830
Views
0
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

The hidden side of interaction: microbes and roots get together to improve plant resilience

, , , &
Article: 2323991 | Received 28 Dec 2023, Accepted 22 Feb 2024, Published online: 11 Mar 2024

References

  • Amtmann A, Bennett MJ, Henry A. 2022. Root phenotypes for the future. Plant Cell Environ 45:595–601. doi:10.1111/pce.14269.
  • Antunes PM, Schneider K, Hillis D, Klironomos JN. 2007. Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia. 51:281–286. doi:10.1016/j.pedobi.2007.04.007.
  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A. 2009. EZ-rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956. doi:10.1111/j.1365-313x.2008.03739.x.
  • Aroca R, Vernieri P, Ruiz-Lozano JM. 2008. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041. doi:10.1093/jxb/ern057.
  • Arsenault J-L, Poulcur S, Messier C, Guay R. 1995. WinrhlzoTM, a root-measuring system with a unique overlap correction method. Hort. Sci 30:906. doi:10.21273/hortsci.30.4.906d.
  • Atkinson JA, Pound MP, Bennett MJ, Wells DM. 2019. Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8. doi:10.1016/j.copbio.2018.06.002.
  • Augé RM, Toler HD, Sams CE, Nasim G. 2008. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza. 18:115–121. doi:10.1007/s00572-008-0162-9.
  • Augé RM, Toler HD, Saxton AM. 2014. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 25:13–24. doi:10.1007/s00572-014-0585-4.
  • Badri A, Stefani FOP, Lachance G, Roy-Arcand L, Beaudet D, Vialle A, Hijri M. 2016. Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. Mycorrhiza. 26:721–733. doi:10.1007/s00572-016-0708-1.
  • Bai C, Liang Y, Hawkesford MJ. 2013. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753. doi:10.1093/jxb/ert041.
  • Balestrini R, Bonfante P. 2005. The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst 139:8–15. doi:10.1080/11263500500056799.
  • Balestrini R, Brunetti C, Chitarra W, Nerva L. 2020. Photosynthetic traits and nitrogen uptake in crops: which is the role of arbuscular mycorrhizal fungi? Plants. 9:1105. doi:10.3390/plants9091105.
  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P. 2007. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. MPMI. 20:1055–1062. doi:10.1094/mpmi-20-9-1055.
  • Balestrini R, Rosso LC, Veronico P, Melillo MT, De Luca F, Fanelli E, Colagiero M, di Fossalunga AS, Ciancio A, Pentimone I. 2019. Transcriptomic responses to water deficit and nematode infection in mycorrhizal tomato roots. Front Microbiol 10:1807. doi:10.3389/fmicb.2019.01807.
  • Bastías DA, Johnson LJ, Applegate ER, Jáuregui R, Card SD. 2023. Tripartite associations: a bacterial symbiont of fungi promotes plant growth without compromising the benefits conferred by an Epichloë endophyte. Envir. Exp. Bot. 215:105510. doi:10.1016/j.envexpbot.2023.105510.
  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I. 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7. doi:10.1038/s41598-017-04959-0.
  • Bauer FM, Lärm L, Morandage S, Lobet G, Vanderborght J, Vereecken H, Schnepf A. 2022. Development and validation of a deep learning based automated minirhizotron image analysis pipeline. Plant Phenomics. 2022:9758532. doi:10.34133/2022/9758532.
  • Benizri E, Baudoin E, Guckert A. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574. doi:10.1080/09583150120076120.
  • Berger F, Gutjahr C. 2021. Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr Opin Plant Biol 59:101994. doi:10.1016/j.pbi.2020.101994.
  • Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G. 2013. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170. doi:10.1007/s00572-013-0523-x.
  • Bettenfeld P, Cadena i Canals J, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Courty P-E, Trouvelot S. 2022. The microbiota of the grapevine holobiont: a key component of plant health. J Adv Res 40:1–15. doi:10.1016/j.jare.2021.12.008.
  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P. 1996. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010. doi:10.1128/aem.62.8.3005-3010.1996.
  • Bidondo LF, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A. 2011. Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872. doi:10.1016/j.soilbio.2011.05.004.
