106
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical pharmacokinetics and pharmacodynamics of oral systemic nonbiologic therapies for psoriasis patients

, ORCID Icon, , &
Pages 249-262 | Received 04 Feb 2024, Accepted 22 Mar 2024, Published online: 28 Mar 2024

References

  • Armstrong A, Mehta M, Schupp C, et al. Psoriasis prevalence in adults in the United States. JAMA Dermatol. 2021;157(8):940–946. doi: 10.1001/jamadermatol.2021.2007
  • Zhou X, Chen Y, Cui L, et al. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 2022;13(1):1–13. doi: 10.1038/s41419-022-04523-3
  • Kimmel GW, Lebwohl M. Psoriasis: overview and diagnosis. Evid-Based Psoriasis. 2018;1–16.
  • Hendriks AGM, Keijsers RRMC, de Jong EMGJ, et al. Efficacy and safety of combinations of first-line topical treatments in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol JEADV. 2013;27(8):931–951. doi: 10.1111/jdv.12058
  • Balak DMW. First-line systemic treatment of psoriasis: staying conventional or going biologic? Br J Dermatol. 2017;177(4):897–898. doi: 10.1111/bjd.15885
  • Hsieh T, Tsai T. Combination of methotrexate with oral disease-modifying antirheumatic drugs in psoriatic arthritis: a systematic review. Immunotherapy. 2024;16(2):115–130. doi: 10.2217/imt-2023-0139
  • Bath RK, Brar NK, Forouhar FA, et al. A review of methotrexate-associated hepatotoxicity. J Dig Dis. 2014;15:517–524. doi: 10.1111/1751-2980.12184
  • Markham T, Watson A, Rogers S. Adverse effects with long-term cyclosporin for severe psoriasis: adverse effects of long-term cyclosporin. Clin Exp Dermatol. 2002;27(2):111–114. doi: 10.1046/j.1365-2230.2002.00998.x
  • Dogra S, Krishna V, Kanwar AJ. Efficacy and safety of systemic methotrexate in two fixed doses of 10 mg or 25 mg orally once weekly in adult patients with severe plaque-type psoriasis: a prospective, randomized, double-blind, dose-ranging study: methotrexate in psoriasis. Clin Exp Dermatol. 2012;37(7):729–734. doi: 10.1111/j.1365-2230.2012.04440.x
  • Radmanesh M, Rafiei B, Moosavi Z, et al. Weekly vs. daily administration of oral methotrexate (MTX) for generalized plaque psoriasis: a randomized controlled clinical trial. Int J Dermatol. 2011;50(10):1291–1293. doi: 10.1111/j.1365-4632.2011.04967.x
  • Jensen P, Skov L. Psoriasis and obesity. Dermatology. 2016;232(6):633–639. doi: 10.1159/000455840
  • Hutmacher M, Papp K, Krishnaswami S, et al. Evaluating dosage optimality for tofacitinib, an Oral Janus Kinase Inhibitor, in plaque psoriasis, and the influence of body weight. CPT: Pharmacomet Syst Pharmacol. 2017;6:322–330. doi: 10.1002/psp4.12182
  • Guenther LC, Kunynetz R, Lynde CW, et al. Acitretin use in dermatology. J Cutan Med Surg. 2017;21(3_suppl):2S–12S. doi: 10.1177/1203475417733414
  • Pilkington T, Brogden RN. Acitretin: a review of its pharmacology and therapeutic use. Drugs. 1992;43(4):597–627. doi: 10.2165/00003495-199243040-00010
  • LeMotte P, Keidel 2S, Apfel C. Characterization of synthetic retinoids with selectivity for retinoic acid or retinoid X nuclear receptors. Biochim Biophys Acta. 1996;1289:298–304. doi: 10.1016/0304-4165(95)00179-4
  • Carretero G, Ribera M, Belinchón I, et al. Guidelines for the use of acitretin in psoriasis. Psoriasis Group of the Spanish Academy of Dermatology and venereology. Actas Dermosifiliogr. 2013;104:598–616. doi: 10.1016/j.ad.2013.01.003
  • Diaz BV, Lenoir M-C, Ladoux A, et al. Regulation of Vascular Endothelial Growth Factor Expression in human keratinocytes by retinoids*. J Biol Chem. 2000;275(1):642–650. doi: 10.1074/jbc.275.1.642
  • Cai A, Liu N, Lin Z, et al. In vitro effects of acitretin on human neuronal SH-SY5Y cells. Neurochem Res. 2023;48(1):72–81. doi: 10.1007/s11064-022-03716-8
  • Niu X, Cao W, Ma H, et al. Acitretin exerted a greater influence on T-helper (Th)1 and Th17 than on Th2 cells in treatment of psoriasis vulgaris. J Dermatol. 2012;39(11):916–921. doi: 10.1111/j.1346-8138.2012.01637.x
  • Sarkar R, Chugh S, Garg V. Acitretin in dermatology. Indian J Dermatol Venereol Leprol. 2013;79(6):759. doi: 10.4103/0378-6323.120721
  • PubChem. Acitretin [Internet]. [cited 2024 Jan 25]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5284513
  • Lee CS, Li K. A review of acitretin for the treatment of psoriasis. Expert Opin Drug Saf. 2009;8(6):769–779. doi: 10.1517/14740330903393732
  • Ghasri P, Yentzer BA, Dabade TS, et al. Acitretin for the treatment of psoriasis: an assessment of national trends. J Drugs Dermatol JDD. 2011;10:873–877.
