzuki K, Doki K, Homma M, et al. Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol. 2009 Jan;67(1):44–9.
  • McLeod HL. Clinically relevant drug-drug interactions in oncology. Br J Clin Pharmacol. 1998 Jun;45(6):539–544. doi: 10.1046/j.1365-2125.1998.00719.x
  • Wight J, Ku M, Garwood M, et al. Toxicity associated with high-dose intravenous methotrexate for hematological malignancies. Leuk Lymphoma. 2022 Oct;63(10):2375–2382.
  • Liang CA, Su YC, Lin SJ, et al. Risk factors for acute kidney injury after high-dose methotrexate therapy: a single-center study and narrative review. Eur J Clin Pharmacol. 2023 Jun;79(6):789–800.
  • Wiczer T, Dotson E, Tuten A, et al. Evaluation of incidence and risk factors for high-dose methotrexate-induced nephrotoxicity. J Oncol Pharm Pract. 2016 Jun;22(3):430–6.
  • Le T, Su S, Shahriyari L. Investigating optimal chemotherapy options for osteosarcoma patients through a mathematical model. Cells. 2021 Aug 6;10(8):2009. doi: 10.3390/cells10082009
  • Oude Munnink T, van der Meer A, de Haan J, et al. Reversible impaired methotrexate clearance after platinum-based chemotherapy for osteosarcoma. Ther Drug Monit. 2019 Dec;41(6):693–695.
  • Peters GJ, van der Wilt CL, van Moorsel CJ, et al. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther. 2000 Aug;87(2–3):227–53.
  • Levinsen M, Rosthoj S, Nygaard U, et al. Myelotoxicity after high-dose methotrexate in childhood acute leukemia is influenced by 6-mercaptopurine dosing but not by intermediate thiopurine methyltransferase activity. Cancer Chemother Pharmacol. 2015 Jan;75(1):59–66.
  • Vang SI, Schmiegelow K, Frandsen T, et al. Mercaptopurine metabolite levels are predictors of bone marrow toxicity following high-dose methotrexate therapy of childhood acute lymphoblastic leukaemia. Cancer Chemother Pharmacol. 2015 May;75(5):1089–93. doi: 10.1007/s00280-015-2717-8
  • Schmiegelow K, Bretton-Meyer U. 6-mercaptopurine dosage and pharmacokinetics influence the degree of bone marrow toxicity following high-dose methotrexate in children with acute lymphoblastic leukemia. Leukemia. 2001 Jan;15(1):74–9. doi: 10.1038/sj.leu.2401986
  • Schmiegelow K, Ifversen M. Myelotoxicity, pharmacokinetics, and relapse rate with methotrexate/6-mercaptopurine maintenance therapy of childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol. 1996 Sep;13(5):433–41. doi: 10.3109/08880019609030855
  • Huber MH, Lee JS, Newman RA, et al. A phase I investigation of the sequential use of methotrexate and paclitaxel with and without G-CSF for the treatment of solid tumors. Ann Oncol. 1996 Jan;7(1):59–63.
  • Sun K, Tao H, Ding T, et al. Risk factors for high-dose methotrexate associated toxicities in patients with primary central nervous system lymphoma. J Clin Pharm Ther. 2022 Dec;47(12):2196–2204. doi: 10.1111/jcpt.13791
  • Huang C, Xia F, Xue L, et al. Coadministration of vindesine with high-dose methotrexate therapy increases acute kidney injury via BCRP, MRP2, and OAT1/OAT3. Cancer Chemother Pharmacol. 2020 Feb;85(2):433–441.
  • Wang Y, Wei L, Guan Y, et al. Diabetes is a risk factor for high-dose methotrexate-associated AKI in lymphoma patients. Ren Fail. 2020 Nov;42(1):1111–1117.