  • Binci F, Offer E, Crosino A, Sciascia I, Kleine-Vehn J, Genre A, Giovannetti M, Navazio L. 2023. Spatially and temporally distinct Ca2 + changes in Lotus japonicus roots orient fungal-triggered signalling pathways towards symbiosis or immunity. J Exp Bot 75:605–619. doi:10.1093/jxb/erad360.
  • Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, et al. 2014. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193. doi:10.1007/s00572-014-0599-y.
  • Boussageon R, Marro N, Janoušková M, Brulée D, Wipf D, Courty P-E. 2022. The fine-tuning of mycorrhizal pathway in sorghum depends on both nitrogen−phosphorus availability and the identity of the fungal partner. Plant Cell Environ 45:3354–3366. doi:10.1111/pce.14426.
  • Brescia F, Sillo F, Franchi E, Pietrini I, Montesano V, Marino G, Haworth M, Zampieri E, Fusini D, Schillaci M, et al. 2023. The ‘microbiome counterattack’: insights on the soil and root-associated microbiome in diverse chickpea and lentil genotypes after an erratic rainfall event. Environ Microbiol Rep 15:459–483. doi:10.1111/1758-2229.13167.
  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 17:392–403. doi:10.1016/j.chom.2015.01.011.
  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi:10.1146/annurev-arplant-050312-120106.
  • Calabrese S, Cusant L, Sarazin A, Niehl A, Erban A, Brulé D, Recorbet G, Wipd D, Roux C, Kopka J, et al. 2019. Imbalanced regulation of fungal nutrient transports according to phosphate availability in a symbiocosm formed by poplar, sorghum, and Rhizophagus irregularis. Front Plant Sci. 10:1617. doi:10.3389/fpls.2019.01617.
  • Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty P-E, Garcia K, Charbonnier M, Delteil A, et al. 2013. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625. doi:10.1007/s00572-013-0496-9.
  • Chagnon P-L, Bradley RL, Maherali H, Klironomos JN. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. doi:10.1016/j.tplants.2013.05.001.
  • Chai YN, Schachtman DP. 2022. Root exudates impact plant performance under abiotic stress. Trends Plant Sci 27:80–91. doi:10.1016/j.tplants.2021.08.003.
  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1270. doi:10.3389/fpls.2018.01270.
  • Cheng S, Zou YN, Kuča K, Hashem A, Abd Allah EF, Wu QS. 2021. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front Microbiol 12:809473. doi:10.3389/fmicb.2021.809473.
  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171:1009-1023. doi:10.1104/pp.16.00307.
  • Choi J, Summers W, Paszkowski U. 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu Rev Phytopathol 56:135–160. doi:10.1146/annurev-phyto-080516-035521.
  • Corona Ramírez A, Symanczik S, Gallusser T, Bodenhausen N. 2023. Quantification of arbuscular mycorrhizal fungi root colonization in wheat, tomato, and leek using absolute qPCR. Mycorrhiza 33:387–397. doi:10.1007/s00572-023-01122-8.
  • Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles WR, Allen MF, Hanson PJ, Iversen CM. 2020. High-resolution minirhizotrons advance our understanding of root-fungal dynamics in an experimentally warmed peatland. Plants people planet. 3:640–652. doi:10.1002/ppp3.10172.
  • Deguchi S, Matsuda Y, Takenaka C, Sugiura Y, Ozawa H, Ogata Y. 2017. Proposal of a new estimation method of colonization rate of arbuscular mycorrhizal fungi in the roots of Chengiopanax sciadophylloides. Mycobiology. 45:15–19. doi:10.5941/MYCO.2017.45.1.15
  • De La Providencia IE, De Souza FA, Fernández F, Delmas NS, Declerck S. 2004. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271. doi:10.1111/j.1469-8137.2004.01236.x.
  • Dell’Amico J, Torrecillas A, Rodríguez P, Morte A, Sánchez-Blanco MJ. 2002. Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J Agric Sci 138:387–393. doi:10.1017/s0021859602002101.
  • de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, González-Guerrero M, de Araújo LM, Verza NC, Bagheri HC, et al. 2016. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6. doi:10.1038/srep28774.
  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. 2020. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 368:270–274. doi:10.1126/science.aaz5192.
  • de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, Straathof AL. 2019. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol 224:132–145. doi:10.1111/nph.16001.
