176
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolic and toxicological considerations of Bruton’s tyrosine kinase inhibitors for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 207-224 | Received 27 Dec 2023, Accepted 20 Mar 2024, Published online: 25 Mar 2024

References

  • Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32(1):23–33. doi: 10.1016/j.annonc.2020.09.019
  • Sant M, Allemani C, Tereanu C, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116(19):3724–3734. doi: 10.1182/blood-2010-05-282632
  • Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–1748. doi: 10.1038/s41375-022-01620-2
  • Rai KR, Sawitsky A, Cronkite EP, et al. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46(2):219–234. doi: 10.1182/blood.V46.2.219.219
  • Binet JL, Auquier A, Dighiero G, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48(1):198–206. doi: 10.1002/1097-0142(19810701)48:1<198:AID-CNCR2820480131>3.0.CO;2-V
  • International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–790. doi: 10.1016/S1470-2045(16)30029-8
  • Bloehdorn J, Braun A, Taylor-Weiner A, et al. Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nat Commun. 2021;12(1):5395. doi: 10.1038/s41467-021-25403-y
  • Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–530. doi: 10.1038/nature15395
  • Burger JA. Inhibiting B-cell receptor signaling pathways in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2012;7(1):26–33. doi: 10.1007/s11899-011-0104-z
  • Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–132. doi: 10.3109/08830185.2012.664797
  • Ziegler CGK, Kim J, Piersanti K, et al. Constitutive activation of the B cell receptor underlies dysfunctional signaling in chronic lymphocytic leukemia. Cell Rep. 2019;28(4):923–937.e3. doi: 10.1016/j.celrep.2019.06.069
  • Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517–2528. doi: 10.1056/NEJMoa1812836
  • Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019;380(23):2225–2236. doi: 10.1056/NEJMoa1815281
  • Jones JA, Robak T, Brown JR, et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol. 2017;4(3):e114–e126. doi: 10.1016/S2352-3026(17)30019-4
  • Moreno C, Greil R, Demirkan F, et al. First-line treatment of chronic lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: final analysis of the randomized, phase III iLLUMINATE trial. Haematologica. 2022;107(9):2108–2120. doi: 10.3324/haematol.2021.279012
  • Stephens DM. NCCN guidelines update: chronic lymphocytic leukemia/small lymphocytic lymphoma. J Natl Compr Canc Netw. 2023;21(5.5):563–566. doi: 10.6004/jnccn.2023.5007
  • Pan Z, Scheerens H, Li S-J, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedchem. 2007;2(1):58–61. doi: 10.1002/cmdc.200600221
  • Imbruvica (ibrutinib) FDA approval history [Internet]. Drugs.com. [cited 2023 Nov 27]. Available from: https://www.drugs.com/history/imbruvica.html
  • Update on Imbruvica (ibrutinib) U.S. Accelerated approvals for mantle cell lymphoma and marginal zone lymphoma indications - drugs.com mednews [Internet]. Drugs.com. [cited 2023 Nov 27]. Available from: https://www.drugs.com/clinical_trials/update-imbruvica-ibrutinib-u-s-accelerated-approvals-mantle-cell-lymphoma-marginal-zone-lymphoma-20751.html
  • Wang ML, Jurczak W, Jerkeman M, et al. Ibrutinib plus Bendamustine and rituximab in untreated Mantle-Cell Lymphoma. N Engl J Med. 2022;386(26):2482–2494. doi: 10.1056/NEJMoa2201817
  • Nastoupil LJ, Hess G, Pavlovsky MA, et al. Phase 3 SELENE Study: ibrutinib plus BR/R-CHOP in Previously treated patients with follicular or marginal zone lymphoma. Blood Adv. 2023;7(22):7141–7150. doi: 10.1182/bloodadvances.2023010298
  • Herman SEM, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–6296. doi: 10.1182/blood-2011-01-328484
  • Ponader S, Chen S-S, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–1189. doi: 10.1182/blood-2011-10-386417
  • de Rooij MFM, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor– and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–2594. doi: 10.1182/blood-2011-11-390989
  • Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94. doi: 10.1200/JCO.2012.42.7906
  • Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637
  • Guo A, Lu P, Galanina N, et al. Heightened BTK-dependent cell proliferation in unmutated chronic lymphocytic leukemia confers increased sensitivity to ibrutinib. Oncotarget. 2016;7(4):4598–4610. doi: 10.18632/oncotarget.6727
  • Barr PM, Owen C, Robak T, et al. Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022;6(11):3440–3450. doi: 10.1182/bloodadvances.2021006434
  • Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib–Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N Engl J Med. 2019;381(5):432–443. doi: 10.1056/NEJMoa1817073
  • Niemann CU, Munir T, Moreno C, et al. Fixed-duration ibrutinib–venetoclax versus chlorambucil–obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023;24(12):1423–1433. doi: 10.1016/S1470-2045(23)00452-7
  • Ghia P, Allan J, Siddiqi T, et al. P617: Fixed-duration (fd) ibrutinib + venetoclax for first-line treatment of chronic lymphocytic leukemia (cll)/small lymphocytic lymphoma (sll): 4-y follow-up from fd cohort of phase 2 CAPTIVATE study. Hemasphere. 2023;7(S3):e2822842. doi: 10.1097/01.HS9.0000969372.28228.42
  • Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib treatment for first-line and relapsed/refractory chronic lymphocytic leukemia: final analysis of the pivotal phase Ib/II PCYC-1102 study. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(15):3918–3927. doi: 10.1158/1078-0432.CCR-19-2856
  • Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: up to six years of follow‐up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–1363. doi: 10.1002/ajh.25638
  • Fraser G, Cramer P, Demirkan F, et al. Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia. 2019;33(4):969–980. doi: 10.1038/s41375-018-0276-9
  • Niemann CU, Levin M-D, Dubois J, et al. Venetoclax and ibrutinib for patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2021;137(8):1117–1120. doi: 10.1182/blood.2020008608
  • Munir T, Pitchford A, Bloor A, et al. Sudden or cardiac deaths on ibrutinib-based therapy were associated with a prior history of hypertension or cardiac disease and the use of ACE-inhibitors at study entry: analysis from the phase III NCRI FLAIR trial. Blood. 2021;138(Supplement 1):2636. doi: 10.1182/blood-2021-152167
  • Al-Sawaf O, Zhang C, Jin HY, et al. Transcriptomic profiles and 5-year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat Commun. 2023;14(1):2147. doi: 10.1038/s41467-023-37648-w
  • Tam CS, Allan JN, Siddiqi T, et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood. 2022;139(22):3278–3289. doi: 10.1182/blood.2021014488
  • Fraser GAM, Chanan-Khan A, Demirkan F, et al. Final 5-year findings from the phase 3 HELIOS study of ibrutinib plus bendamustine and rituximab in patients with relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 2020;61(13):3188–3197. doi: 10.1080/10428194.2020.1795159
  • Kater AP, Wu JQ, Kipps T, et al. Venetoclax Plus rituximab in relapsed chronic lymphocytic leukemia: 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol. 2020;38(34):4042–4054. doi: 10.1200/JCO.20.00948
  • Ghia P, Pluta A, Wach M, et al. Acalabrutinib versus investigator’s choice in relapsed/refractory chronic lymphocytic leukemia: final ASCEND trial results. Hemasphere. 2022;6(12):e801. doi: 10.1097/HS9.0000000000000801
  • Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia. Leukemia. 2022;36(4):1171–1175. doi: 10.1038/s41375-021-01485-x
  • Barf T, Covey T, Izumi R, et al. Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017;363(2):240–252. doi: 10.1124/jpet.117.242909
  • Sharma S, Pepin X, Burri H, et al. Bioequivalence and relative bioavailability studies to assess a new acalabrutinib formulation that enables coadministration with proton-pump inhibitors. Clin Pharmacol Drug Dev. 2022;11(11):1294–1307. doi: 10.1002/cpdd.1153
