357
Views
0
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Metabolic response of peanut (Arachis hypogaea L.) to Sclerotium rolfsii Sacc. in root exudates system

, , , &
Article: 2326294 | Received 03 Aug 2023, Accepted 28 Feb 2024, Published online: 11 Mar 2024

References

  • Akyol S, Ashrafi N, Yilmaz A, Turkoglu O, Graham SF. 2023. Metabolomics: an emerging “omics” platform for systems biology and its implications for Huntington disease research. Metabolites. 13(12):1203. doi:10.3390/metabo13121203.
  • Ayed F, Jabnoun-Khiareddine H, Aydi-Ben-Abdallah R, Daami-Remadi M. 2018. Effects of pH and aeration on sclerotium rolfsii sacc. mycelial growth, sclerotial production and germination. Int J Phytopathology. 7(3):123–129.
  • Backman PA, Brenneman TB. 1997. Stem rot. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subrahmanyam P, editors. Compendium of peanut diseases, 2nd ed. St. Paul, MN, U.S.A: American Phytopathological Society; p. 36–37.
  • Baetz U, Martinoia E. 2014. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19:90–98. doi:10.1016/j.tplants.2013.11.006.
  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159.
  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. 2019. Corrigendum: root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci. 10:420. doi:10.3389/fpls.2019.00420.
  • Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. 2020. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites. 10:52. doi:10.3390/metabo10020052.
  • Chen FF, Ma RJ, Chen XL. 2019. Advances of metabolomics in fungal pathogen–plant interactions. Metabolites. 9:169. doi:10.3390/metabo9080169.
  • Christgen SL, Becker DF. 2019 Feb 1. Role of proline in pathogen and host interactions. Antioxid Redox Signal. 30(4):683–709. doi:10.1089/ars.2017.7335.
  • Diallo T, Makni Y, Lerebours A, Thomas H, Guérin T, Parinet J. 2022. Development and validation according to the SANTE guidelines of a QuEChERS-UHPLC-QTOF-MS method for the screening of 204 pesticides in bivalves. Food Chem. 386:132871. doi:10.1016/j.foodchem.2022.132871.
  • Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J. 2010. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56:181–195. doi:10.1111/j.1365-313X.2008.03590.x.
  • Duan G, Christian N, Schwachtje J, Walther D, Ebenhöh O. 2013 Jan 8. The metabolic interplay between plants and phytopathogens. Metabolites. 3(1):1–23. doi:10.3390/metabo3010001.
  • Feng H, Fu R, Hou X, Lv Y, Zhang N, Liu Y, Xu Z, Miao Y, Krell T, Shen Q, Zhang R. 2021 Jun 22. Chemotaxis of beneficial Rhizobacteria to root exudates: the first step towards root-microbe Rhizosphere interactions. Int J Mol Sci. 22(13):6655. doi:10.3390/ijms22136655.
  • Gu Y, Wei Z, Wang XQ, Friman VP, Huang JF, Wang XF, Mei XL, Xu YC, Shen QR, Jousset A. 2016. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fertil Soils. 52:997–1005. doi:10.1007/s00374-016-1136-2.
  • Guclu V, Aydogdu M, Basak M, Kizil S, Uzun B, Yol E. 2020. Characterization of a groundnut collection to stem rot disease caused by Sclerotium rolfsii. Australas Plant Path. 49(6):691–700. doi:10.1007/s13313-020-00748-y.
  • Gupta S, Schillaci M, Roessner U. 2022 Apr 15. Metabolomics as an emerging tool to study plant-microbe interactions. Emerg Top Life Sci. 6(2):175–183. doi:10.1042/ETLS20210262.
  • Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, et al. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 9:2738. doi:10.1038/s41467-018-05122-7.
  • Hu Z, Chang X, Dai T, Li L, Liu P, Wang G, Liu P, Huang Z, Liu X. 2019 Apr 17. Metabolic profiling to identify the latent infection of strawberry by Botrytis cinerea. Evol Bioinform Online. 15. doi:10.1177/1176934319838518.
  • Jones OAH, Griffin JL, Jung YH, Shibato J, Rakwal R, Agrawal GK, Jwa NS. 2011. Using metabolic profiling to assess plant-pathogen interactions: An example using rice (oryza sativa) and the blast pathogen magnaporthe grisea. Eur J Plant Pathol. 129:539–554. doi:10.1007/s10658-010-9718-6.
  • Kanwar P, Jha G. 2019. Alterations in plant sugar metabolism: signatory of pathogen attack. Planta. 249(2):305–318. doi:10.1007/s00425-018-3018-3.
  • Kottadiyil D, Mehta T, Thasale R, Sivaperumal P. 2023. Determination and dietary risk assessment of 52 pesticide residues in vegetable and fruit samples by GC-MS/MS and UHPLC-QTOF/MS from Gujarat, India. J Food Compos Anal. 115:104957. doi:10.1016/j.jfca.2022.104957.
  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse USR. 2010. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol. 185(2):577–588. doi:10.1111/j.1469-8137.2009.03066.x.
  • Li L, Wang J, Liu D, Li L, Zhen J, Lei G, Wang B, Yang W. 2023 Mar. The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot. Braz J Microbiol. 54(1):361–370. doi:10.1007/s42770-022-00896-x.
  • Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM. 2013. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci. 9(2):164–173. doi:10.7150/ijbs.5579.
  • Liu R, Bao ZX, Zhao PJ, Li GH. 2021. Advances in the study of metabolomics and metabolites in some species interactions. Molecules (Basel, Switzerland). 26(11):3311. doi:10.3390/molecules26113311.
  • Mierziak J, Burgberger M, Wojtasik W. 2021. 3-Hydroxybutyrate as a metabolite and a signal molecule regulating processes of living organisms. Biomolecules. 11(3):402. doi:10.3390/biom11030402.
  • Návarová H, Bernsdorff F, Döring AC, Zeier J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 24:5123–5141.
  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. 2019. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biot. 103:1155–1166. doi:10.1007/s00253-018-9556-6.
  • Paranidharan V, Abu-Nada Y, Hamzehzarghani H, Kushalappa AC, Mamer O, Dion Y, Rioux S, Comeau A, Choiniere L. 2008. Resistance-related metabolites in wheat against Fusarium graminearum and the virulence factor deoxynivalenol (DON). Botany. 86:1168–1179. doi:10.1139/B08-052.
  • Punja ZK. 1985. The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol. 23:97–127. doi:10.1146/annurev.py.23.090185.000525.
  • Qiu S, Cai Y, Yao H, et al. 2023. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Sig Transduct Target Ther. 8:132. doi:10.1038/s41392-023-01399-3.
  • Safari Motlagh MR, Farokhzad M, Kaviani B, Kulus D. 2022. Endophytic fungi as potential biocontrol agents against Sclerotium rolfsii Sacc.—The causal agent of peanut white stem rot disease. Cells. 11(17):2643. doi:10.3390/cells11172643.
  • Saito-Shida S, Hamasaka T, Nemoto S, Akiyama H. 2018. Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry: comparison between Orbitrap and time-of-flight mass analyzers. Food Chem. 256:140–148. doi:10.1016/j.foodchem.2018.02.123.
  • Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. 2006. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst. 131(10):1075–1078. doi:10.1039/b604498k.
  • Sconyers LE, Brenneman TB, Stevenson KL, Mullinix BG. 2005. Effects of plant spacing, inoculation date, and peanut cultivar on epidemics of peanut stem rot and tomato spotted wilt. Plant Dis. 89:969–974. doi:10.1094/PD-89-0969.
  • Shuangqian S, Chuansong Z, Chenkun Y, Alisdair RF, Jie L. 2023. Metabolomics-centered mining of plant metabolic diversity and function: past decade and future perspectives. Molecular Plant. 16(1):43–63. doi:10.1016/j.molp.2022.09.007.
  • Singh BK, Millard P, Whiteley AS, Murrell JC. 2004. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol. 12:386–393. doi:10.1016/j.tim.2004.06.008.
  • Singh RK, Singh P, Sharma A, Guo D-J, Upadhyay SK, Song Q-Q, et al. 2022. Unraveling nitrogen fixing potential of endophytic diazotrophs of different saccharum species for sustainable sugarcane growth. Int J Mol Sci. 23:6242. doi:10.3390/ijms23116242.
  • Song Y, Pieterse CMJ, Bakker PAHM, Berendsen RL. 2021. Collection of sterile root exudates from foliar pathogen-inoculated plants. Methods Mol Biol. 2232:305–317. doi:10.1007/978-1-0716-1040-4_23.
  • Standish JR, Culbreath AK, Branch WD, Brenneman TB. 2019. Disease and yield response of a stem-rot-resistant and -susceptible peanut cultivar under varying fungicide inputs. Plant Dis. 103:2781–2785. doi:10.1094/PDIS-04-19-0771-RE.
  • Tugizimana F, Djami-Tchatchou AT, Steenkamp PA, Piater LA, Dubery IA. 2019. Metabolomic analysis of defense-related reprogramming in Sorghum bicolor in response to Colletotrichum sublineolum infection reveals a functional metabolic web of phenylpropanoid and flavonoid pathways. Front Plant Sci. 9:1840. doi:10.3389/fpls.2018.01840.
  • Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS. 2012. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 8(1):17–32. doi:10.1038/nprot.2012.135.
  • Williams A, de Vries FT. 2020. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225:1899–1905. doi:10.1111/nph.16223.
  • Williams A, Langridge H, Straathof AL, Fox G, Muhammadali H, Hollywood KA, Xu Y, Goodacre R, de Vries FT. 2021. Comparing root exudate collection techniques: An improved hybrid method. Soil Biol Biochem. doi:10.1016/j.soilbio.2021.108391.
  • Yan L, Wang Z, Song W, Fan P, Kang Y, Lei Y, Wan L, Huai D, Chen Y, Wang X, et al. 2021 Apr 16. Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. BMC Genomics. 22(1):276. doi:10.1186/s12864-021-07534-0.
  • Yuan J, Zhao J, Wen T, Zhao ML, Li R, Goossens P, Huang QW, Bai Y, Vivanco JM, Kowalchuk GA, et al. 2018. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 6:156. doi:10.1186/s40168-018-0537-x.
  • Zhang W, Zhang BW, Deng JF, Li L, Yi TY, Hong YY. 2021. The resistance of peanut to soil-borne pathogens improved by rhizosphere probiotics under calcium treatment. BMC Microbiol. 21:299. doi:10.1186/s12866-021-02355-3.