  • Djighaly PI, Diagne N, Ngom M, Ngom D, Hocher V, Fall D, Diouf D, Laplaze L, Svistoonoff S, Champion A. 2018. Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. Ann For Sci 75:72. doi:10.1007/s13595-018-0747-1.
  • Dohroo A, Sharma DR. 2012. Role of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their helper bacteria on growth parameters and root rot of apple. World J. Food Sci. Technol. 2:35–38.
  • Duc NH, Vo AT, Haddidi I, Daood H, Posta K. 2021. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front Plant Sci 11. doi:10.3389/fpls.2020.612299.
  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x.
  • Escudero-Martinez C, Bulgarelli D. 2019. Tracing the evolutionary routes of plant–microbiota interactions. Curr Opin Microbiol 49:34–40. doi:10.1016/j.mib.2019.09.013.
  • Essiane-Ondo O, Zerbib J, Gianinazzi S, Wipf D. 2019. Wheat landraces with low mycorrhizing ability at field respond differently to inoculation with artificial or indigenous arbuscular mycorrhizal fungal communities. Symbiosis. 78:229–240. doi:10.1007/s13199-019-00612-8.
  • Evangelisti E, Turner C, McDowell A, Shenhav L, Yunusov T, Gavrin A, Servante EK, Quan C, Schornack S. 2021. Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. New Phytol 232:2207–2219. doi:10.1111/nph.17697.
  • Fan X, Xie H, Huang X, Zhang S, Nie Y, Chen H, Xie X, Tang M. 2023. A module centered on the transcription factor Msn2 from arbuscular mycorrhizal fungus Rhizophagus irregularis regulates drought stress tolerance in the host plant. New Phytol 240:1497–1518. doi:10.1111/nph.19077.
  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L. 2009. Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987. doi:10.1111/j.1469-8137.2009.03031.x.
  • Fiorilli V, Maghrebi M, Novero M, Votta C, Mazzarella T, Buffoni B, Astolfi S, Vigani G. 2022. Arbuscular mycorrhizal symbiosis differentially affects the nutritional status of two durum wheat genotypes under drought conditions. Plants. 11:804. doi:10.3390/plants11060804.
  • Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C. 1998. Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412. doi:10.1046/j.1365-2435.1998.00206.x.
  • Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, et al. 2023. Plant–soil synchrony in nutrient cycles: learning from ecosystems to design sustainable agrosystems. Glob Chang Biol 30. doi:10.1111/gcb.17034.
  • Francis R, Read DJ. 1984. Direct transfer of carbon between plants connected by vesicular–arbuscular mycorrhizal mycelium. Nature. 307:53–56. doi:10.1038/307053a0.
  • Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F. 2018. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219:1338–1352. doi:10.1111/nph.15225.
  • Galindo-Castañeda T, Lynch JP, Six J, Hartmann M. 2022. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front Plant Sci 13. doi:10.3389/fpls.2022.827369.
  • Gamalero E, Berta G, Massa N, Glick B R, Lingua G. 2008. Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol. 64:459–467. doi:10.1111/j.1574-6941.2008.00485.x.
  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G. 2003. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192. doi:10.1007/s00572-003-0256-3.
  • Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E. 2016. Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci. 21:937–950. doi:10.1016/j.tplants.2016.07.010.
  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 20:519–530. doi:10.1007/s00572-010-0333-3.
  • Gioia T, Galinski A, Lenz H, Müller C, Lentz J, Heinz K, Briese C, Putz A, Fiorani F, Watt M, et al. 2016. GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply. Funct Plant Biol 44:76–93. doi:10.1071/FP16128.
  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP. 2001. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724. doi:10.1046/j.0028-646x.2001.00216.x.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x.
  • Goddard M-L, Belval L, Martin IR, Roth L, Laloue H, Deglène-Benbrahim L, Valat L, Bertsch C, Chong J. 2021. Arbuscular mycorrhizal symbiosis triggers major changes in primary metabolism together with modification of defense responses and signaling in both roots and leaves of Vitis vinifera. Front Plant Sci 12. doi:10.3389/fpls.2021.721614.
  • Gollotte A, van Tuinen D, Atkinson D. 2003. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117. doi:10.1007/s00572-003-0244-7.