  • Seymour JF, Byrd JC, Ghia P, et al. Detailed safety profile of acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial. Blood. 2023;142(8):687–699. doi: 10.1182/blood.2022018818
  • Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzumab for treatment-naive chronic lymphocytic leukaemia (ELEVATE-TN): a randomised, controlled, phase 3 trial. Lancet Lond Engl. 2020;395(10232):1278–1291. doi: 10.1016/S0140-6736(20)30262-2
  • Blackmon A, O’Brien S. An update on acalabrutinib to treat chronic lymphocytic leukemia. Drugs Today (Barc). 2021 Jul;57(7):417–431. doi: 10.1358/dot.2021.57.7.3285932
  • Wolska-Washer A, Robak T. Zanubrutinib for the treatment of lymphoid malignancies: Current status and future directions. Front Oncol. 2023;13:1130595. doi: 10.3389/fonc.2023.1130595
  • Tam CS, Trotman J, Opat S, et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood. 2019;134(11):851–859. doi: 10.1182/blood.2019001160
  • Tam CS, Ou YC, Trotman J, et al. Clinical pharmacology and PK/PD translation of the second-generation Bruton’s tyrosine kinase inhibitor, zanubrutinib. Expert Rev Clin Pharmacol. 2021;14(11):1329–1344. doi: 10.1080/17512433.2021.1978288
  • Xu W, Yang S, Tam CS, et al. Zanubrutinib monotherapy for naïve and relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: a pooled analysis of three studies. Adv Ther. 2022;39(9):4250–4265. doi: 10.1007/s12325-022-02238-7
  • Hillmen P, Eichhorst B, Brown JR, et al. Zanubrutinib versus ibrutinib in relapsed/refractory chronic lymphocytic leukemia and small lymphocytic lymphoma: interim analysis of a randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2023;41(5):1035–1045. doi: 10.1200/JCO.22.00510
  • Tam CS, Brown JR, Kahl BS, et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 trial. Lancet Oncol. 2022;23(8):1031–1043. doi: 10.1016/S1470-2045(22)00293-5
  • Brown JR, Eichhorst B, Hillmen P, et al. Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2023;388(4):319–332. doi: 10.1056/NEJMoa2211582
  • Quartermaine C, Ghazi SM, Yasin A, et al. Cardiovascular toxicities of BTK inhibitors in chronic lymphocytic leukemia: JACC: cardiooncology state-of-the-art review. JACC Cardiooncology. 2023;5(5):570–590. doi: 10.1016/j.jaccao.2023.09.002
  • Tarnowski D, Feder A-L, Trum M, et al. Ibrutinib impairs IGF-1-dependent activation of intracellular Ca handling in isolated mouse ventricular myocytes. Front Cardiovasc Med. 2023;10:1190099. doi: 10.3389/fcvm.2023.1190099
  • Shafaattalab S, Lin E, Christidi E, et al. Ibrutinib displays atrial-specific toxicity in human stem cell-derived cardiomyocytes. Stem Cell Rep. 2019;12(5):996–1006. doi: 10.1016/j.stemcr.2019.03.011
  • Xiao L, Salem J-E, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal src kinase. Circulation. 2020;142(25):2443–2455. doi: 10.1161/CIRCULATIONAHA.120.049210
  • Brandhuber B, Gomez E, Smith S, et al. LOXO-305, A next generation reversible BTK inhibitor, for overcoming acquired resistance to irreversible BTK Inhibitors. Clin Lymphoma Myeloma Leuk. 2018;18:S216. doi: 10.1016/j.clml.2018.07.081
  • Mato AR, Shah NN, Jurczak W, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study. Lancet Lond Engl. 2021;397:892–901. doi: 10.1016/S0140-6736(21)00224-5
  • Woyach JA, Wierda WG, Coombs CC, et al. BRUIN CLL-314: a phase III open-label, randomized study of pirtobrutinib (LOXO-305) versus ibrutinib in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Blood. 2022;140(Supplement 1):12427–12428. doi: 10.1182/blood-2022-157589
  • Reiff SD, Mantel R, Smith LL, et al. The BTK inhibitor ARQ 531 targets ibrutinib-resistant cll and richter transformation. Cancer Discov. 2018;8(10):1300–1315. doi: 10.1158/2159-8290.CD-17-1409
  • Woyach JA, Stephens DM, Flinn IW, et al. First in human study of the reversible BTK inhibitor nemtabrutinib in patients with relapsed/refractory chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Cancer Discov. 2023.