  • Lebwohl M, Drake L, Menter A, et al. Consensus conference: acitretin in combination with UVB or PUVA in the treatment of psoriasis. J Am Acad Dermatol. 2001;45:544–553. doi: 10.1067/mjd.2001.116347
  • Ruzicka T, Sommerburg C, Braun-Falco O, et al. Efficiency of acitretin in combination with UV-B in the treatment of severe psoriasis. Arch dermatol. 1990;126:482–486. doi: 10.1001/archderm.1990.01670280066012
  • Arora S, Das P, Arora G. Systematic review and recommendations to combine newer therapies with conventional therapy in psoriatic disease. Front Med. 2021;19:696597. doi: 10.3389/fmed.2021.696597
  • Tanew A, Guggenbichler A, Hönigsmann H, et al. Photochemotherapy for severe psoriasis without or in combination with acitretin: a randomized, double-blind comparison study. J Am Acad Dermatol. 1991;25(4):682–684. doi: 10.1016/0190-9622(91)70253-X
  • Pearce DJ, Klinger S, Ziel KK, et al. Low-dose acitretin is associated with fewer adverse events than high-dose acitretin in the treatment of psoriasis. Arch Dermatol. 2006;142(8):1000–1004. doi: 10.1001/archderm.142.8.1000
  • Bangsgaard N, Rørbye C, Skov L. Treating psoriasis during pregnancy: safety and efficacy of treatments. Am J Clin Dermatol. 2015;16(5):389–398. doi: 10.1007/s40257-015-0137-5
  • Drugs and Lactation database (LactMed®). National Institute of Child Health and Human Development. 2006. [cited 2023 Dec 24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK501922/
  • Sadowska M, Narbutt J, Skibińska M, et al. Pros and cons of using systemic acitretin in the paediatric population. Adv Dermatol Allergol Dermatol Alergol. 2022;39:34–38. doi: 10.5114/ada.2020.98558
  • Chan ESL, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Research. 2002;4:266–273. doi: 10.1186/ar419
  • Menter A, Gelfand JM, Connor C, et al. Joint American Academy of Dermatology–National Psoriasis Foundation guidelines of care for the management of psoriasis with systemic nonbiologic therapies. J Am Acad Dermatol. 2020;82(6):1445–1486. doi: 10.1016/j.jaad.2020.02.044
  • Cream JJ, Pole DS. The effect of methotrexate and hydroxyurea on neutrophil chemotaxis. Br J Dermatol. 1980;102(5):557–563. doi: 10.1111/j.1365-2133.1980.tb07655.x
  • Ternowitz T, Herlin T. Neutrophil and monocyte chemotaxis in methotrexate-treated psoriasis patients. Acta Derm Venereol Suppl (Stockh). 1985;120:23–26.