  • González Guzmán M, Cellini F, Fotopoulos V, Balestrini R, Arbona V. 2021. New approaches to improve crop tolerance to biotic and abiotic stresses. Physiol Plant 174. doi:10.1111/ppl.13547.
  • Grayson M. 2013. Agriculture and drought. Nature. 501:S1. doi:10.1038/501s1a.
  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. 2009. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83. doi:10.1104/pp.109.136390.
  • Gupta A, Rico-Medina A, Caño-Delgado AI. 2020. The physiology of plant responses to drought. Science. 368:266–269. doi:10.1126/science.aaz7614.
  • Hart MM, Reader RJ. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344. doi:10.1046/j.0028-646x.2001.00312.x.
  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell. 23:3812–3823. doi:10.1105/tpc.111.089813.
  • Hewins CR, Carrino-Kyker SR, Burke DJ. 2015. Seasonal variation in mycorrhizal fungi colonizing roots of Allium tricoccum (wild leek) in a mature mixed hardwood forest. Mycorrhiza 25:469–483. doi:10.1007/s00572-015-0628-5.
  • Hou S, Wolinska KW, Hacquard S. 2021. Microbiota-root-shoot-environment axis and stress tolerance in plants. Curr Opin Plant Biol 62:102028. doi:10.1016/j.pbi.2021.102028.
  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany. 92:267–275. doi:10.1139/cjb-2013-0225.
  • Iannucci A, Fragasso M, Beleggia R, Nigro F, Papa R. 2017. Evolution of the crop rhizosphere: impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front Plant Sci 8. doi:10.3389/fpls.2017.02124.
  • Jeudy C, Adrian M, Baussard C, Bernard C, Bernaud E, Bourion V, Busset H, Cabrera-Bosquet L, Cointault F, Han S, et al. 2016. Rhizotubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods. 12. doi:10.1186/s13007-016-0131-9.
  • Johnson MG, Meyer PF. 1998. Mechanical advancing handle that simplifies minirhizotron camera registration and image collection. J Environ Qual 27:710–714. doi:10.2134/jeq1998.00472425002700030031x.
  • Jubery TZ, Carley CN, Singh A, Sarkar S, Ganapathysubramanian B, Singh AK. 2021. Using machine learning to develop a fully automated soybean nodule acquisition pipeline (snap). Plant Phenomics. 2021:9834746. doi:10.34133/2021/9834746.
  • Keller-Pearson M, Bortolazzo A, Willems L, Smith B, Peterson A, Ané J-M, Silva E. 2023. A dual transcriptomic approach reveals contrasting patterns of differential gene expression during drought in arbuscular mycorrhizal fungus and carrot. MPMI. 36:821–832. doi:10.1094/mpmi-04-23-0038-r.
  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 333:880–882. doi:10.1126/science.1208473.
  • Kinnunen-Grubb M, Sapkota R, Vignola M, Nunes IM, Nicolaisen M. 2020. Breeding selection imposed a differential selective pressure on the wheat root-associated microbiome. FEMS Microbiol. Ecol. 96:fiaa196. doi:10.1093/femsec/fiaa196.
  • Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN. 2017. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337. doi:10.1111/nph.14465.
  • Kumar A, Lin H, Li Q, Ruan Y, Cousins D, Li F, Gao S, Jackson K, Wen J, Murray JD, Xu P. 2022. Anthocyanin pigmentation as a quantitative visual marker for arbuscular mycorrhizal fungal colonization of Medicago truncatula roots. New Phytol 236:988–1998. doi:10.1111/nph.18504.
  • Lareen A, Burton F, Schäfer P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587. doi:10.1007/s11103-015-0417-8.
  • Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature. 529:84–87. doi:10.1038/nature16467.
  • Ling F, Su Q, Jiang H, Cui J, He X, Wu Z, Zhang Z, Liu J, Zhao Y. 2020. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep 10:6183. doi:10.1038/s41598-020-63352-6.
  • Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J, et al. 2018. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome. 6:231. doi:10.1186/s40168-018-0615-0.
  • Lynch JP. 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357. doi:10.1093/aob/mcs293.
