767
Views
0
CrossRef citations to date
0
Altmetric
Articles

NanoMixHamster: a web-based tool for predicting cytotoxicity of TiO2-based multicomponent nanomaterials toward Chinese hamster ovary (CHO-K1) cells

, , , &
Pages 276-289 | Received 31 Mar 2022, Accepted 17 May 2022, Published online: 17 Jun 2022

References

  • Afantitis, A., G. Melagraki, P. Isigonis, A. Tsoumanis, D. D. Varsou, E. Valsami-Jones, A. Papadiamantis, et al. 2020. “NanoSolveIT Project: Driving Nanoinformatics Research to Develop Innovative and Integrated Tools for in Silico Nanosafety Assessment.” Computational and Structural Biotechnology Journal 18: 583–602. doi:10.1016/j.csbj.2020.02.023.
  • Bahadar, H., F. Maqbool, K. Niaz, and M. Abdollahi. 2016. “Toxicity of Nanoparticles and an Overview of Current Experimental Models.” Iranian Biomedical Journal 20 (1): 1–11. doi:10.7508/ibj.2016.01.001.
  • Bigdeli, A., M. R. Hormozi-Nezhad, and H. Parastar. 2015. “Using nano-QSAR to Determine the Most Responsible Factor(s) in Gold Nanoparticle Exocytosis.” RSC Advances 5 (70): 57030–57037. doi:10.1039/C5RA06198A.
  • Burello, E., and A. P. Worth. 2011. “A Theoretical Framework for Predicting the Oxidative Stress Potential of Oxide Nanoparticles.” Nanotoxicology 5 (2): 228–235. doi:10.3109/17435390.2010.502980.
  • Chau, Y. T., and C. W. Yap. 2012. “Quantitative Nanostructure–Activity Relationship Modelling of Nanoparticles.” RSC Advances 2 (22): 8489. doi:10.1039/c2ra21489j.
  • Cho, W.-S., R. Duffin, F. Thielbeer, M. Bradley, I. L. Megson, W. MacNee, C. A. Poland, C. L. Tran, and K. Donaldson. 2012. “Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles.” Toxicological Sciences: An Official Journal of the Society of Toxicology 126 (2): 469–477. doi:10.1093/toxsci/kfs006.
  • Chusuei, C. C., C.-H. Wu, S. Mallavarapu, F. Y. S. Hou, C.-M. Hsu, J. G. Winiarz, R. S. Aronstam, and Y.-W. Huang. 2013. “Cytotoxicity in the Age of Nano: The Role of Fourth Period Transition Metal Oxide Nanoparticle Physicochemical Properties.” Chemico-Biological Interactions 206 (2): 319–326. doi:10.1016/j.cbi.2013.09.020.
  • Epa, V. C., F. R. Burden, C. Tassa, R. Weissleder, S. Shaw, and D. A. Winkler. 2012. “Modeling Biological Activities of Nanoparticles.” Nano Letters 12 (11): 5808–5812. doi:10.1021/nl303144k.
  • Fourches, D., D. Pu, C. Tassa, R. Weissleder, S. Y. Shaw, R. J. Mumper, and A. Tropsha. 2010. “Quantitative Nanostructure-Activity Relationship Modeling.” ACS Nano 4 (10): 5703–5712. doi:10.1021/nn1013484.
  • Gajewicz, A., M. T. D. Cronin, B. Rasulev, J. Leszczynski, and T. Puzyn. 2014a. “Novel Approach for Efficient Predictions Properties of Large Pool of Nanomaterials Based on Limited Set of Species: nano-Read-across.” Nanotechnology 26 (1): 015701. doi:10.1088/0957-4484/26/1/015701.
  • Gajewicz, A., N. Schaeublin, B. Rasulev, S. Hussain, D. Leszczynska, T. Puzyn, and J. Leszczynski. 2014b. “Towards Understanding Mechanisms Governing Cytotoxicity of Metal Oxides Nanoparticles: Hints from nano-QSAR Studies.” Nanotoxicology 9 (3): 313–325. doi:10.3109/17435390.2014.930195.
  • Ghorbanzadeh, M., M. H. Fatemi, and M. Karimpour. 2012. “Modeling the Cellular Uptake of Magnetofluorescent Nanoparticles in Pancreatic Cancer Cells: A Quantitative Structure Activity Relationship Study.” Industrial & Engineering Chemistry Research 51 (32): 10712–10718. doi:10.1021/ie3006947.
  • Gramatica, P. 2013. Computational Toxicology: Volume II, Methods in Molecular Biology, vol. 930 (Ed: B. Reisfeld, A. N. Mayeno), Springer Science + Business Media.: 499-526.