  • Saporito FC, Menter MA. Methotrexate and psoriasis in the era of new biologic agents. J Am Acad Dermatol. 2004;50(2):301–309. doi: 10.1016/S0190-9622(03)00803-X
  • Jeffes EWB, McCullough JL, Pittelkow MR, et al. Methotrexate therapy of psoriasis: differential sensitivity of proliferating lymphoid and epithelial cells to the Cytotoxic and growth-inhibitory effects of methotrexate. J Invest Dermatol. 1995;104(2):183–188. doi: 10.1111/1523-1747.ep12612745
  • Genestier L, Paillot R, Fournel S, et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest. 1998;102(2):322–328. doi: 10.1172/JCI2676
  • Weinstein GD, Goldfaden G, Frost P. Methotrexate: mechanism of action on DNA synthesis in psoriasis. Arch Dermatol. 1971;104:236–243. doi: 10.1001/archderm.1971.04000210010003
  • Grim J, Chl?dek J, Mart?nkov? J. Pharmacokinetics and pharmacodynamics of methotrexate in Non-Neoplastic diseases. Clin Pharmacokinet. 2003;42:139–151. doi: 10.2165/00003088-200342020-00003
  • Oguey D, Kölliker F, Gerber NJ, et al. Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1992;35(6):611–614. doi: 10.1002/art.1780350603
  • Vena G, Cassano N, Iannone F. Update on subcutaneous methotrexate for inflammatory arthritis and psoriasis. Ther Clin Risk Manag. 2018;9:105–116. doi: 10.2147/TCRM.S154745
  • Brooks PJ, Spruill WJ, Parish RC, et al. Pharmacokinetics of methotrexate administered by intramuscular and subcutaneous injections in patients with rheumatoid arthritis. Arthritis Rheum. 1990;33(1):91–94. doi: 10.1002/art.1780330112
  • Jundt JW, Browne BA, Fiocco GP, et al. A comparison of low dose methotrexate bioavailability: oral solution, oral tablet, subcutaneous and intramuscular dosing. J Rheumatol. 1993;20:1845–1849.
  • Attwa E, Elkot R, Abdelshafey A, et al. Subcutaneous methotrexate versus oral form for the treatment and prophylaxis of chronic plaque psoriasis. Dermatol Ther. 2019;32(5):e13051. doi: 10.1111/dth.13051
  • Choonhakarn C, Chaowattanapanit S, Julanon N, et al. Comparison of the clinical efficacy of subcutaneous vs. oral administration of methotrexate in patients with psoriasis vulgaris: a randomized controlled trial. Clin Exp Dermatol. 2022;47(5):942–948. doi: 10.1111/ced.15102
  • Dogra S, Singh N, Kumar S, et al. Comparison of overall efficacy and safety of oral versus subcutaneous methotrexate in severe psoriasis. Dermatol Ther. 2022;35(8):e15656. doi: 10.1111/dth.15656
  • van Ede AE, Laan RFJM, Blom HJ, et al. Methotrexate in rheumatoid arthritis: an updatewith focus on mechanisms involved in toxicity. Semin Arthritis Rheum. 1998;27:277–292. doi: 10.1016/S0049-0172(98)80049-8
  • Bjerring P, Beck H, Zachariae H, et al. Topical treatment of psoriatic skin with methotrexate cream: a clinical, pharmacokinetic, and histological study. Acta Derm Venereol. 1986;66(6):515–519. doi: 10.2340/0001555566515519
  • Hendel J, Nyfors A. Impact of methotrexate therapy on the folate status of psoriatic patients. Clin Exp Dermatol. 1985;10(1):30–35. doi: 10.1111/j.1365-2230.1985.tb02548.x
  • Seideman P, Beck O, Eksborg S, et al. The pharmacokinetics of methotrexate and its 7‐hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol. 1993;35(4):409–412. doi: 10.1111/j.1365-2125.1993.tb04158.x
  • Godfrey C, Sweeney K, Miller K, et al. The population pharmacokinetics of long-term methotrexate in rheumatoid arthritis. Br J Clin Pharmacol. 1998;46(4):369–376. doi: 10.1046/j.1365-2125.1998.t01-1-00790.x
  • Grozdev IS, Van Voorhees AS, Gottlieb AB, et al. Psoriasis in the elderly: from the medical board of the national psoriasis foundation. J Am Acad Dermatol. 2011;65(3):537–545. doi: 10.1016/j.jaad.2010.05.014
  • Kalb RE, Strober B, Weinstein G, et al. Methotrexate and psoriasis: 2009 national psoriasis foundation consensus conference. J Am Acad Dermatol. 2009;60:824–837. doi: 10.1016/j.jaad.2008.11.906
  • Hendel J, Nyfors A. Pharmacokinetics of methotrexate in erythrocytes in psoriasis. Eur J Clin Pharmacol. 1984;27(5):607–610. doi: 10.1007/BF00556900
  • Olsen EA. The pharmacology of methotrexate. J Am Acad Dermatol. 1991;25(2):306–318. doi: 10.1016/0190-9622(91)70199-C
