172
Views
24
CrossRef citations to date
0
Altmetric
Genetic and Molecular Basis of Cardiac Arrhythmias

Molecular determinants of altered contractility in heart failure

&
Pages 70-80 | Published online: 08 Jul 2009

References

  • Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002047:1397–402.
  • Gwathmey JK, Copelas L, Mackinnon R, Schoen FJ, Feldman MD, Grossman W, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987;61:70–76.
  • Beuckelmann D, Nabauer M, Erdmann E. Intracellular cal-cium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992;85:1046–55.
  • Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 1997;276:800–6.
  • Hunter JJ, Chien KR. Signaling pathways for cardiac hyper-trophy and failure. N Engl J Med 1999;341:1276–83.
  • Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.
  • Sipido KR, Carmeliet E, Van de Werf F. T-type Ca2± current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J Physiol 1998;508:439–51.
  • Bers DM, Christensen DM, Nguyen TX. Can Ca entry via Na-Ca exchange directly activate cardiac muscle contrac-tion? J Mol Cell Cardiol 1988;20:405–14.
  • Sipido KR, Maes M, Van de Werf F. Low efficiency of Ca2+ entry through the Na(±)-Ca2+ exchanger as trigger for Ca2± release from the sarcoplasmic reticulum. A comparison be-tween L-type Ca2+ current and reverse-mode Na(±)-Ca2± exchange. Circ Res 1997;81:1034–44.
  • Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983;245:C1–14.
  • Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 1999;77: 1528–39.
  • Yin CC, Lai FA. Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol 2000;2:669–71.
  • Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 2001;88:1151–8.
  • Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 1993;262: 7404.
  • Simmerman HK, Jones LR. Phospholamban: protein struc-ture, mechanism of action, and role in cardiac function. Physiol Rev 1998;78:921–47.
  • Marks AR. Ryanodine Receptors/Calcium Release channels in Heart Failure and Sudden Cardiac Death. J Mol Cell Cardiol 2001;33:615–24.
  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al. PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor): Defective Regulation in Failing Hearts. Cell 2000; 101: 365–76.
  • Pieske B, Maier LS, Bers DM, Hasenfuss G. Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 1999;85:38–46.
  • Houser SR, Margulies KB. Is depressed myocyte contractility centrally involved in heart failure? Circ Res 2003;92:350–8.
  • Wehrens XHT, Huang SE, Vest F, Reiken J, Mohler S, Sun PJ, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003;113: 829–40.
  • Kubo H, Margulies KB, Piacentino V, 3rd, Gaughan JP, Houser SR. Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance. Circulation 2001;104:1012–8.
  • Lindner M, Erdmann E, Beuckelmann DJ. Calcium content of the sarcoplasmic reticulum in isolated ventricular myo-cytes from patients with terminal heart failure. J Mol Cell Cardiol 1998;30:743–9.
  • Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 1993;72:463–9.
  • Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. Differential regulation of two types of intracel-lular calcium release channels during end-stage heart failure. J Clin Invest 1995;95:888–94.
  • Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 1994;75: 434–42.
  • Rasmussen R, Minohe W, Bristow M. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol 1990;39:691–6.
  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced senn-16 phos-pholamhan phosphorylation. J Mol Cell Cardiol 1999; 31: 479–91.
  • Piacentino V, 3rd, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 2003;92:651–8.
  • Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, et al. Expression of Dihydropyndine Receptor (Ca2+ Channel) and Calsequestrin Genes in the Myocardium of Patients with End-Stage Heart Failure. J Clin Invest 1992; 90:927–35.
  • Ouadid H, Albat B, Nargeot J. Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 1995^5282–91.
  • He J, Conklin MW, Foell JD, Wolff MR, Ha worth RA, Coronado R, et al. Reduction in density of transverse tubules and L-type Ca(2+) channels in canine tachycardia-induced heart failure. Cardiovasc Res 2001;49:298–307.
  • Chen X, Piacentino V, 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 2002;91: 517–24.
