129
Views
12
CrossRef citations to date
0
Altmetric
Original

The detection of airborne carbon nanotubes in relation to toxicology and workplace safety

&
Pages 251-265 | Received 07 Jun 2007, Published online: 10 Jul 2009

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture and use of nanomaterials: Current status in the UK and global trends. Occupat Med Oxford 2006; 56(5)300–306
  • Anderson N, Bouhelier A, Novotny L. Near-field photonics: Tip-enhanced microscopy and spectroscopy on the nanoscale. J Optics a-Pure Appl Optics 2006; 8(4)S227–233
  • Avouris P. Nanotube electronics – electronics with carbon nanotubes. Physics World 2007; 20(3)40–45
  • Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits based on carbon nanotubes. Physica E-Low-Dimensional Syst Nanostructures 2003; 16(1)42–46
  • Bai C. 2000. Scanning tunneling microscopy and its application. 2nd ed. Springer Series in Surface Sciences, 32. Berlin: Springer Verlag.
  • Balasubramanian K, Burghard M. Biosensors based on carbon nanotubes. Analyt Bioanalyt Chem 2006; 385(3)452–468
  • Bang JJ, Murr LE. Atmospheric nanoparticles: Preliminary studies and potential respiratory health risks for emerging nanotechnologies. J Materials Sci Lett 2002; 21(5)361–366
  • Barlow PG, Clouter-Baker A, Donaldson K, MacCallum J, Stone V. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Partic Fibre Toxicol 2005; 6(2)11
  • Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials 2004; 4(1)86–92
  • Bellucci S, Balasubramanian C, Bergamaschi A, Bottini M, Magrini A, Mustelin T. 2006. Biomedical applications of carbon nanotubes and the related cellular toxicity. NSTI Nanotechnology Conference and Trade Show – Nanotech 2006 – 9th annual, Boston, USA.
  • Biro LP, Gyulai J, Lambin P, Nagy JB, Lazarescu S, Mark GI, Fonseca A, Surjan PR, Szekeres Z, Thiry PA, Lucas AA. Scanning tunnelling microscopy (STM) imaging of carbon nanotubes. Carbon 1998; 36(5–6)689–696
  • Bonard JM, Dean KA, Coll BF, Klinke C. 2002. Field emission of individual carbon nanotubes in the scanning electron microscope Phys Rev Lett 89(19).
  • Bonnell D, editor. 2001. Scanning probe microscopy and spectroscopy: Theory, techniques, and applications, 2nd ed. New York: Wiley VCH.
  • Bozzola JJ. Electron microscopy: Principles and techniques for biologists. Jones & Bartlett Publishers Inc, Boston, MA 1998
  • Branca C, Corsaro C, Frusteri F, Magazu V, Mangione A, Migliardo F, Wanderlingh U. Structural and vibrational properties of carbon nanotubes by TEM and infrared spectroscopy. Diamond Related Materials 2004; 13(4–8)1249–1253
  • Brown J. 2006. Installation of Raymor's high capacity single-walled carbon nanotubes production unit completed: Operations begin. Industry News, 4 April 2006 – SpecialChem. Accessed 1 July 2007 from the website: http://www.specialchem4polymers.com/resources/latest/displaynews.aspx?id=2470.