  • Lynch JP, Strock CF, Schneider HM, Sidhu JS, Ajmera I, Galindo-Castañeda T, Klein SP, Hanlon MT. 2021. Root anatomy and soil resource capture. Plant Soil. 466:21–63. doi:10.1007/s11104-021-05010-y.
  • Ma S, Zhu L, Wang J, Liu X, Jia Z, Li C, Liu J, Zeng J, Zhang J. 2022. Arbuscular mycorrhizal fungi promote Gleditsia sinensis Lam. root growth under salt stress by regulating nutrient uptake and physiology. Forests. 13:688. doi:10.3390/f13050688.
  • Mahoney AK, Yin C, Hulbert SH. 2017. Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front Plant Sci 8:132. doi:10.3389/fpls.2017.00132.
  • Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, Borda V, Burni M, Janoušková M, Urcelay C. 2022. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytol 235:320–332. doi:10.1111/nph.18102.
  • Mesny F, Hacquard S, Thomma BP. 2023. Co-evolution within the plant holobiont drives host performance. EMBO Rep 24. doi:10.15252/embr.202357455.
  • Mikkelsen BL, Rosendahl S, Jakobsen I. 2008. Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898. doi:10.1111/j.1469-8137.2008.02623.x.
  • Montero H, Choi J, Paszkowski U. 2018. Arbuscular mycorrhizal phenotyping: the dos and don’ts. New Phytol 221:1182–1186. doi:10.1111/nph.15489.
  • Moriondo M, Giannakopoulos C, Bindi M. 2010. Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104:679–701. doi:10.1007/s10584-010-9871-0.
  • Muta K, Takata S, Utsumi Y, Matsumura A, Iwamura M, Kise K. 2022. TAIM: tool for analyzing root images to calculate the infection rate of arbuscular mycorrhizal fungi. Front Plant Sci 13:881382. doi:10.3389/fpls.2022.881382.
  • Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. 2022. Breeding toward improved ecological plant–microbiome interactions. Trends Plant Sci 27:1134–1143. doi:10.1016/j.tplants.2022.06.004.
  • Newman EI, Devoy CLN, Easen NJ, Fowles KJ. 1994. Plant species that can be linked by VA mycorrhizal fungi. New Phytol 126:691–693. doi:10.1111/j.1469-8137.1994.tb02963.x.
  • Noceto P-A, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty P-E, Wipf D. 2021. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza. 31:655–669. doi:10.1007/s00572-021-01054-1.
  • Noceto P-A, Durney C, van Tuinen D, de Sousa J, Wipf D, Courty P-E. 2023. Arbuscular mycorrhizal fungal communities differ in neighboring vineyards of different ages. Mycorrhiza. 33:241–248. doi:10.1007/s00572-023-01117-5.
  • Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Vélez D, Sanders IR. 2016. Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One. 11:e0154438. doi:10.1371/journal.pone.0154438.
  • Ordookhani K, Zare M. 2011. Effect of Pseudomonas, Azotobacter and arbuscular mycorrhiza fungi on lycopene, antioxidant activity and total soluble solid in tomato (Lycopersicon esculentum F1 Hybrid, Delba). Adv. Environ. Biol. 5:1290–1294.
  • Pandey A, Sharma M, Pandey GK. 2016. Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434. doi:10.3389/fpls.2016.00434.
  • Pedersen O, Perata P, Voesenek LACJ. 2017. Flooding and low oxygen responses in plants. Funct Plant Biol 44:iii. doi:10.1071/fpv44n9_fo.
  • Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, Ramírez CA, Mendes R, Raaijmakers JM. 2017. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11:2244–2257. doi:10.1038/ismej.2017.85.
  • Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ. 2019. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome. 7(1). doi:10.1186/s40168-019-0727-1.
  • Pfeifer J, Kirchgessner N, Colombi T, Walter A. 2015. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography. Plant Methods. 11:41. doi:10.1186/s13007-015-0084-4.
  • Pflugfelder D, Metzner R, van Dusschoten D, Reichel R, Jahnke S, Koller R. 2017. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods. 13:102. doi:10.1186/s13007-017-0252-9.
  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109.
  • Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C. 2016. A CCAMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26:1126. doi:10.1016/j.cub.2016.04.021.
  • Pimprikar P, Gutjahr C. 2018. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol 59:678–695. doi:10.1093/pcp/pcy024.