  • Winslow RL, Rice J, Jafn S, Marban E, O'Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 1999;84:571–86.
  • Sah R, Ramirez RJ, Backx PH. Modulation of Ca(2+) release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation-contraction coupling. Circ Res 2002;90: 165–73.
  • Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Tnvien MG, Zobel C, et al. Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 2003; 546:5–18.
  • Schroder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, et al. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 1998;98:969–76.
  • Sipido KR. Efficiency of L-type Ca2+ current compared to reverse mode Na/Ca exchange or T-type Ca2+ current as trigger for Ca2+ release from the sarcoplasmic reticulum. Ann N Y Acad Sci 1998;853:357–60.
  • Sen L, Smith TW. T-type Ca2+ channels are abnormal in genetically determined cardiomyopathy hamster hearts. Circ Res 1994;75:149–55.
  • Mulder P, Richard V, Compagnon P, Henry JP, Lallemand F, Clozel JP, et al. Increased survival after long-term treatment with mibefradil, a selective T-channel calcium antagonist, in heart failure. J Am Coll Cardiol 1997;29:416–21.
  • Richard S, Leclercq F, Lemaire S, Plot C, Nargeot J. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res 1998;37: 300–11.
  • Piacentino V, 3rd, Margulies KB, Houser SR. Ca influx via the Na/Ca exchanger maintains sarcoplasmic reticulum Ca content in failing human myocytes. Ann N Y Acad Sci 2002; 976:476–7.
  • Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, et al. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 1994;75:443–53.
  • Sjaastad I, Bokenes J, Swift F, Wasserstrom JA, Sejersted OM. Normal contractions triggered by I(Ca,L) in ventricular myocytes from rats with postinfarction CHF. Am J Physiol Heart Circ Physiol 2002;283:H1225–36.
  • Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD, et al. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 1996; 318:477–87.
  • Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 2000;279:C724–33.
  • Jayaraman T, Brillantes A-MB, Timerman AP, Erdjument-Bromage H, Fleischer S, Tempst P, et al. FK506 Binding Protein Associated with the Calcium Release Channel (Ryanodine Receptor). J Biol Chem 1992;267: 9474–7.
  • Marks AR, Tempst P, Hwang KS, Taubman MB, Inui M, Chadwick C, et al. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA 1989;86:8683–7.
  • Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem 1995;270:26411–8.
  • Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 1997; 272: 23389–97.
  • Marks AR. Ryanodine receptors, FKBP12, and heart failure. Front Biosci 2002;7:D970–7.
  • Marx SO, Ondrias K, Marks AR. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 1998;281: 818–21.
  • Marks AR. Cardiac intracellular calcium release channels: role in heart failure. Circ Res 2000;87:8–11.
  • Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 1995;270:2074–81.
  • Valdivia HH, Kaplan JH, Ellis-Davies GC, Lederer WJ. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 1995;267: 1997–2000.
  • Chidsey CA, Harrison DC, Braunwald E. Augmentation of plasma norepinephrine response to exercise in patients with congestive heart failure. N Engl J Med 1962;267:650.
  • Yamamoto T, Yano M, Kohno M, Hisaoka T, Ono K, Tamgawa T, et al. Abnormal Ca2+ release from cardiac sarcoplasmic reticulum in tachycardia-induced heart failure. Cardiovasc Res 1999;44:146–55.
  • Yano M, Ono K, Ohkusa T, Suetsugu M, Kohno M, Hisaoka T, et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation 2000;102:2131–6.
  • Komuro I, Kurabayashi M, Shibasaki Y, Takaku F, Yazaki Y. Molecular cloning and characterization of a Ca2+-Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 1989;83: 1102–8.
  • Mercadier JJ, Lompre AM, Due P, Boheler KR, Fraysse JB, Wisnewsky C, et al. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 1990;85:305–9.
  • Callewaert G. Excitation-contraction coupling in mamma-lian cardiac cells. Cardiovasc Res 1992;26:923–32.