  • Bumgarner S, Russell PE. Sample preparation for STM imaging of silicon at atmospheric pressure. Ultramicroscopy 1992; 42: 1433–1437
  • Burghard M. Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Sci Rep 2005; 58(1–4)1–109
  • Cadet F. Multiple mathematical corrections before quantitative analysis of biological infrared spectra. Spectroscopy Lett 1996; 29(7)1335–1351
  • Choquette S. Standard reference materials for relative intensity correction of Raman spectrometers. Am Lab 2005; 37(22)22
  • Clauss W, Freitag M, Bergeron DJ, Johnson AT. Material contrast by combined scanning tunneling and force microscopy imaging of single-walled carbon nanotubes. Carbon 2000; 38(11–12)1735–1739
  • Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy3rd ed. Academic Press Ltd, London 1990
  • Cooper CA, Young RJ, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Sci Manufacturing 2001; 32(3–4)401–411
  • Croitoru MD, Bertsche G, Kern DR, Burkhardt C, Bauerdick S, Sahakalkan S, Roth S. Visualization and in situ contacting of carbon nanotubes in a scanning electron microscope. J Vacuum Sci Technol 2005; B23(6)2789–2792
  • Cronin SB, Swan AK, Unlu MS, Goldberg BB, Dresselhaus MS, Tinkham M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys Rev Lett 2004; 93(16)
  • Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol in Vitro 2007; 21(3)438–448
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sci 2006; 92(1)5–22
  • Donaldson K, Tran CL. An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res -Fundamental Molec Mechanisms of Mutagenesis 2004; 553(1–2)5–9
  • Duesberg GS, Blau WJ, Byrne HJ, Muster J, Burghard M, Roth S. Experimental observation of individual single-wall nanotube species by Raman microscopy. Chem Phys Lett 1999; 310(1)8–14
  • Dukovic G, Balaz M, Doak P, Berova ND, Zheng M, McLean RS, Brus LE. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J Am Chem Soc 2006; 128(28)9004–9005
  • Egerton RF. Physical principles of electron microscopy: An introduction to TEM, SEM, and AEM. Springer, New York 2005
  • Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron 2004; 35(6)399–409
  • Endo M, Hayashi T, Kim YA. Large-scale production of carbon nanotubes and their applications. Pure Appl Chem 2006; 78(9)1703–1713
  • Etz ES, Choquette SJ, Hurst WS. Development and certification of NIST standard reference materials for relative Raman intensity calibration. Microchimica Acta 2005; 149(3–4)175–184
  • Fieldson GT, Barbari TA. The use of Ftir-Atr spectroscopy to characterize penetrant diffusion in polymers. Polymer 1993; 34(6)1146–1153
  • Fierz M, Scherrer L, Burtscher H. Real-time measurement of aerosol size distributions with an electrical diffusion battery. J Aerosol Sci 2002; 33(7)1049–1060
  • Foster A, Hofer W. Scanning probe microscopy: Atomic scale engineering by forces and currents (NanoScience and Technology). Springer, New York 2006
  • Fraysse J, Minett AI, Gu G, Roth S, Rinzler AG, Baughman RH. Towards the demonstration of actuator properties of a single carbon nanotube. Curr Appl Physics 2001; 1(4–5)407–411
  • Fultz B, Howe JW. Transmission electron microscopy and diffractometry of materials. Springer, Berlin 2001
  • Gabriel G, Sauthier G, Fraxedas J, Moreno-Manas M, Martinez MT, Miravitlles C, Casabo J. Preparation and characterisation of single-walled carbon nanotubes functionalised with amines. Carbon 2006; 44(10)1891–1897
  • Galano A. On the influence of diameter and length on the properties of armchair single-walled carbon nanotubes: A theoretical chemistry approach. Chem Phys 2006; 327(1)159–170
  • Gao GH, Cagin T, Goddard WA. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 1998; 9(3)184–191
  • Giessibl FJ. Advances in atomic force microscopy. Rev Modern Phys 2003; 75(3)949–983
  • Golberg D, Bando Y, Bourgeois L, Kurashima K. Atomic resolution of single-walled carbon nanotubes using a field emission high-resolution transmission electron microscope Carbon 1999; 37(11)1858–1860
  • Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer LC, Michael JR. Scanning electron microscopy and X-ray microanalysis3rd ed. Springer, New York 2003
  • Gong KP, Yan YM, Zhang MN, Su L, Xiong SX, Mao LQ. Electrochemistry and electroanalytical applications of carbon nanotubes: A review. Analytical Sci 2005; 21(12)1383–1393
  • Gould P. Carbon nanotubes linger longer in river water – toxicology and environment. Nano Today 2007; 2(1)15–15
  • Griffiths PR, de Haseth JAD. Fourier Transform Infrared Spectrometry. Wiley-Interscience, New York 1986
  • Hadjiev G, Arepalli S, Nikolaev P, Jandl S, Yowell L. Enhanced Raman microprobe imaging of single-wall carbon nanotubes. Nanotechnology 2004; 15(5)562–567
  • Harris PJF. Carbon nanotubes and other graphitic structures as contaminants on evaporated carbon films. J Microscopy Oxford 1997; 186: 88–90
  • Hartschuh A, Pedrosa HN, Novotny L, Krauss TD. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 2003; 301(5638)1354–1356
  • Hartschuh A, Pedrosa HN, Peterson J, Huang L, Anger P, Qian H, Meixner AJ, Steiner M, Novotny L, Krauss TD. Single carbon nanotube optical spectroscopy. Chemphyschem 2005; 6(4)577–582
  • Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J Chem Phys 2000; 112(18)7761–7774
  • Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv Materials 2005; 17(23)2793
  • Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnology 2004; 2: 12
  • Hoper R, Workman RK, Chen D, Sarid D, Yadav T, Withers JC. Single-shell carbon nanotubes imaged by atomic-force microscopy. Surface Sci 1994; 311(3)L731–736
  • Hu CG, Zhang YY, Bao G, Zhang YL, Liu ML, Wang ZL. Diameter-dependent voltammetric properties of carbon nanotubes. Chem Phys Lett 2006; 418(4–6)524–529
  • Hurt RH, Monthioux M, Kane A. Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue. Carbon 2006; 44(6)1028–1033
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348)56–58
  • Islam MF, Zhang J, Mei B, Johnson AT, Yodh AG. 2001. Dispersion and characterization of carbon nanotubes, Abstract #C20.006 American Physical Society, Annual March Meeting, March 12–16, 2001 Washington State Convention Center Seattle, Washington Meeting ID: MAR01.