  • Byrd JC, Smith S, Wagner-Johnston N, et al. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget. 2018;9(16):13023–13035. doi: 10.18632/oncotarget.24310
  • Reiff SD, Muhowski EM, Guinn D, et al. Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL. Blood. 2018;132(10):1039–1049. doi: 10.1182/blood-2017-10-809020
  • Li Y-Q, Lannigan WG, Davoodi S, et al. Discovery of novel Bruton’s tyrosine kinase PROTACs with enhanced selectivity and cellular efficacy. J Med Chem. 2023;66(11):7454–7474. doi: 10.1021/acs.jmedchem.3c00176
  • Allan JN, Pinilla-Ibarz J, Gladstone DE, et al. Phase Ib dose-escalation study of the selective, non-covalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies. Haematologica. 2022;107(4):984–987. doi: 10.3324/haematol.2021.280061
  • Aslan B, Hubner SE, Fox JA, et al. Vecabrutinib inhibits B-cell receptor signal transduction in chronic lymphocytic leukemia cell types with wild-type or mutant Bruton tyrosine kinase. Haematologica. 2021;107(1):292–297. doi: 10.3324/haematol.2021.279158
  • Jebaraj BMC, Müller A, Dheenadayalan RP, et al. Evaluation of vecabrutinib as a model for noncovalent BTK/ITK inhibition for treatment of chronic lymphocytic leukemia. Blood. 2022;139(6):859–875. doi: 10.1182/blood.2021011516
  • Robak T, Witkowska M, Smolewski P. The role of Bruton’s kinase inhibitors in chronic lymphocytic leukemia: current status and future directions. Cancers (Basel). 2022;14(3):771.
  • Zygmunciak P, Robak T, Puła B. Treatment Of double-refractory chronic lymphocytic leukemia—an unmet clinical need. IJMS. 2024;25(3):1589. doi: 10.3390/ijms25031589
  • Kittai A, Skarbnik A, Miranda M, et al. A matching-adjusted indirect comparison (MAIC) of the efficacy and safety of acalabrutinib (acala) versus zanubrutinib (zanu) in relapsed or refractory chronic lymphocytic leukemia (RR CLL). J Clin Oncol. 2023;41(16_suppl):7540–7540. doi: 10.1200/JCO.2023.41.16_suppl.7540
  • Thompson PA, Bazinet A, Wierda WG, et al. Sustained remissions in CLL after frontline FCR treatment with very-long-term follow-up. Blood. 2023;142(21):1784–1788. doi: 10.1182/blood.2023020158
  • Wolska-Washer A, Robak T. Acalabrutinib: a bruton tyrosine kinase inhibitor for the treatment of chronic lymphocytic leukemia. Expert Rev Hematol. 2022;15(3):183–194. doi: 10.1080/17474086.2022.2054800
  • Molica S, Tam C, Allsup D, et al. Advancements in the treatment of CLL: The rise of zanubrutinib as a preferred therapeutic option. Cancers (Basel). 2023;15(14):3737. doi: 10.3390/cancers15143737
  • Ryan CE, Davids MS, Hermann R, et al. MAJIC: a phase III trial of acalabrutinib + venetoclax versus venetoclax + obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Future Oncol Lond Engl. 2022;18(33):3689–3699. doi: 10.2217/fon-2022-0456

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.