  • West J, Ogston S, Foerster J. Safety and efficacy of methotrexate in psoriasis: a meta-analysis of published trials. Chopra A, editor. PloS One. 2016;11:e0153740. doi: 10.1371/journal.pone.0153740
  • Saurat J-H, Stingl G, Dubertret L, et al. Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (CHAMPION): adalimumab vs. methotrexate in psoriasis. Br J Dermatol. 2007;158(3):558–566. doi: 10.1111/j.1365-2133.2007.08315.x
  • Sbidian E, Chaimani A, Guelimi R, et al. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta‐analysis. Cochrane Database Syst Rev [Internet]. 2023 [cited 2024 Jan 24]; 2023(7). doi: 10.1002/14651858.CD011535.pub6
  • Barker J, Hoffmann M, Wozel G, et al. Efficacy and safety of infliximab vs. methotrexate in patients with moderate‐to‐severe plaque psoriasis: results of an open‐label, active‐controlled, randomized trial (RESTORE1). Br J Dermatol. 2011;165(5):1109–1117. doi: 10.1111/j.1365-2133.2011.10615.x
  • Jabbar-Lopez ZK, Yiu ZZN, Ward V, et al. Quantitative evaluation of biologic therapy options for psoriasis: a systematic review and network meta-analysis. J Invest Dermatol. 2017;137(8):1646–1654. doi: 10.1016/j.jid.2017.04.009
  • Rosmarin DM, Lebwohl M, Elewski BE, et al. Cyclosporine and psoriasis: 2008 national psoriasis foundation consensus conference. J Am Acad Dermatol. 2010;62:838–853. doi: 10.1016/j.jaad.2009.05.017
  • Haider AS, Lowes MA, Suarez- FarinFarinas M, et al. Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and Inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine a in Psoriasis1. J Immunol. 2008;180(3):1913–1920. doi: 10.4049/jimmunol.180.3.1913
  • Faulds D, Goa KL, Benfield P. Cyclosporin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs. 1993;45:953–1040. doi: 10.2165/00003495-199345060-00007
  • Maza A, Montaudié H, Sbidian E, et al. Oral cyclosporin in psoriasis: a systematic review on treatment modalities, risk of kidney toxicity and evidence for use in non-plaque psoriasis. J Eur Acad Dermatol Venereol. 2011;25(s2):19–27. doi: 10.1111/j.1468-3083.2011.03992.x
  • Ho VCY, Griffiths CEM, Berth-Jones J, et al. Intermittent short courses of cyclosporine microemulsion for the long-term management of psoriasis: a 2-year cohort study. J Am Acad Dermatol. 2001;44(4):643–651. doi: 10.1067/mjd.2001.112400
  • Shupack J, Drake L, Levine N, et al. Cyclosporine as maintenance therapy in patients with severe psoriasis. J Am Acad Dermatol. 1997;36(3):423–432. doi: 10.1016/S0190-9622(97)80219-8
  • Berth‐Jones J. The use of ciclosporin in psoriasis. J Dermatol Treat. 2005;16(5–6):258–277. doi: 10.1080/09546630500423914
  • Soleymani T, Vassantachart JM, Wu JJ. Comparison of guidelines for the use of cyclosporine for psoriasis: a critical appraisal and comprehensive review. J Drugs Dermatol. 2016;15:293–301.
  • Ramirez-Fort MK, Levin AA, Au S, et al. Continuous versus intermittent therapy for moderate-to-severe psoriasis. Clin Exp Rheumatol. 2013;31:S63–70.
  • Chaidemenos G, Mourellou O, Avgoustinaki N, et al. Intermittent vs. continuous 1-year cyclosporin use in chronic plaque psoriasis. J Eur Acad Dermatol Venereol. 2007;21(9):1203–1208. doi: 10.1111/j.1468-3083.2007.02226.x
  • Ohtsuki M, Nakagawa H, Sugai J, et al. Long-term continuous versus intermittent cyclosporin: therapy for psoriasis. J Dermatol. 2003;30(4):290–298. doi: 10.1111/j.1346-8138.2003.tb00390.x
  • Schafer PH, Chen P, Fang L, et al. The pharmacodynamic impact of apremilast, an oral phosphodiesterase 4 inhibitor, on circulating levels of inflammatory biomarkers in patients with psoriatic arthritis: substudy results from a phase III, randomized, placebo-controlled trial (PALACE 1). J Immunol Res. 2015;2015:1–10. doi: 10.1155/2015/906349
  • Papp K, Reich K, Leonardi CL, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (efficacy and safety trial evaluating the effects of apremilast in psoriasis [ESTEEM] 1). J Am Acad Dermatol. 2015;73(1):37–49. doi: 10.1016/j.jaad.2015.03.049
  • Pincelli C, Schafer PH, French LE, et al. Mechanisms underlying the clinical effects of apremilast for psoriasis. J Drugs Dermatol. 2018;17:835–840.