  • Jeon TI, Kim KJ, Kang C, Oh SJ, Son JH, An KH, Bae DJ, Lee YH. Terahertz conductivity of anisotropic single walled carbon nanotube films. Appl Phys Lett 2002; 80(18)3403–3405
  • Jones M, Metzger WK, McDonald TJ, Engtrakul C, Ellingson RJ, Rumbles G, Heben MJ. Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett 2007; 7(2)300–306
  • Jorio A, Pimenta MA, Souza AG, Saito R, Dresselhaus G, Dresselhaus MS. Characterizing carbon nanotube samples with resonance Raman scattering. New J Physics. 2003; 5
  • Kalinin SV, Jesse S, Shin J, Baddorf AP, Guillorn MA, Geohegan DB. Scanning probe microscopy imaging of frequency dependent electrical transport through carbon nanotube networks in polymers. Nanotechnology 2004; 15(8)907–912
  • Kang C, Maeng IH, Oh SJ, Lim SC, An KH, Lee YH, Son JH. Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes. Phys Rev B 2007; 75(8)
  • Kaupp G. Atomic force microscopy, scanning Nearfield optical microscopy and nanoscratching: Application to rough and natural surfaces (NanoScience and Technology). Springer Series. 2005
  • Kiang CH, Goddard WA, Beyers R, Bethune DS. Structural modification of single-layer carbon nanotubes with an electron beam. J Phys Chem 1996; 100(9)3749–3752
  • Kibis OV, Portnoi ME. Carbon nanotubes: A new type of emitter in the terahertz range. Tech Phys Lett 2005; 31(8)671–672
  • Kneipp K, Moskovits H, Kneipp H, editors. 2006. Surface-enhanced Raman scattering: Physics and applications (Series: Topics in Applied Physics) Springer.
  • Krasheninnikov AV. Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies. Solid State Communic 2001; 118(7)361–365
  • Krasheninnikov AV, Nordlund K. Signatures of irradiation-induced defects in scanning-tunneling microscopy images of carbon nanotubes. Phys Solid State 2002; 44(3)470–472
  • Kurti J, Kuzmany H, Burger B, Hulman M, Winter J, Kresse G. Resonance Raman investigation of single wall carbon nanotubes. Synthetic Metals 1999; 103(1–3)2508–2509
  • Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv Drug Delivery Rev 2006; 58(14)1460–1470
  • Lakowicz JR. Principles of fluorescence spectroscopy2nd edn. Kluwer Academic/Plenum Publishers, New York 1999
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sci 2004; 77(1)126–134
  • Laserna JJ, editor. 1996. Modern techniques in Raman Spectroscopy. New York: John Wiley.