  • El-Sheikh AA, van den Heuvel JJ, Koenderink JB, et al. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther. 2007 Jan;320(1):229–235. doi: 10.1124/jpet.106.110379
  • Iwaki M, Shimada H, Irino Y, et al. Inhibition of methotrexate uptake via organic anion transporters OAT1 and OAT3 by glucuronides of nonsteroidal anti-inflammatory drugs. Biol Pharm Bull. 2017;40(6):926–931. doi: 10.1248/bpb.b16-00970
  • Kawase A, Yamamoto T, Egashira S, et al. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J Pharmacol Exp Ther. 2016 Feb;356(2):366–74.
  • Bian J, Zhao J, Zhao Y, et al. Impact of individual factors on DNA methylation of drug metabolism genes: a systematic review. Environ And Mol Mutagen. 2023 Aug;64(7):401–415.
  • Zang YN, Wang SZ, Qin Y, et al. Population pharmacokinetic study of delayed methotrexate excretion in children with acute lymphoblastic leukemia. Int J Clin Pharmacol Ther. 2019 Aug;57(8):402–407.
  • Wang SF, Huang KW, Chou YC, et al. Effect of co-medications and potential risk factors of high-dose methotrexate-mediated acute hepatotoxicity in patients with osteosarcoma. Cancer Med. 2023 Jun;12(11):12354–12364.
  • Zakaria AY, Labib RM, Abdelshafi SA, et al. Single nucleotide polymorphisms of ATP-Binding cassette Gene(ABCC3 rs4793665) affect high dose methotrexate-induced nephrotoxicity in children with osteosarcoma. Int J Curr Res Rev. 2021;13(19):49–57. 10.31782/IJCRR.2021.131921
  • Zhang W, Zhang Q, Zheng TT, et al. Delayed high-dose methotrexate excretion and influencing factors in osteosarcoma patients. Chin Med J (Engl). 2016 Nov 5;129(21):2530–2534. doi: 10.4103/0366-6999.192781
  • Zhang Y, Sun L, Chen X, et al. A systematic review of population pharmacokinetic models of methotrexate. Eur J Drug Metab Pharmacokinet. 2022 Mar;47(2):143–164.
  • Li X, Sui Z, Jing F, et al. Identifying risk factors for high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia. Cancer Manag Res. 2019;11:6265–6274. doi: 10.2147/CMAR.S207959
  • Latcha S, Gupta M, Lin IH, et al. High dose methotrexate-induced acute kidney injury: incidence, risk factors, and recovery. Kidney Int Rep. 2023 Feb;8(2):360–364. doi: 10.1016/j.ekir.2022.10.029
  • Zhou Y, Hellberg M, Svensson P, et al. Sarcopenia and relationships between muscle mass, measured glomerular filtration rate and physical function in patients with chronic kidney disease stages 3-5. Nephrol Dial Transplant. 2018 Feb 1;33(2):342–348. doi: 10.1093/ndt/gfw466
  • Zaman T, Filipowicz R, Beddhu S. Implications and importance of skeletal muscle mass in estimating glomerular filtration rate at dialysis initiation. J Ren Nutr. 2013 May;23(3):233–6. doi: 10.1053/j.jrn.2013.01.028
  • Bhojwani D, Sabin ND, Pei D, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014 Mar 20;32(9):949–59. doi: 10.1200/JCO.2013.53.0808
  • Misaka KO, Suga Y, Staub Y, et al. Risk factors for delayed elimination of methotrexate in children, adolescents and young adults with osteosarcoma. In Vivo. 2020 Nov;34(6):3459–3465.
  • Young EP, Cheng WS, Bernhardt MB, et al. Risk factors associated with delayed methotrexate clearance and increased toxicity in pediatric patients with osteosarcoma. Pediatr Blood Cancer. 2020 Apr;67(4):e28123.
  • Abe K, Maeda-Minami A, Ishizu T, et al. Risk factors for hepatic toxicity of high-dose methotrexate in patients with osteosarcoma. Anticancer Res. 2022 Feb;42(2):1043–1050.
  • Reiss SN, Buie LW, Adel N, et al. Hypoalbuminemia is significantly associated with increased clearance time of high dose methotrexate in patients being treated for lymphoma or leukemia. Ann Hematol. 2016 Dec;95(12):2009–2015.