  • Imafuku S, Nemoto O, Okubo Y, et al. Pharmacodynamic analysis of apremilast in Japanese patients with moderate to severe psoriasis: results from a phase 2b randomized trial. J Dermatol. 2021;48(1):80–84. doi: 10.1111/1346-8138.15596
  • Strober B, Alikhan A, Lockshin B, et al. Apremilast mechanism of efficacy in systemic-naive patients with moderate plaque psoriasis: pharmacodynamic results from the UNVEIL study. J Dermatol Sci. 2019;96(3):126–133. doi: 10.1016/j.jdermsci.2019.09.003
  • Medvedeva IV, Stokes ME, Eisinger D, et al. Large-scale analyses of disease biomarkers and apremilast pharmacodynamic effects. Sci Rep. 2020;10:p. 605.
  • Paller AS, Hong Y, Becker EM, et al. Pharmacokinetics and safety of apremilast in pediatric patients with moderate to severe plaque psoriasis: results from a phase 2 open-label study. J Am Acad Dermatol. 2020;82(2):389–397. doi: 10.1016/j.jaad.2019.08.019
  • Hoffmann M, Kumar G, Schafer P, et al. Disposition, metabolism and mass balance of [14 C]apremilast following oral administration. Xenobiotica. 2011;41(12):1063–1075. doi: 10.3109/00498254.2011.604745
  • Panda G, Sahoo JP, Mohanty P, et al. Apremilast or methotrexate: the arrows in the quiver for psoriasis. Cureus [Internet]. 2023 [cited 2024 Jan 23]; Available from]. Available from: https://www.cureus.com/articles/156907-apremilast-or-methotrexate-the-arrows-in-the-quiver-for-psoriasis
  • Reich K, Gooderham M, Green L, et al. The efficacy and safety of apremilast, etanercept and placebo in patients with moderate‐to‐severe plaque psoriasis: 52‐week results from a phase IIIb, randomized, placebo‐controlled trial (LIBERATE). J Eur Acad Dermatol Venereol. 2017;31(3):507–517. doi: 10.1111/jdv.14015
  • Armstrong AW, Gooderham M, Warren RB, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88(1):29–39. doi: 10.1016/j.jaad.2022.07.002
  • Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–287. doi: 10.1111/j.1600-065X.2008.00754.x
  • Ghoreschi K, Gadina MJ. Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol. 2014;23(1):7–11. doi: 10.1111/exd.12265
  • Ghoreschi K, Weigert C, Röcken M. Immunopathogenesis and role of T cells in psoriasis. Clin Dermatol. 2007;25(6):574–580. doi: 10.1016/j.clindermatol.2007.08.012
  • Ghoreschi K, Jesson MI, Li X, et al. Modulation of innate and adaptive immune responses by Tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–4243. doi: 10.4049/jimmunol.1003668
  • Kurtovic N, Halilovic E. Serum concentrations of interferon gamma (IFN- and #947;) in patients with psoriasis: correlation with clinical type and severity of the disease. Med Arch. 2018;72:410. doi: 10.5455/medarh.2018.72.410-413
  • Kurtovic N, Halilovic E. Serum levels of tumor necrosis factor - alpha in patients with psoriasis. Mater Socio Medica. 2022;34(1):40. doi: 10.5455/msm.2022.33.40-43
  • Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–3194. doi: 10.1084/jem.20071094
  • Stritesky G, Yeh N, Kaplan M. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol. 2008;181(9):5948–5955. doi: 10.4049/jimmunol.181.9.5948
  • Pfizer. XeljanzTM (tofacitinib) tablets, for oral use: US prescribing information. 2012. Available from: https://labeling.pfizer.com/showlabeling.aspx?id=959.
  • US Department of Health and Human Services. Clinical Pharmacology And Biopharmaceutics Review(s). Application Number: 203214Orig1s000. 2011. cited 2024 Jan 10.
  • Riese RJ, Krishnaswami S, Kremer J. Inhibition of JAK kinases in patients with rheumatoid arthritis: scientific rationale and clinical outcomes. Best Pract Res Clin Rheumatol. 2010;24(4):513–526. doi: 10.1016/j.berh.2010.02.003
  • Hutmacher MM, Krishnaswami S, Kowalski KG. Exposure-response modeling using latent variables for the efficacy of a JAK3 inhibitor administered to rheumatoid arthritis patients. J Pharmacokinet Pharmacodyn. 2008;35(2):139–157. doi: 10.1007/s10928-007-9080-2
  • Gupta P, Chow V, Wang R, et al. Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin Pharmacol Drug Dev. 2014;3(1):72–77. doi: 10.1002/cpdd.71
  • US Food and Drug Administration. Xeljanz® highlights of prescribing information. 2018 cited 2024 Jan 10.
