1,505
Views
0
CrossRef citations to date
0
Altmetric
Review

Hydrophilic biomaterial intravenous hydrogel catheter for complication reduction in PICC and midline catheters

ORCID Icon
Pages 207-216 | Received 24 Oct 2023, Accepted 26 Feb 2024, Published online: 06 Mar 2024

References

  • iData Research. US Market Report Suite for Vascular Access Devices. 2023. Available from: https://idataresearch.com/product/vascular-access-devices-market-united-states/
  • Chopra V, Anand S, Krein SL, et al. Bloodstream infection, venous thrombosis, and peripherally inserted central catheters: reappraising the evidence. Am J Med. 2012 Aug 1;125(8):733–741. doi: 10.1016/j.amjmed.2012.04.010
  • Helm RE, Klausner JD, Klemperer JD, et al. Accepted but unacceptable: peripheral IV catheter failure. J Infus Nurs. 2015 May 1;38(3):189–203.
  • Liem TK, Yanit KE, Moseley SE, et al. Peripherally inserted central catheter usage patterns and associated symptomatic upper extremity venous thrombosis. J Vasc Surg. 2012 Mar 1;55(3):761–767.
  • Swaminathan L, Flanders S, Horowitz J, et al. Safety and outcomes of midline catheters vs peripherally inserted central catheters for patients with short-term indications: a multicenter study. JAMA Intern Med. 2022 Jan 1;182(1):50–58. doi: 10.1001/jamainternmed.2021.6844
  • Di Fiore A. Clinical and engineering considerations for the design of indwelling vascular access devices: materials and product development overview. JAVA. 2005;10(1):24–27. doi: 10.2309/java.10-1-2
  • Ullman AJ, August D, Kleidon T, et al. Peripherally inserted central catheter iNnovation to reduce infections and clots (the PICNIC trial): a randomised controlled trial protocol. BMJ Open. 2021 Apr 1;11(4):e042475. doi: 10.1136/bmjopen-2020-042475
  • Schults JA, Kleidon T, Petsky HL, et al. Peripherally inserted central catheter design and material for reducing catheter failure and complications. Cochrane Database Syst Rev. 2019 Jul;2019(7). Art. No.: CD013366. doi: 10.1002/14651858.CD013366
  • Slaughter E, Kynoch K, Brodribb M, et al. Evaluating the impact of central venous catheter materials and design on thrombosis: a systematic review and meta‐analysis. Worldviews Evid Based Nurs. 2020 Oct;17(5):376–384. doi: 10.1111/wvn.12472
  • Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020 Apr 1;6(4):e03719.
  • Mannarino MM, Bassett M, Donahue DT, et al. Novel high-strength thromboresistant poly (vinyl alcohol)-based hydrogel for vascular access applications. J Biomater Sci Polym Ed. 2020 Mar 23;31(5):601–621. doi: 10.1080/09205063.2019.1706148
  • LeRoy KJ, Donahue DT. Trackability of a high-strength thromboresistant hydrogel catheter: an in vitro analysis comparing venous catheter forces in a simulated use pathway. J Mech Behav Biomed Mater. 2023 Mar 1;139:105670. doi: 10.1016/j.jmbbm.2023.105670
  • Moureau NL. Integrative review: complications of Peripherally Inserted Central Catheters (PICC) and midline catheters with economic analysis of potential impact of hydrophilic catheter material. Int J Nurs Health Care Res. 2022;5(10):17.
  • Tripathi S, Kumar S, Kaushik S. The practice and complications of midline catheters: a systematic review. Crit Care Med. 2021;49(2):e140–e150. doi: 10.1097/CCM.0000000000004764
  • Greenhalgh R, Dempsey-Hibbert NC, Whitehead KA. Antimicrobial strategies to reduce polymer biomaterial infections and their economic implications and considerations. Int Biodeterior Biodegrad. 2019;136:1–14. doi: 10.1016/j.ibiod.2018.10.005
  • Donlan RM. Biofilms and device-associated infections. Emerging infectious diseases. Emerg Infect Dis. 2001 Mar;7(2):277. doi: 10.3201/eid0702.010226
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbio Rev. 2002 Apr;15(2):167–193. doi: 10.1128/CMR.15.2.167-193.2002
  • Morris NS, Stickler DJ, Winters C. Which indwelling urethral catheters resist encrustation by proteus mirabilis biofilms? Br J Urol. 1997;80(1):58–63. doi: 10.1046/j.1464-410X.1997.00185.x
  • Stickler DJ, King J, Nettleton J, et al. The structure of urinary catheter encrusting bacterial biofilms. Cells Mat. 1993;3:315–319.