  • Gramatica, P., S. Cassani, P. P. Roy, S. Kovarich, C. W. Yap, and E. Papa. 2012. “QSAR Modeling is Not “Push a Button and Find a Correlation”: a Case Study of Toxicity of (Benzo-)triazoles on Algae.” Molecular Informatics 31 (11-12): 817–835. doi:10.1002/minf.201200075.
  • Kar, S., A. Gajewicz, T. Puzyn, and K. Roy. 2014a. “ Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells.” Toxicology in Vitro : An International Journal Published in Association with BIBRA 28 (4): 600–606. doi:10.1016/j.tiv.2013.12.018.
  • Kar, S., A. Gajewicz, T. Puzyn, K. Roy, and J. Leszczynski. 2014b. “Periodic Table-Based Descriptors to Encode Cytotoxicity Profile of Metal Oxide Nanoparticles: A Mechanistic QSTR Approach.” Ecotoxicology and Environmental Safety 107: 162–169. doi:10.1016/j.ecoenv.2014.05.026.
  • Karatzas, P., G. Melagraki, L. A. Ellis, I. Lynch, D. Varsou, A. Afantitis, A. Tsoumanis, P. Doganis, and H. Sarimveis. 2020. “Development of Deep Learning Models for Predicting the Effects of Exposure to Engineered Nanomaterials on Daphnia Magna.” Small 16 (36): 2001080. doi:10.1002/smll.202001080.
  • Kaweeteerawat, C., A. Ivask, R. Liu, H. Zhang, C. H. Chang, C. Low-Kam, H. Fischer, et al. 2015. “Toxicity of Metal Oxide Nanoparticles in Escherichia coli Correlates with Conduction Band and Hydration Energies.” Environmental Science & Technology 49 (2): 1105–1112. doi:10.1021/es504259s.
  • Lai, D. Y. 2015. “Approach to Using Mechanism-Based Structure Activity Relationship (SAR) Analysis to Assess Human Health Hazard Potential of Nanomaterials.” Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 85: 120–126. doi:10.1016/j.fct.2015.06.008.
  • Lamon, L., D. Asturiol, A. Vilchez, R. Ruperez-Illescas, J. Cabellos, A. Richarz, and A. Worth. 2019. “Computational Models for the Assessment of Manufactured Nanomaterials: Development of Model Reporting Standards and Mapping of the Model Landscape.” Computational Toxicology (Amsterdam, Netherlands) 9: 143–151. doi:10.1016/j.comtox.2018.12.002.
  • Liu, R., B. France, S. George, R. Rallo, H. Zhang, T. Xia, A. E. Nel, K. Bradley, and Y. Cohen. 2014. “Association Rule Mining of Cellular Responses Induced by Metal and Metal Oxide Nanoparticles.” The Analyst 139 (5): 943–953. doi:10.1039/c3an01409f.
  • Liu, R., H. H. Liu, Z. Ji, C. H. Chang, T. Xia, A. E. Nel, and Y. Cohen. 2015. “Evaluation of Toxicity Ranking for Metal Oxide Nanoparticles via an in Vitro Dosimetry Model.” ACS Nano 9 (9): 9303–9313. doi:10.1021/acsnano.5b04420.
  • Liu, R., R. Rallo, S. George, Z. Ji, S. Nair, A. E. Nel, and Y. Cohen. 2011. “Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles.” Small (Weinheim an Der Bergstrasse, Germany) 7 (8): 1118–1126. doi:10.1002/smll.201002366.
  • Liu, R., R. Rallo, R. Weissleder, C. Tassa, S. Shaw, and Y. Cohen. 2013a. “Nano-SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries.” Small (Weinheim an Der Bergstrasse, Germany) 9 (9-10): 1842–1852. doi:10.1002/smll.201201903.
  • Liu, R., H. Y. Zhang, Z. X. Ji, R. Rallo, T. Xia, C. H. Chang, A. Nel, and Y. Cohen. 2013b. “Development of Structure-Activity Relationship for Metal Oxide Nanoparticles.” Nanoscale 5 (12): 5644–5653. doi:10.1039/c3nr01533e.
  • Melagraki, G., and A. Afantitis. 2014. “Enalos InSilicoNano Platform: An Online Decision Support Tool for the Design and Virtual Screening of Nanoparticles.” RSC Advances. 4 (92): 50713–50725. doi:10.1039/C4RA07756C.
  • Mikolajczyk, A., A. Gajewicz, E. Mulkiewicz, B. Rasulev, M. Marchelek, M. Diak, S. Hirano, A. Zaleska-Medynska, and T. Puzyn. 2018. “Nano-QSAR Modeling for Ecosafe Design of Heterogeneous TiO 2 -Based Nano-Photocatalysts.” Environmental Science: Nano 5 (5): 1150–1160. doi:10.1039/C8EN00085A.