  • Krishnaswami S, Boy M, Chow V, et al. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Pharmacol Drug Dev. 2015;4(2):83–88. doi: 10.1002/cpdd.171
  • Xie R, Deng C, Wang Q, et al. Population pharmacokinetics of tofacitinib in patients with psoriatic arthritis. Int J Clin Pharmacol Ther. 2019;57(9):464–473. doi: 10.5414/CP203516
  • Tian F, Chen Z, Xu T. Efficacy and safety of tofacitinib for the treatment of chronic plaque psoriasis: a systematic review and meta-analysis. J Int Med Res. 2019;47(6):2342–2350. doi: 10.1177/0300060519847414
  • Papp KA, Menter A, Strober B, et al. Efficacy and safety of tofacitinib, an oral janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study: tofacitinib improves the clinical signs of psoriasis. Br J Dermatol. 2012;167(3):668–677. doi: 10.1111/j.1365-2133.2012.11168.x
  • Papp KA, Menter MA, Abe M, et al. Tofacitinib, an oral janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, phase III trials. Br J Dermatol. 2015;173(4):949–961. doi: 10.1111/bjd.14018
  • Merola JF, Elewski B, Tatulych S, et al. Efficacy of tofacitinib for the treatment of nail psoriasis: two 52-week, randomized, controlled phase 3 studies in patients with moderate-to-severe plaque psoriasis. J Am Acad Dermatol. 2017;77(1):79–87.e1. doi: 10.1016/j.jaad.2017.01.053
  • Bachelez H, Van De Kerkhof PCM, Strohal R, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386(9993):552–561. doi: 10.1016/S0140-6736(14)62113-9
  • Bissonnette R, Iversen L, Sofen H, et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br J Dermatol. 2015;172(5):1395–1406. doi: 10.1111/bjd.13551
  • Mease P, Hall S, FitzGerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537–1550. doi: 10.1056/NEJMoa1615975
  • Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525–1536. doi: 10.1056/NEJMoa1615977
  • Nash P, Coates LC, Fleishaker D, et al. Safety and efficacy of tofacitinib up to 48 months in patients with active psoriatic arthritis: final analysis of the OPAL balance long-term extension study. Lancet Rheumatol. 2021;3(4):e270–e283. doi: 10.1016/S2665-9913(21)00010-2
  • Griffiths CEM, Vender R, Sofen H, et al. Effect of tofacitinib withdrawal and re‐treatment on patient‐reported outcomes: results from a phase 3 study in patients with moderate to severe chronic plaque psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):323–332. doi: 10.1111/jdv.13808
  • McInnes IB, Anderson JK, Magrey M, et al. Trial of Upadacitinib and adalimumab for psoriatic arthritis. N Engl J Med. 2021;384(13):1227–1239. doi: 10.1056/NEJMoa2022516
  • Mease PJ, Lertratanakul A, Anderson JK, et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann Rheum Dis. 2021;80(3):312–320. doi: 10.1136/annrheumdis-2020-218870
  • Burke JR, Cheng L, Gillooly KM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736. doi: 10.1126/scitranslmed.aaw1736
  • Nogueira M, Puig L, Torres T. JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs. 2020;80(4):341–352. doi: 10.1007/s40265-020-01261-8
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–862. doi: 10.1038/nrd.2017.201
  • Krueger JG, McInnes IB, Blauvelt A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J Am Acad Dermatol. 2022;86:148–157. doi: 10.1016/j.jaad.2021.06.869
  • Shaw MH, Boyartchuk V, Wong S, et al. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc Natl Acad Sci USA. 2003;100(20):11594–11599. doi: 10.1073/pnas.1930781100
  • Lazear HM, Nice TJ, Diamond MS. Interferon-λ: immune functions at barrier surfaces and beyond. Immunity. 2015;43(1):15–28. doi: 10.1016/j.immuni.2015.07.001
  • Catlett IM, Aras U, Hansen L, et al. First‐in‐human study of deucravacitinib: a selective, potent, allosteric inhibitor of tyrosine kinase 2. Clin Transl Sci. 2023;16:151–164. doi: 10.1111/cts.13435
  • Lé AM, Puig L, Torres T. Deucravacitinib for the treatment of psoriatic disease. Am J Clin Dermatol. 2022;23(6):813–822. doi: 10.1007/s40257-022-00720-0
  • Tokarski JS, Zupa-Fernandez A, Tredup JA, et al. Tyrosine Kinase 2-mediated signal transduction in T lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J Biol Chem. 2015;290(17):11061–11074. doi: 10.1074/jbc.M114.619502
  • Gillooly K, Zhang Y, Yang X, et al. BMS-986165 is a highly potent and selective Allosteric Inhibitor of Tyk2, blocks IL-12, IL-23 and type I interferon signaling and provides for robust efficacy in preclinical models of systemic lupus erythematosus and inflammatory bowel disease [internet]. ACR Meet. Abstr. [cited 2024 Jan 27]. Available from: https://acrabstracts.org/abstract/bms-986165-is-a-highly-potent-and-selective-allosteric-inhibitor-of-tyk2-blocks-il-12-il-23-and-type-i-interferon-signaling-and-provides-for-robust-efficacy-in-preclinical-models-of-systemic-lupus-e/
  • Kim LS, Wu JJ, Han G. Deucravacitinib for psoriasis. Curr Dermatol Rep. 2021;10(1):1–5. doi: 10.1007/s13671-020-00326-x
  • Hoy SM. Deucravacitinib: first approval. Drugs. 2022;82:1671–1679. doi: 10.1007/s40265-022-01796-y
  • Bristol Myers Squibb. SOTYKTUTM (deucravacitinib) tablets, for oral use: US prescribing information. 2022. cited 10 Jan 2024. https://packageinserts.bms.com/pi/pi_sotyktu.pdf.