  • He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, et al. Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 1997;100: 380–9.
  • Ito K, Yan X, Feng X, Manning WJ, Dillmann WH, Lore11 BH. Transgenic expression of sarcoplasmic reticulum Ca(2+) atpase modifies the transition from hypertrophy to early heart failure. Circ Res 2001;89: 422–9.
  • Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH. Adenovirus-mediated gene transfer reconsti-tutes depressed sarcoplasmic reticulum Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+ transients. Circulation 1997;96:400–3.
  • Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998; 95:5251–6.
  • Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000;97: 793–8.
  • del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ. Targeting phospholamban by gene transfer in human heart failure. Circulation 2002;105:904–7.
  • Gomez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ. Heart failure after myocardial infarction: altered exci-tation-contraction coupling. Circulation 2001;104:688–93.
  • Loukianov E, Ji Y, Grupp IL, Kirkpatrick DL, Baker DL, Loukianova T, et al. Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts ex-pressing the fast-twitch skeletal muscle sarcoplasmic reticu-lum Ca2+-ATPase. Circ Res 1998;83:889–97.
  • Inesi G, Lewis D, Sumbilla C, Nandi A, Strock C, Huff KW, et al. Cell-specific promoter in adenovirus vector for trans-genic expression of SERCA1 ATPase in cardiac myocytes. Am J Physiol 1998;274:C645–53.
  • Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, 2nd, Walsh RA, et al. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardi-omyocyte mechanics in transgenic mice. J Clin Invest 1996; 97:533–9.
  • Frank K, Tilgmann C, Shannon TR, Bers DM, Kranias EG. Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Biochemistry 2000;39: 14176–82.
  • Fujii J, Ueno A, Kitano K, Tanaka S, Kadoma M, Tada M. Complete complementary DNA-derived amino acid se-quence of canine cardiac phospholamban. J Clin Invest 1987;79:301–4.
  • Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. Sequence analysis of phospholamban. Identifica-tion of phosphorylation sites and two major structural domains. J Biol Chem 1986;261:13333–41.
  • Sande JB, Sjaastad I, Hoen IB, Bokenes J, Tonnessen T, Holt E, et al. Reduced level of serine(16) phosphorylated phos-pholamban in the failing rat myocardium: a major con-tributor to reduced SERCA2 activity. Cardiovasc Res 2002; 53:382–91.
  • Eizema K, Fechner H, Bezstarosti K, Schneider-Rasp S, van der Laarse A, Wang H, et al. Adenovirus-based phospho-lamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation 2000;101: 2193–9.
  • Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, et al. Chronic Phospholamban-Sarcoplasmic Reticu-lum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy. Cell 1999; 99: 313–22.
  • Sato Y, Kiriazis H, Yatani A, Schmidt AG, Hahn H, Ferguson DG, et al. Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myo-cardium by phospholamban ablation. J Biol Chem 2001;276: 9392–9.
  • Song Q, Schmidt AG, Hahn HS, Carr AN, Frank B, Pater L, et al. Rescue of cardiomyocyte dysfunction by phospholam-ban ablation does not prevent ventricular failure in genetic hypertrophy. J Clin Invest 2003;111:859–67.
  • Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003;111:869–76.
  • Shigekawa M, Iwamoto T. Cardiac Na(±)-Ca(2+) exchange: molecular and pharmacological aspects. Circ Res 2001;88: 864–76.
  • Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, et al. Relationship between Na+-Ca2±-exchanger protein levels and diastolic function of failing human myocardium. Circulation 1999;99:641–8.
  • Sipido KR, Volders PG, Vos MA, Verdonck F. Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res 2002;53: 782–805.
  • Schillinger W, Schneider H, Minami K, Ferrari R, Hasenfuss G. Importance of sympathetic activation for the expression of Na+-Ca2+ exchanger in end-stage failing human myocar-dium. Eur Heart J 2002;23: 1118–24.