  • Mikolajczyk, A., A. Gajewicz, B. Rasulev, N. Schaeublin, E. Maurer-Gardner, S. Hussain, J. Leszczynski, and T. Puzyn. 2015. “Zeta Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a Nano-Quantitative Structure–Property Relationship Approach.” Chemistry of Materials 27 (7): 2400–2407. doi:10.1021/cm504406a.
  • Mikolajczyk, A., A. Malankowska, G. Nowaczyk, A. Gajewicz, S. Hirano, S. Jurga, A. Zaleska-Medynska, and T. Puzyn. 2016. “Combined Experimental and Computational Approach to Developing Efficient Photocatalysts Based on Au/Pd–TiO 2 Nanoparticles.” Environmental Science: Nano 3 (6): 1425–1435. doi:10.1039/C6EN00232C.
  • Mikolajczyk, A., N. Sizochenko, E. Mulkiewicz, A. Malankowska, M. Nischk, P. Jurczak, S. Hirano, et al. 2017. “Evaluating the Toxicity of TiO2-Based Nanoparticles to Chinese Hamster Ovary Cells and Escherichia coli: A Complementary Experimental and Computational Approach.” Beilstein Journal of Nanotechnology 8 (1): 2171–2180. doi:10.3762/bjnano.8.216.
  • Mikolajczyk, A., N. Sizochenko, E. Mulkiewicz, A. Malankowska, B. Rasulev, and T. Puzyn. 2019. “A Chemoinformatics Approach for the Characterization of Hybrid Nanomaterials: safer and Efficient Design Perspective.” Nanoscale 11 (24): 11808–11818. doi:10.1039/c9nr01162e.
  • OECD. 2007. “Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models.” OECD Series on Testing and Assessment doi:10.1787/9789264085442-en.
  • OECD 2018. 2018 environment directorate. joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology. Evaluation of in vitro methods for human hazard assessment applied in the OECD Testing Programme for the Safety of Manufactured Nanomaterials. Series on the Safety of Manufactured Nanomaterials No. 85.
  • Patel, T., D. Telesca, R. Rallo, S. George, T. Xia, and A. E. Nel. 2013. “Hierarchical Rank Aggregation with Applications to Nanotoxicology.” Journal of Agricultural, Biological, and Environmental Statistics 18 (2): 159–177. doi:10.1007/s13253-013-0129-y.
  • Pathakoti, K., M.-J. Huang, J. D. Watts, X. He, and H.-M. Hwang. 2014. “Using Experimental Data of Escherichia coli to Develop a QSAR Model for Predicting the Photo-Induced Cytotoxicity of Metal Oxide Nanoparticles.” Journal of Photochemistry and Photobiology. B, Biology 130: 234–240. doi:10.1016/j.jphotobiol.2013.11.023.
  • Puck, T. T., S. J. Cieciura, and A. Robinson. 1958. “Genetics of Somatic Mammalian cells. III. Long-term Cultivation of Euploid Cells from Human and Animal Subjects.” The Journal of Experimental Medicine 108 (6): 945–956. doi:10.1084/jem.108.6.945.
  • Puzyn, T., B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari, A. Michalkova, H.-M. Hwang, A. Toropov, D. Leszczynska, and J. Leszczynski. 2011. “Using nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles.” Nature Nanotechnology 6 (3): 175–178. doi:10.1038/nnano.2011.10.
  • Rallo, R., B. France, R. Liu, S. Nair, S. George, R. Damoiseaux, F. Giralt, A. Nel, K. Bradley, and Y. Cohen. 2011. “Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles.” Environmental Science & Technology 45 (4): 1695–1702. doi:10.1021/es103606x.
  • Roy, J., P. K. Ojha, and K. Roy. 2019. “Risk Assessment of Heterogeneous TiO2-Based Engineered Nanoparticles (NPs): a QSTR Approach Using Simple Periodic Table Based Descriptors.” Nanotoxicology 13 (5): 701–716. doi:10.1080/17435390.2019.1593543.
  • Rybińska-Fryca, A., A. Mikolajczyk, and T. Puzyn. 2020. “ Structure-activity Prediction Networks (SAPNets): A Step Beyond Nano-QSAR for Effective Implementation of the Safe-by-design Concept.” Nanoscale 12 (40): 20669–20676. doi:10.1039/d0nr05220e.