  • Chimalakonda A, Burke J, Cheng L, et al. Selectivity profile of the tyrosine kinase 2 inhibitor deucravacitinib compared with janus Kinase 1/2/3 inhibitors. Dermatol Ther (Heidelb). 2021;11(5):1763–1776. doi: 10.1007/s13555-021-00596-8
  • Papp K, Gordon K, Thaçi D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313–1321. doi: 10.1056/NEJMoa1806382
  • Mease PJ, Deodhar AA, Van Der Heijde D, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022;81(6):815–822. doi: 10.1136/annrheumdis-2021-221664
  • Strober B, Thaçi D, Sofen H, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program for evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023;88(1):40–51. doi: 10.1016/j.jaad.2022.08.061
  • Armstrong AW, Warren RB, Zhong Y, et al. Short-, mid-, and long-term efficacy of deucravacitinib versus biologics and nonbiologics for plaque psoriasis: a network meta-analysis. Dermatol Ther (Heidelb). 2023;13(11):2839–2857. doi: 10.1007/s13555-023-01034-7
  • Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13(4):234–243. doi: 10.1038/nrrheum.2017.23
  • Zhang L, Guo L, Wang L, et al. The efficacy and safety of tofacitinib, peficitinib, solcitinib, baricitinib, abrocitinib and deucravacitinib in plaque psoriasis – a network meta-analysis. J Eur Acad Dermatol Venereol. 2022;36(11):1937–1946. doi: 10.1111/jdv.18263
  • Chandran V, Siannis F, Rahman P, et al. Folate pathway enzyme gene polymorphisms and the efficacy and toxicity of methotrexate in psoriatic arthritis. J Rheumatol. 2010;37(7):1508–1512. doi: 10.3899/jrheum.091311
  • Vasilopoulos Y, Sarri C, Zafiriou E, et al. A pharmacogenetic study of ABCB1 polymorphisms and cyclosporine treatment response in patients with psoriasis in the Greek population. Pharmacogenomics J. 2014;14(6):523–525. doi: 10.1038/tpj.2014.23
  • Zhou X, He Y, Kuang Y, et al. HLA-DQA1 and DQB1 alleles are associated with acitretin response in patients with psoriasis. Front Biosci-Landmark. 2022;27:266. doi: 10.31083/j.fbl2709266
  • Huang Y-W, Tsai T-F. HLA-Cw1 and psoriasis. Am J Clin Dermatol. 2021;22(3):339–347. doi: 10.1007/s40257-020-00585-1
  • Guarene M, Pasi A, Bolcato V, et al. The presence of HLA-A Bw4-80I KIR ligands could predict “difficult-to-treat” psoriasis and poor response to Etanercept. Mol Diagn Ther. 2018;22:471–474. doi: 10.1007/s40291-018-0345-9
  • Ho S-S, Tsai T-F. Associations between HLA-Cw1 and systemic treatment response of Asian psoriasis patients. Mol Diagn Ther. 2022;26(5):541–549. doi: 10.1007/s40291-022-00603-4
  • West J, Ogston S, Berg J, et al. HLA‐Cw6‐positive patients with psoriasis show improved response to methotrexate treatment. Clin Exp Dermatol. 2017;42(6):651–655. doi: 10.1111/ced.13100
  • van Vugt LJ, van den Reek JMPA, Hannink G, et al. Association of HLA-C*06: 02 status with differential response to Ustekinumab in patients with psoriasis: a systematic review and meta-analysis. JAMA Dermatol. 2019;155:708–715. doi: 10.1001/jamadermatol.2019.0098
  • Li K, Huang CC, Randazzo B, et al. HLA-C*06: 02 allele and response to IL-12/23 inhibition: results from the ustekinumab phase 3 psoriasis program. J Invest Dermatol. 2016;136:2364–2371. doi: 10.1016/j.jid.2016.06.631
  • Temel B, Adisen E, Gonen S. HLA-Cw6 status and treatment responses between psoriasis patients. Indian J Dermatol. 2021;66(6):632–637. doi: 10.4103/ijd.IJD_282_21