  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G. 2008. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza. 19:81–90. doi:10.1007/s00572-008-0205-2.
  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, et al. 2017. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 247:573–585. doi:10.1007/s00425-017-2808-3.
  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. 2009. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. Royal Soc. B. 276:4237–4245. doi:10.1098/rspb.2009.1015.
  • Powell JR, Rillig MC. 2018. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 220:1059–1075. doi:10.1111/nph.15119.
  • Quiroga G, Erice G, Aroca R, Zamarreño ÁM, García-Mina JM, Ruiz-Lozano JM. 2020. Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affected by indole-acetic acid (IAA) application. J Plant Physiol 246–247:153115. doi:10.1016/j.jplph.2020.153115.
  • Recchia GH, Konzen ER, Cassieri F, Caldas DGG, Tsai SM. 2018. Arbuscular mycorrhizal symbiosis leads to differential regulation of drought-responsive genes in tissue-specific root cells of common bean. Front Microbiol 9:1339. doi:10.3389/fmicb.2018.01339.
  • Reid CPP, Woods FW. 1969. Translocation of C(14)-labeled compounds in mycorrhizae and it implications in interplant nutrient cycling. Ecology. 50:179–187. doi:10.2307/1934844.
  • Remmler L, Clairmont L, Rolland-Lagan A, Guinel FC. 2014. Standardized mapping of nodulation patterns in legume roots. New Phytol. 202:1083–1094. doi:10.1111/nph.12712.
  • Rich MK, Nouri E, Courty P-E, Reinhardt D. 2017. Diet of arbuscular mycorrhizal fungi: bread and butter? Trends Plant Sci 22:652–660. doi:10.1016/j.tplants.2017.05.008.
  • Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ. 2018. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol 220:1322–1336. doi:10.1111/nph.15295.
  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M. 2005. Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Applied Env. Microbiol. 71:6673–6679. doi:10.1128/aem.71.11.6673-6679.2005.
  • Rolfe SA, Griffiths J, Ton J. 2019. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 49:73–82. doi:10.1016/j.mib.2019.10.003.
  • Rowland DL, Smith C, Cook A, Mason A, Schreffler A, Bennett J. 2015. Visualization of peanut nodules and seasonal nodulation pattern in different tillage systems using a Minirhizotron system. Peanut Science. 42:1–10. doi:10.3146/0095-3679-42.1.1.
  • Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, et al. 2016. Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 16:122. doi:10.1186/s12862-016-0698-9.
  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA. 2015. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452. doi:10.1111/pce.12631.
  • Ruiz-Lozano JM, Azcón R. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plantarum. 95:472–478. doi:10.1111/j.1399-3054.1995.tb00865.x.
  • Rush TA, Puech-Pagès V, Bascaules A, Jargeat P, Maillet F, Haouy A, Maës AQ, Carriel CC, Khokhani D, Keller-Pearson M, Tannous J. 2020. Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nat Commun 11:3897. doi:10.1038/s41467-020-17615-5.
  • Schillaci M, Arsova B, Walker R, Smith PMC, Nagel KA, Roessner U, Watt M. 2020. Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature. Plant Growth Regul 93:149–162. doi:10.1007/s10725-020-00675-4.
  • Schloter M, Matyssek R. 2009. Tuning growth versus defence–belowground interactions and plant resource allocation. Plant & Soil. 323:1–5. doi:10.1007/s11104-009-0070-6.
  • Schmidt JE, Bowles TM, Gaudin ACM. 2016. Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7. doi:10.3389/fpls.2016.00373.
  • Schneider HM, Lynch JP. 2020. Should root plasticity be a crop breeding target? Front Plant Sci 11:546. doi:10.3389/fpls.2020.00546.
  • Sciascia I, Crosino A, Genre A. 2023. Quantifying root colonization by a symbiotic fungus using automated image segmentation and machine learning approaches. Sci Rep. 13:14830. doi:10.1038/s41598-023-39217-z.
  • Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. 2021. Rhizovision explorer: open-source software for root image analysis and measurement standardization. AoB PLANTS. 13:plab056. doi:10.1093/aobpla/plab056.
  • Shi J, Wang X, Wang E. 2023. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu Rev Plant Biol 74:569–607. doi:10.1146/annurev-arplant-061722-090342.