  • Shaw, S. Y., E. C. Westly, M. J. Pittet, A. Subramanian, S. L. Schreiber, and R. Weissleder. 2008. “Perturbational Profiling of Nanomaterial Biologic Activity.” Proceedings of the National Academy of Sciences of the United States of America 105 (21): 7387–7392. doi:10.1073/pnas.0802878105.
  • Singh, K. P., and S. Gupta. 2014. “Nano-QSAR Modeling for Predicting Biological Activity of Diverse Nanomaterials.” RSC Advances. 4 (26): 13215–13230. doi:10.1039/C4RA01274G.
  • Sizochenko, N., K. Jagiello, J. Leszczynski, and T. Puzyn. 2015a. “How the “Liquid Drop” Approach Could Be Efficiently Applied for Quantitative Structure–Property Relationship Modeling of Nanofluids.” The Journal of Physical Chemistry C 119 (45): 25542–25547. doi:10.1021/acs.jpcc.5b05759.
  • Sizochenko, N., A. Mikolajczyk, M. Syzochenko, T. Puzyn, and J. Leszczynski. 2021. “Zeta Potentials (ζ) of Metal Oxide Nanoparticles: A Meta-Analysis of Experimental Data and a Predictive Neural Networks Modeling.” NanoImpact 22: 100317. doi:10.1016/j.impact.2021.100317.
  • Sizochenko, Natalia., Bakhtiyor. Rasulev, Agnieszka. Gajewicz, Victor. Kuz'min, Tomasz. Puzyn, and Jerzy. Leszczynski. 2014. “From Basic Physics to Mechanisms of Toxicity: The “ "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles”.” Nanoscale 6 (22): 13986–13993. doi:10.1039/c4nr03487b.
  • Sizochenko, Natalia., Bakhtiyor. Rasulev, Agnieszka. Gajewicz, Elena. Mokshyna, Victor E. Kuz'min, Jerzy. Leszczynski, and Tomasz. Puzyn. 2015b. “Causal Inference Methods to Assist in Mechanistic Interpretation of Classification nano-SAR Models.” RSC Advances 5 (95): 77739–77745. doi:10.1039/C5RA11399G.
  • Toropov, A. A., A. P. Toropova, E. Benfenati, G. Gini, T. Puzyn, D. Leszczynska, and J. Leszczynski. 2012. “Novel Application of the CORAL Software to Model Cytotoxicity of Metal Oxide Nanoparticles to Bacteria Escherichia coli.” Chemosphere 89 (9): 1098–1102. doi:10.1016/j.chemosphere.2012.05.077.
  • Toropov, A. A., A. P. Toropova, T. Puzyn, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski. 2013. “QSAR as a Random Event: Modeling of Nanoparticles Uptake in PaCa2 Cancer Cells.” Chemosphere 92 (1): 31–37. doi:10.1016/j.chemosphere.2013.03.012.
  • Toropova, A. P., A. A. Toropov, E. Benfenati, and R. Korenstein. 2014. “QSAR Model for Cytotoxicity of SiO2 Nanoparticles on Human Lung Fibroblasts.” Journal of Nanoparticle Research 16 (2): 2282. doi:10.1007/s11051-014-2282-9.
  • Toropova, A. P., A. A. Toropov, R. Rallo, D. Leszczynska, and J. Leszczynski. 2015. “Optimal Descriptor as a Translator of Eclectic Data into Prediction of Cytotoxicity for Metal Oxide Nanoparticles under Different Conditions.” Ecotoxicology and Environmental Safety 112: 39–45. doi:10.1016/j.ecoenv.2014.10.003.
  • Varsou, D., A. Afantitis, A. Tsoumanis, A. Papadiamantis, E. Valsami‐Jones, I. Lynch, and G. Melagraki. 2020. “ Zeta-Potential Read-Across Model Utilizing Nanodescriptors Extracted via the NanoXtract Image Analysis Tool Available on the Enalos Nanoinformatics Cloud Platform.” Small (Weinheim an Der Bergstrasse, Germany) 16 (21): e1906588. doi:10.1002/smll.201906588.
  • Varsou, D.-D., and H. Sarimveis. 2021. “Apellis: An Online Tool for Read-across Model Development.” Computational Toxicology 17: 100146. doi:10.1016/j.comtox.2020.100146.
  • Winkler, D. A., F. R. Burden, B. Yan, R. Weissleder, C. Tassa, S. Shaw, and V. C. Epa. 2014. “Modelling and Predicting the Biological Effects of Nanomaterials.” SAR and QSAR in Environmental Research 25 (2): 161–172. doi:10.1080/1062936X.2013.874367.
  • Zhang, H., Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, et al. 2012. “Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation.” ACS Nano 6 (5): 4349–4368. doi:10.1021/nn3010087.