  • Ullman AJ, Bulmer AC, Dargaville TR, et al. Antithrombogenic peripherally inserted central catheters: overview of efficacy and safety. Expert Rev Med Devices. 2019 Jan 2;16(1):25–33.
  • Correa S, Grosskopf AK, Lopez Hernandez H, et al. Translational applications of hydrogels. Chem Rev. 2021 May 3;121(18):11385–11457. doi: 10.1021/acs.chemrev.0c01177
  • Data on file at Access Vascular. IFU for HydroPICC, HydroPICC Dual Lumen, and HydroMID catheters, Access Vascular Inc. Available from: http://www.accessvascularinc.com/avi-story-and-file:///E:/Manufacturers/Access%20Vascular/Hydropicc%20Care%20Team%20Guidance.pdf
  • Xu H, Huang Y, Jiao W, et al. Hydrogel-coated ventricular catheters for high-risk patients receiving ventricular peritoneum shunt. Medicine. 2016;95(29):e4252. doi: 10.1097/MD.0000000000004252
  • Mitra D, Kang ET, Neoh KG. Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications. ACS Appl Polym Mater. 2021 Apr 20;3(5):2233–2263.
  • Maki DG. Infections caused by intravascular devices used for infusion therapy: pathogenesis, prevention, and management, p 155–212. Infections associated with indwelling medical devices. 2nd ed. Washington (DC): ASM Press; 1994.
  • Raad I. Intravascular-catheter-related infections. Lancet. 1998;351(9106):893–898. doi: 10.1016/S0140-6736(97)10006-X
  • Sousa C, Henriques M, Oliveira R. Mini-review: antimicrobial central venous catheters–recent advances and strategies. Biofouling. 2011 Jun 22;27(6):609–620.
  • Raad I, Costerton W, Sabharwal U, et al. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–407. doi: 10.1093/infdis/168.2.400
  • Maikranz E, Spengler C, Thewes N, et al. Different binding mechanisms of staphylococcus aureus to hydrophobic and hydrophilic surfaces. Nanoscale. 2020;12(37):19267–19275. doi: 10.1039/D0NR03134H
  • Tebbs SE, Sawyer A, Elliott TS. Influence of surface morphology on in vitro bacterial adherence to central venous catheters. Br J Anaesth. 1994;72(5):587–591. doi: 10.1093/bja/72.5.587
  • Kohren W, Jansen B. Polymer materials for the prevention of catheter-related infection. Zentralblatt für Bakteriologie. 1995;283(2):175–186. doi: 10.1016/S0934-8840(11)80199-4
  • Gatter N, Kohnen W, Jansen B. In vitro efficacy of a hydrophilic central venous catheter loaded with silver to prevent microbial colonization. Zentralbl Bakteriol. 1998;287(1–2):157–169. doi: 10.1016/S0934-8840(98)80162-X
  • Mehall JR, Saltzman DA, Jackson RJ, et al. Catheter materials affect the incidence of late blood-borne catheter infection. Surg Infect. 2001;2(3):225–230. doi: 10.1089/109629601317202704
  • Ryder M. The role of biofilm in vascular catheter-related infections. N Dev Vasc Dis. 2001;2:15–25.
  • Bunch J. A retrospective assessment of midline catheter failures focusing on catheter composition. J Infus Nurs. 2022 Sep 1;45(5):270–278. Available from: https://www.accessvascularinc.com/news/new-access-vascular-retrospective-data-review-demonstrates-midline-catheters-composed-of-advanced-biomaterials-may-improve-dwell-times
  • Data on file. AVI data for reduction of thrombus accumulation was evaluated using in vitro and in vivo models. Pre-clinical in vitro/in vivo evaluations do not necessarily predict clinical performance with respect to thrombus formation.