  • Chen L, Tsai T-F. HLA-Cw6 and psoriasis. Br J Dermatol. 2018;178(4):854–862. doi: 10.1111/bjd.16083
  • Costanzo A, Bianchi L, Flori ML, et al. Secukinumab shows high efficacy irrespective of HLA-Cw6 status in patients with moderate-to-severe plaque-type psoriasis: SUPREME study. Br J Dermatol. 2018;179(5):1072–1080. doi: 10.1111/bjd.16705
  • Shagalov DR, Ferzli GM, Wildman T, et al. Genetic testing in dermatology: a survey analyzing obstacles to appropriate care. Pediatr Dermatol. 2017;34(1):33–38. doi: 10.1111/pde.12981
  • Deverka PA, Kaufman D, McGuire AL. Overcoming the reimbursement barriers for clinical sequencing. JAMA. 2014;312(18):1857–1858. doi: 10.1001/jama.2014.14915
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med Off J Am Coll Med Genet. 2015;17:405–424. doi: 10.1038/gim.2015.30
  • Hermans C, Herranz P, Segaert S, et al. Current practice of therapeutic drug monitoring of biopharmaceuticals in psoriasis patients. Ther Drug Monit. 2017;39(4):356–359. doi: 10.1097/FTD.0000000000000401
  • Gehin JE, Goll GL, Brun MK, et al. Assessing immunogenicity of biologic drugs in inflammatory joint diseases: progress towards personalized medicine. BioDrugs Clin Immunother Biopharm Gene Ther. 2022;36(6):731–748. doi: 10.1007/s40259-022-00559-1
  • Syversen SW, Goll GL, Jørgensen KK, et al. Effect of therapeutic drug monitoring vs standard therapy during infliximab induction on disease remission in patients with chronic immune-mediated inflammatory diseases: a randomized clinical trial. JAMA. 2021;325(17):1744–1754. doi: 10.1001/jama.2021.4172
  • Elberdín L, Fernández-Torres RM, Mateos M, et al. Real-world use of ustekinumab therapeutic drug monitoring in moderate to severe psoriasis. Front Med. 2022;9:1017323. doi: 10.3389/fmed.2022.1017323
  • Sukhpreet TP. Therapeutic drug monitoring of immunosuppressants – an overview. Indian J Pharmacol. 2007;39:66–70. doi: 10.4103/0253-7613.32522
  • Carroll CL, Feldman SR, Camacho FT, et al. Better medication adherence results in greater improvement in severity of psoriasis. Br J Dermatol. 2004;151(4):895–897. doi: 10.1111/j.1365-2133.2004.06174.x
  • Thorneloe RJ, Bundy C, Griffiths CEM, et al. Adherence to medication in patients with psoriasis: a systematic literature review. Br J Dermatol. 2013;168(1):20–31. doi: 10.1111/bjd.12039
  • Liau MM, Oon HH. Therapeutic drug monitoring of biologics in psoriasis. Biol Targets Ther. 2019;13:127–132. doi: 10.2147/BTT.S188286
  • Tikhonova I, Yang H, Salmon A, et al. Therapeutic monitoring of TNF-alpha inhibitors in rheumatoid arthritis [internet]. University of Exeter. 2019 [cited 2024 Jan 25]. Available from: https://www.nice.org.uk/guidance/DG36
  • Krieckaert C, Hernández-Breijo B, Gehin JE, et al. Therapeutic drug monitoring of biopharmaceuticals in inflammatory rheumatic and musculoskeletal disease: a systematic literature review informing EULAR points to consider. RMD Open. 2022;8(2):e002216. doi: 10.1136/rmdopen-2022-002216
  • Schots L, Grine L, Soenen R, et al. Dermatologists on the medical need for therapeutic drug monitoring of biologics in psoriasis: results of a structured survey. J Dermatol Treat. 2022;33(3):1473–1481. doi: 10.1080/09546634.2020.1832649
  • Silverman AK, Emmett M, Menter A. Can maintenance cyclosporine be used in psoriasis without decreasing renal function. Semin Dermatol. 1992;11:302–312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.