  • Sillo F, Marino G, Franchi E, Haworth M, Zampieri E, Pietrini I, Fusini D, Mennone C, Centritto M, Balestrini R. 2022. Impact of irrigation water deficit on two tomato genotypes grown under open field conditions: from the root-associated microbiota to the stress responses. Ital J Agron 17(3). doi:10.4081/ija.2022.2130.
  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R. 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature. 388:579–582. doi:10.1038/41557.
  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd ed. London, UK: Academic Press.
  • Sportes A, Hériché M, Boussageon R, Noceto PA, van Tuinen D, Wipf D, Courty PE. 2022. Correction to: a historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza. 32:497–497. doi:10.1007/s00572-022-01094-1.
  • Stearns JC, Woody OZ, McConkey BJ, Glick BR. 2012. Effects of bacterial ACC deaminase on Brassica napus gene expression. MPMI. 25:668–676. doi:10.1094/mpmi-08-11-0213.
  • Subramanian KS, Santhanakrishnan P, Balasubramanian P. 2006. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253. doi:10.1016/j.scienta.2005.07.006.
  • Sultan SE. 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. doi:10.1016/s1360-1385(00)01797-0.
  • Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B. 2020. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytol 229:259–271. doi:10.1111/nph.16865.
  • Sun Z, Song J, Xin X, Xie X, Zhao B. 2018. Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Front Microbiol 9:91. doi:10.3389/fmicb.2018.00091.
  • Svenningsen NB, Watts-Williams SJ, Joner EJ, Battini F, Efthymiou A, Cruz-Paredes C, Nybroe O, Jakobsen I. 2018. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J 12:1296–1307. doi:10.1038/s41396-018-0059-3.
  • Symanczik S, Courty PE, Boller T, Wiemken A, Al-Yahya’ei MN. 2015. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza. 25:639–647. doi:10.1007/s00572-015-0638-3.
  • Symanczik S, Kruetzmann J, Nehls U, Boller T, Courty PE. 2020. Expression of major intrinsic protein genes in Sorghum bicolor roots under water deficit depends on arbuscular mycorrhizal fungal species. Soil Biol Biochem 140:107643. doi:10.1016/j.soilbio.2019.107643.
  • Symanczik S, Lehmann MF, Wiemken A, Boller T, Courty P-E. 2018. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza. 28:779–785. doi:10.1007/s00572-018-0853-9.
  • Tavasolee A, Aliasgharzad N, SalehiJouzani G, Mardi M, Asgharzadeh A. 2013. Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. African J. Biotech. 10:7585–7591.
  • Taylor HM. 1987. Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. American Society of Agronomy, Madison Wisconsin. ASA Special Publication Number 50.
  • Thoms D, Liang Y, Haney CH. 2021. Maintaining symbiotic homeostasis: how do plants engage with beneficial microorganisms while at the same time restricting pathogens? MPMI. 34:462–469. doi:10.1094/mpmi-11-20-0318-fi.
  • Thonar C, Erb A, Jansa J. 2011. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Res. 12:219–232. doi:10.1111/j.1755-0998.2011.03086.x.
  • Timoneda A, Yunusov T, Quan C, Gavrin A, Brockington SF, Schornack S. 2021. Mycored: betalain pigments enable in vivo real-time visualisation of arbuscular mycorrhizal colonisation. PLoS Biol 19:e3001326. doi:10.1371/journal.pbio.3001326.
  • Todeschini V, AitLahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Bona E, Massa N, Bonneau L, Marengo E, et al. 2018. Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Front Plant Sci 9:1611. doi:10.3389/fpls.2018.01611.
  • Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA dun système radiculaire: recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V., Gianinazzi S., editor. Physiological and Genetical Aspects of Mycorrhizae. INRA Press; p. 217–221.
  • Tsuzuki S, Handa Y, Takeda N, Kawaguchi M. 2016. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. MPMI. 29:277–286. doi:10.1094/mpmi-10-15-0234-r.
  • Valente J, Gerin F, Le Gouis J, Moënne-Loccoz Y, Prigent–Combaret C. 2019. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. Plant Cell Envir. 43:246–260. doi:10.1111/pce.13652.
  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 396:69–72. doi:10.1038/23932.
  • Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, Hughes D, Cavallini A, Giovannetti M, Giordani T. 2018. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci Rep 8:4. doi:10.1038/s41598-017-18445-0.
  • Vierheilig H, Schweiger P, Brundrett M. 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol. Plantarum. 125:393–404. doi:10.1111/j.1399-3054.2005.00564.x.
  • Vivas A, Barea JM, Azcón R. 2005. Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266. doi:10.1016/j.envpol.2004.07.029.
  • Volpe V, Chialva M, Mazzarella T, Crosino A, Capitanio S, Costamagna L, Kohlen W, Genre A. 2023. Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula. New Phytol 237:2316–2331. doi:10.1111/nph.18697.
  • Volpe V, Chitarra W, Cascone P, Volpe MG, Bartolini P, Moneti G, Pieraccini G, Di Serio C, Maserti B, Guerrieri E, Balestrini R. 2018. The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Front Plant Sci. 9:1480. doi:10.3389/fpls.2018.01480.
  • Voříšková A, Jansa J, Püschel D, Krüger M, Cajthaml T, Vosátka M, Janoušková M. 2017. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza. 27:577–585. doi:10.1007/s00572-017-0777-9.
  • Vosatka M, Gryndler M, Prikryl Z. 1992. Effect of the rhizosphere bacterium Pseudomonas putida, arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry. Agronomie. 12:859–863. doi:10.1051/agro:19921021.
  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE. 2015. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645. doi:10.1111/nph.13292.
  • Wang F, Zhang L, Zhou J, Rengel Z, George TS, Feng G. 2022. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant & Soil. 481:1–22. doi:10.1007/s11104-022-05621-z.
  • Wang Y, Li T, Li Y, Björn L O, Rosendahl S, Olsson P A, Li S, Fu X. 2015. Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems. Appl. Environ. Microbiol. 81:2958–2965. doi:10.1128/AEM.03769-14.
  • Waters MT, Gutjahr C, Bennett T, Nelson DC. 2017. Strigolactone signaling and evolution. Ann. Rev. Plant Biol. 68:291–322. doi:10.1146/annurev-arplant-042916-040925.
  • Wen T, Yu G-H, Hong W-D, Yuan J, Niu G-Q, Xie P-H, Sun F-S, Guo L-D, Kuzyakov Y, Shen Q-R. 2022. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundam. Res. 2:697–707. doi:10.1016/j.fmre.2021.12.016.
  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P. 2019. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142. doi:10.1111/nph.15775.
  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T. 1995. Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525. doi:10.1104/pp.108.4.1519.
  • Xiong J, Lu J, Li X, Qiu Q, Chen J, Yan C. 2021. Effect of rice (Oryza sativa L.) genotype on yield: evidence from recruiting spatially consistent rhizosphere microbiome. Soil Biol Biochem 161:108395. doi:10.1016/j.soilbio.2021.108395.
  • Yue H, Yue W, Jiao S, Kim H, Lee Y-H, Wei G, Song W, Shu D. 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome. 11:70. doi:10.1186/s40168-023-01513-1.
  • Zappala S, Helliwell JR, Tracy SR, Mairhofer S, Sturrock CJ, Pridmore T, Bennett M, Mooney SJ. 2013. Effects of X-ray dose on rhizosphere studies using X-ray computed tomography. PLoS One. 8:e67250. doi:10.1371/journal.pone.0067250.
  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, et al. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3:470–480. doi:10.1038/s41564-018-0129-3.
  • Zhang Y, Gao W, Luan H, Tang J, Li R, Li M, Zhang H, Huang S. 2022. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system. J. Integr. Agric. 21:2119–2133. doi:10.1016/s2095-3119(21)63715-2.
  • Zhang Y, Yao Q, Li J, Wang Y, Liu X, Hu Y, Chen J. 2015. Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol Prog 14:84. doi:10.1007/s11557-015-1108-1.
  • Zheng Y, Xu Z, Liu H, Liu Y, Zhou Y, Meng C, Ma S, Xie Z, Li Y, Zhang CS. 2021. Patterns in the microbial community of salt-tolerant plants and the functional genes associated with salt stress alleviation. Microbiol Spectr 9:e0076721. doi:10.1128/Spectrum.00767-21.