  • Bunch J, Hanley B, Donahue D. A retrospective, comparative, clinical study of occlusion rate of peripherally inserted central catheters fabricated of poly(vinyl alcohol)-based hydrogel composite. J Mater Sci Mater Med. 2023;34(7):34. doi: 10.1007/s10856-023-06736-0
  • Hawthorn A, Bulmer AC, Mosawy S, et al. Implications for maintaining vascular access device patency and performance: application of science to practice. J Vasc Access. 2019 Sep;20(5):461–470. doi: 10.1177/1129729818820200
  • Smith SN, Moureau N, Vaughn VM, et al. Patterns and predictors of peripherally inserted central catheter occlusion: the 3P-O study. J Vasc Interv Radiol. 2017;28(5):749–756.e2. doi: 10.1016/j.jvir.2017.02.005
  • Johnston AJ, Streater CT, Noorani R, et al. The effect of peripherally inserted central catheter (PICC) valve technology on catheter occlusion rates-the ‘ELeCtriC’study. J Vasc Access. 2012 Oct;13(4):421–425. doi: 10.5301/jva.5000071
  • Ngo Brian Khai D, Grunlan MA. Protein resistant polymeric biomaterials. ACS Macro Lett. 2017 Sep 19;6(9):992–1000. Epub 2017 Aug 29. PMID: 35650885. doi: 10.1021/acsmacrolett.7b00448
  • Hoffman AS. Non-fouling surface technologies. J Biomater Sci Polym Ed. 1999 Jan 1;10(10):1011–1014.
  • Ostuni E, Grzybowski BA, Mrksich M, et al. Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir. 2003 Mar 4;19(5):1861–1872. doi: 10.1021/la020649c
  • Liu L, Shi H, Yu H, et al. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci. 2020;8(15):4095–4108. doi: 10.1039/D0BM00659A
  • Lai NM, Chaiyakunapruk N, Lai NA, et al. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults, edited by Cochrane emergency and critical care group. Cochrane Database Syst Rev. 2018;(12):CD007878. doi: 10.1002/14651858.CD007878.pub3
  • Casimero C, Ruddock T, Hegarty C, et al. Minimising bloodstream infection: developing new materials for intravascular catheters. Medicines. 2020 Aug 26;7(9):49.
  • Zhang F, Hu C, Yang L, et al. A conformally adapted all-in-one hydrogel coating: towards robust hemocompatibility and bactericidal activity. J Mat Chem B. 2021;9(11):2697–2708. doi: 10.1039/D1TB00021G
  • Braun U, Lorenz E, Weimann C, et al. Mechanic and surface properties of central-venous port catheters after removal: a comparison of polyurethane and silicon rubber materials. J Mech Behav Biomed Mater. 2016;64:281–291. doi: 10.1016/j.jmbbm.2016.08.002
  • Gharibi R, Agarwal S. Polyurethanes from hydrophobic elastic materials to hydrogels with potent nonleaching biocidal and antibiofilm activity. ACS Appl Polym Mater. 2021 Aug 30;3(9):4695–4707.
  • Niemczyk A, El Fray M, Franklin SE. Friction behaviour of hydrophilic lubricious coatings for medical device applications. Tribol Int. 2015;89:54–61. doi: 10.1016/j.triboint.2015.02.003
  • Yang SH, Lee YSJ, Lin FH, et al. Chitosan/Poly (vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J Biomed Mater Res B Appl Biomater. 2007;83(2):304–313. doi: 10.1002/jbm.b.30796
  • Pollard D, Allen D, Irwin NJ, et al. Evaluation of an integrated amphiphilic surfactant as an alternative to traditional polyvinylpyrrolidone coatings for hydrophilic intermittent urinary catheters. Biotribology. 2022 Dec 1;32:100223. doi: 10.1016/j.biotri.2022.100223