  • Kataoka T, Sakurashita H, Kajikawa K, et al. Low serum albumin level is a risk factor for delayed methotrexate elimination in high-dose methotrexate treatment. Ann Pharmacother. 2021 Oct;55(10):1195–1202.
  • Khera S, Sharma G, Negi V, et al. Hypoalbuminemia and not undernutrition predicts high-dose methotrexate-induced nephrotoxicity in children with acute lymphoblastic leukemia in resource-constrained centers. Pediatr Blood Cancer. 2022 Sep;69(9):e29738.
  • Amitai I, Rozovski U, El-Saleh R, et al. Risk factors for high-dose methotrexate associated acute kidney injury in patients with hematological malignancies. Hematol Oncol. 2020 Oct;38(4):584–588.
  • Barakat S, Assem H, Salama M, et al. Is hypoalbuminemia a risk factor for high-dose methotrexate toxicity in children with acute lymphoblastic leukemia? J Egypt Natl Canc Inst. 2022 Apr 18;34(1):17. doi: 10.1186/s43046-022-00122-7
  • Schofield RC, Ramanathan LV, Murata K, et al. Development and validation of a turbulent flow chromatography and tandem mass spectrometry method for the quantitation of methotrexate and its metabolites 7-hydroxy methotrexate and DAMPA in serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Oct 1;1002:169–75. doi: 10.1016/j.jchromb.2015.08.025
  • Kawaguchi S, Fujiwara SI, Murahashi R, et al. Risk factors for high-dose methotrexate-induced nephrotoxicity. Int J Hematol. 2021 Jul;114(1):79–84.
  • Song Z, Hu Y, Liu S, et al. The role of genetic polymorphisms in high-dose methotrexate toxicity and response in hematological malignancies: a systematic review and meta-analysis. Front Pharmacol. 2021;12:757464.
  • Vlaming ML, Pala Z, van Esch A, et al. Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin Cancer Res. 2009 May 1;15(9):3084–3093. doi: 10.1158/1078-0432.CCR-08-2940
  • Ramsey LB, Bruun GH, Yang W, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012 Jan;22(1):1–8.
  • Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013 Feb 7;121(6):898–904. doi: 10.1182/blood-2012-08-452839
  • Martinez D, Muhrez K, Woillard JB, et al. Endogenous metabolites-mediated communication between OAT1/OAT3 and OATP1B1 may explain the association between SLCO1B1 SNPs and methotrexate toxicity. Clin Pharmacol Ther. 2018 Oct;104(4):687–698.
  • Csordas K, Lautner-Csorba O, Semsei AF, et al. Associations of novel genetic variations in the folate-related and ARID5B genes with the pharmacokinetics and toxicity of high-dose methotrexate in paediatric acute lymphoblastic leukaemia. Br J Haematol. 2014 Aug;166(3):410–20.
  • Han JM, Choi KH, Lee HH, et al. Association between SLCO1B1 polymorphism and methotrexate-induced hepatotoxicity: a systematic review and meta-analysis. Anticancer Drugs. 2022 Jan 1;33(1):75–79. doi: 10.1097/CAD.0000000000001125
  • Zeng H, Chen ZS, Belinsky MG, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001 Oct 1;61(19):7225–32.
  • Assaraf YG. Molecular basis of antifolate resistance. Cancer Metastasis Rev. 2007 Mar;26(1):153–81. doi: 10.1007/s10555-007-9049-z
  • Fotoohi AK, Albertioni F. Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells. Leuk Lymphoma. 2008 Mar;49(3):410–26. doi: 10.1080/10428190701824569
  • Simon N, Marsot A, Villard E, et al. Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. Pharmacogenomics J. 2013 Dec;13(6):507–13.
  • Goasguen JE, Dossot JM, Fardel O, et al. Expression of the multidrug resistance-associated P-glycoprotein (P-170) in 59 cases of de novo acute lymphoblastic leukemia: prognostic implications. Blood. 1993 May 1;81(9):2394–2398. doi: 10.1182/blood.V81.9.2394.2394
  • Kim IW, Yun HY, Choi B, et al. ABCB1 C3435T genetic polymorphism on population pharmacokinetics of methotrexate after hematopoietic stem cell transplantation in Korean patients: a prospective analysis. Clin Ther. 2012 Aug;34(8):1816–26.