  • Bristow MR, Minobe W, Rasmussen R, Larrabee P, Skerl L, Klein JW, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest 1992;89:803–15.
  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensi-tivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982;307:205–11.
  • Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 1993;87: 454–63.
  • Port JD, Bristow MR. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol 2001;33:887–905.
  • Rockman HA, Koch WJ, Leflcowitz RJ. Seven-transmem-brane-spanning receptors and heart function. Nature 2002; 415:206–12.
  • Leflcowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circula-tion 2000;101:1634–7.
  • Bers D. Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht, the Netherlands: Kluwer; 2001:203–44.
  • Bristow MR. Mechanistic and clinical rationales for using beta-blockers in heart failure. J Card Fail 2000;6:8–14.
  • Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, et al. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 1993;92:2737–45.
  • Daaka Y, Luttrell LM, Leflcowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390: 88–91.
  • Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D'Armiento J, Burkhoff D, et al. Protein Kinase A (Ryanodine Receptor) in Normal and Failing Hearts. Role of 2003;278:did53.
  • Wei SK, Ruknudin A, Hanlon SU, McCurley JM, Schulze DH, Haigney MC. Protein kinase A hyperphosphorylation increases basal current but decreases beta-adrenergic respon-siveness of the sarcolemmal Na+-Ca2+ exchanger in failing pig myocytes. Circ Res 2003;92:897–903.
  • Zakhary DR, Moravec CS, Stewart RW, Bond M. Protein kinase A (PKA)-dependent tropomn-I phosphorylation and PKA regulatory suhumts are decreased in human dilated cardiomyopathy. Circulation 1999;99:505-10.
  • Neumann J, Eschenhagen T, Jones LR, Linck B, Schmitz W, Scholz H, Zimmermann N. Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 1997;29:265–72.
  • Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, et al. Phosphorylation-dependent Regulation of Ryanodine Receptors. A novel role for leucine/ isoleucine zippers. J Cell Biol 2001;153:699–708.
  • MacDougall LK, Jones LR, Cohen P. Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur J Biochem 1991;196:725–34.
  • Huhhard MJ, Dent P, Smythe C, Cohen P. Targetting of protein phosphatase 1 to the sarcoplasmic reticulum of rabbit skeletal muscle by a protein that is very similar or identical to the G suhumt that directs the enzyme to glycogen. Eur J Biochem 1990;189:243–9.
  • Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 2002;295:1711–5.
  • Epstein SE, Braunwald E. The effect of beta adrenergic blockade on patterns of urinary sodium excretion. Studies in normal subjects and in patients with heart disease. Ann Intern Med 1966;65:20–7.
  • CIBIS-II. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9–13.
  • MERIT-HF. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353: 2001–7.
  • Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344:1651–8.
  • Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, et al. Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 2002;346:1357–65.
  • Plank DM, Yatam A, Ritsu H, Witt S, Glascock B, Lalli MJ, et al. Calcium Dynamics in the Failing Heart:Restoration by [beta]-Adrenergic Receptor Blockade. Am J Physiol Heart Circ Physiol 2003;285:H305–15.
  • Gwathmey JK, Kim CS, Hajjar RJ, Khan F, DiSalvo TG, Matsumon A, et al. Cellular and molecular remodeling in a heart failure model treated with the beta-blocker carteolol. Am J Physiol 1999;276:H1678–90.
  • Reiken S, Gaburjakova M, Gaburjakova J, He KL, Prieto A, Becker E, et al. beta-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 2001; 104: 2843–8.
  • Reiken S, Wehrens XH, Vest JA, Barbone A, Klotz S, Mancim D, et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 2003;107:2459–66.
  • Doi M, Yano M, Kobayashi S, Kohno M, Tokuhisa T, Okuda S, et al. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 2002;105:1374–9.
  • Ono K, Yano M, Ohkusa T, Kohno M, Hisaoka T, Tamgawa T, et al. Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal Ca(2+) release in heart failure. Cardiovasc Res 2000;48:323–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.