  • Gorczyca L, Aleksunes LM. Transcription factor-mediated regulation of the BCRP/ABCG2 efflux transporter: a review across tissues and species. Expert Opin Drug Metab Toxicol. 2020 Mar;16(3):239–253. doi: 10.1080/17425255.2020.1732348
  • Lui G, Treluyer JM, Fresneau B, et al. A pharmacokinetic and pharmacogenetic analysis of osteosarcoma patients treated with high-dose methotrexate: data from the OS2006/Sarcoma-09 trial. J Clin Pharmacol. 2018 Dec;58(12):1541–1549.
  • Koomdee N, Hongeng S, Apibal S, et al. Association between polymorphisms of dihydrofolate reductase and gamma glutamyl hydrolase genes and toxicity of high dose methotrexate in children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13(7):3461–4. doi: 10.7314/APJCP.2012.13.7.3461
  • Wang SM, Sun LL, Zeng WX, et al. Influence of genetic polymorphisms of FPGS, GGH, and MTHFR on serum methotrexate levels in Chinese children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2014 Aug;74(2):283–9.
  • Campbell JM, Bateman E, Stephenson MD, et al. Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Cancer Chemother Pharmacol. 2016 Jul;78(1):27–39.
  • Chae H, Kim M, Choi SH, et al. Influence of plasma methotrexate level and MTHFR genotype in Korean paediatric patients with acute lymphoblastic leukaemia. J Chemother. 2020 Sep;32(5):251–259.
  • Chang X, Guo Y, Su L, et al. Influence of MTHFR C677T polymorphism on high-dose methotrexate-related toxicity in patients with primary central nervous system diffuse large B-Cell Lymphoma. Clin Lymphoma Myeloma Leuk. 2021 Feb;21(2):91–96.
  • Maagdenberg H, Oosterom N, Zanen J, et al. Genetic variants associated with methotrexate-induced mucositis in cancer treatment: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021 May;161:103312. doi: 10.1016/j.critrevonc.2021.103312
  • Xu L, Wang L, Xue B, et al. MTHFR variant is associated with high-dose methotrexate-induced toxicity in the Chinese osteosarcoma patients. J Bone Oncol. 2018 Nov;13:143–147. doi: 10.1016/j.jbo.2018.10.002
  • Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol. 2012 Oct;33(5):1445–54. doi: 10.1007/s13277-012-0395-2
  • Zhang W, Liu Z, Yang Z, et al. MTHFR polymorphism is associated with severe methotrexate-induced toxicity in osteosarcoma treatment. Front Oncol. 2021;11:781386. doi: 10.3389/fonc.2021.781386
  • Zhao M, Liang L, Ji L, et al. MTHFR gene polymorphisms and methotrexate toxicity in adult patients with hematological malignancies: a meta-analysis. Pharmacogenomics. 2016 Jun;17(9):1005–17.
  • Hagleitner MM, Coenen MJ, Aplenc R, et al. The role of the MTHFR 677C>T polymorphism in methotrexate-induced liver toxicity: a meta-analysis in patients with cancer. Pharmacogenomics J. 2014 Apr;14(2):115–119.
  • Te Loo DM, Hagleitner MM, Coenen MJ Is there a role for the MTHFR 677C>T and 1298A>C polymorphisms in methotrexate-induced liver toxicity? Pharmacogenomics. 2014 Aug;15(11):1401–1403.
  • Umerez M, Gutierrez-Camino A, Munoz-Maldonado C, et al. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017;10:69–78. doi: 10.2147/PGPM.S107047
  • Yao P, He X, Zhang R, et al. The influence of MTHFR genetic polymorphisms on adverse reactions after methotrexate in patients with hematological malignancies: a meta-analysis. Hematology. 2019 Dec;24(1):10–19.
  • Nakano T, Kobayashi R, Matsushima S, et al. Risk factors for delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia and lymphoma. Int J Hematol. 2021 May;113(5):744–750.
  • Yang W, Karol SE, Hoshitsuki K, et al. Association of Inherited Genetic Factors with drug-induced hepatic damage among children with acute lymphoblastic leukemia. JAMA Netw Open. 2022 Dec 1;5(12):e2248803. doi: 10.1001/jamanetworkopen.2022.48803
  • Kim HS, Xiao X, Byun J, et al. Synergistic associations of PNPLA3 I148M variant, alcohol intake, and obesity with risk of cirrhosis, hepatocellular carcinoma, and mortality. JAMA Netw Open. 2022 Oct 3;5(10):e2234221. doi: 10.1001/jamanetworkopen.2022.34221
  • Campalani E, Arenas M, Marinaki AM, et al. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007 Aug;127(8):1860–7.
  • Yousef AM, Farhad R, Alshamaseen D, et al. Folate pathway genetic polymorphisms modulate methotrexate-induced toxicity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2019 Apr;83(4):755–762.
  • Oosterom N, Berrevoets M, den Hoed MAH, et al. The role of genetic polymorphisms in the thymidylate synthase (TYMS) gene in methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. Pharmacogenet Genom. 2018 Oct;28(10):223–229.
  • Karpa V, Kalinderi K, Fidani L, et al. Association of microRNA polymorphisms with toxicities induced by methotrexate in children with acute lymphoblastic leukemia. Hematol Rep. 2023 Nov 20;15(4):634–650. doi: 10.3390/hematolrep15040065
  • Wang SM, Zeng WX, Wu WS, et al. Association between a microRNA binding site polymorphism in SLCO1A2 and the risk of delayed methotrexate elimination in Chinese children with acute lymphoblastic leukemia. Leuk Res. 2018 Feb;65:61–66. doi: 10.1016/j.leukres.2018.01.004
  • Wang SM, Sun LL, Zeng WX, et al. Effects of a microRNA binding site polymorphism in SLC19A1 on methotrexate concentrations in Chinese children with acute lymphoblastic leukemia. Med Oncol. 2014 Jul;31(7):62.
  • Wang SM, Zeng WX, Wu WS, et al. Association between MTHFR microRNA binding site polymorphisms and methotrexate concentrations in Chinese pediatric patients with acute lymphoblastic leukemia. J Gene Med. 2017 Nov;19(11):353–359.
  • Gutierrez-Camino A, Umerez M, Santos B, et al. Pharmacoepigenetics in childhood acute lymphoblastic leukemia: involvement of miRNA polymorphisms in hepatotoxicity. Epigenomics. 2018 Apr 1;10(4):409–417. doi: 10.2217/epi-2017-0138
  • Zhan M, Liu T, Zhang Z, et al. Impact of microRNA polymorphisms on high-dose methotrexate-related hematological toxicities in pediatric acute lymphoblastic leukemia. Front Pediatr. 2023;11:1153767. doi: 10.3389/fped.2023.1153767
  • Forster VJ, McDonnell A, Theobald R, et al. Effect of methotrexate/vitamin B(12) on DNA methylation as a potential factor in leukemia treatment-related neurotoxicity. Epigenomics. 2017 Sep;9(9):1205–1218. doi: 10.2217/epi-2016-0165
  • Wang SM, Kong XY, Li M, et al. Association of GGH Promoter Methylation Levels with methotrexate concentrations in Chinese children with acute lymphoblastic leukemia. Pharmacotherapy. 2020 Jul;40(7):614–622.
  • Chen YC, Sheen JM, Wang SC, et al. Methotrexate neurotoxicity is related to epigenetic modification of the myelination process. Int J Mol Sci. 2021 Jun 23;22(13):6718. doi: 10.3390/ijms22136718
  • Zager RA, Johnson AC, Becker K Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure. PloS One. 2013;8(6):e66776. 10.1371/journal.pone.0066776

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.