  • Lee NS, Chung Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM. Application of carbon nanotubes to field emission displays. Diamond Related Materials 2001; 10(2)265–270
  • Lee SB, Teo KBK, Chhowalla M, Hasko DG, Amaratunga GAJ, Milne WI, Ahmed H. Study of multi-walled carbon nanotube structures fabricated by PMMA suspended dispersion. Microelectronic Engineering 2002; 61–2: 475–483
  • Li YK, Zhu CC, Liu XH. Field emission display with carbon nanotubes cathode: Prepared by a screen-printing process Diamond Rel Materials 2002; 11(11)1845–1847
  • Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic, London 1991
  • Liu XM, Spencer JL, Kaiser AB, Arnold WM. Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 2004; 4(2–4)125–128
  • Lu WG, Wang RZ, Dong JM. Effective dielectric properties of an array of multishell carbon nanotubes. Chinese Phys Lett 2001; 18(8)1129–1131
  • Luo ZTF, Li R, Kim SN, Papadimitrakopoulos F. Reconstructing the radial breathing mode resonance Raman spectra for HiPco single-wall carbon nanotubes. Phys Rev B 2004; 70(24)
  • Maejima K, Suzuki O, Uchida T, Aoki N, Tachibana M, Ishibashi K, Ochiai Y. Raman and transport studies in multi-walled carbon nanotubes. J Phys: Conf Ser 2006; 38: 33–36
  • Maeng I, Kang C, Oh SJ, Son JH, An KH, Lee YH. Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes. Appl Phys Lett 2007; 90(5)
  • Mamalis AG, Voglander LOG, Markopoulos A. Nanotechnology and nanostructured materials: Trends in carbon nanotubes. Precision engineering. J Int Societies Precision Engineering Nanotechnol 2004; 28(1)16–30
  • Marple VA, Liu BYH. 2002. Efficient high-productivity cascade impactors – US Patent 6453758.
  • Matsuda K, Kanemitsu Y, Irie K, Saiki T, Someya T, Miyauchi Y, Maruyama S. Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature. Appl Phys Lett 2005; 86(12)
  • Maultzsch J, Reich S, Thomsen C. Raman scattering in carbon nanotubes revisited. Phys Rev B 2002; 65(23)
  • Maxim LD, McConnell EE. Interspecies comparisons of the toxicity of asbestos and synthetic vitreous fibers: A weight-of-the-evidence approach. Regulatory Toxicol Pharmacol 2001; 33(3)319–342
  • Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J Nanoparticle Res 2005; 7(6)587–614
  • Maynard AD, Pui DYH. Nanotechnology and occupational health: New technologies – new challenges. J Nanoparticle Res 2007; 9(1)1–3
  • Mink J, Jalosovszky G, Keresztury G, editors. 2002. Proceedings of the 18th International Conference on Raman Spectroscopy. International Conference on Raman Spectroscopy Budapest, Hungary.
  • Misra A, Tyagi PK, Singh MK, Misra DS. FTIR studies of nitrogen doped carbon nanotubes. Diamond Rel Materials 2006; 15(2–3)385–388
  • Model MA, Blank JL. Intensity calibration of a laser scanning confocal microscope based on concentrated dyes. Analyt Quantitat Cytol Histol 2006; 28(5)253–261
  • Morishita K, Takarada T. Scanning electron microscope observation of the purification behaviour of carbon nanotubes. J Materials Sci 1999; 34(6)1169–1174
  • Muller J, Huaux F, Heilier JF, Arras M, Delos M, Nagy JB, Lison D. Respiratory toxicity of carbon nanotubes. Toxicol Appl Pharmacol 2004; 197(3)305
  • Murphy H, Papakonstantinou P, Okpalugo T. Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. J Vacuum Sci Technol B 2006; 24(2)715–720
  • Murr LE, Esquivel EV, Bang JJ. Characterization of nanostructure phenomena in airborne particulate aggregates and their potential for respiratory health effects. J Materials Sci –Materials Med 2004; 15(3)237–247
  • Najam-ul-Haq M, Rainer M, Schwarzenauer T, Huck CW, Bonn GK. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling. Analytica Chimica Acta 2006; 561(1–2)32–39
  • Narehood DG, Kostov MK, Eklund PC, Cole MW, Sokol PE. “Deep inelastic neutron scattering of H-2 in single-walled carbon nanotubes”. “Phys Rev B” 2002; 65(23)
  • National Institute of Standards and Technology (NIST). 2003. NASA-NIST Workshop on Purity and Dispersion Measurement Issues in Single Wall Carbon Nanotube (SWCNT) Materials Gaithersburg, MD. (27–29 May). Accessed 14 July 2007 from the website: http://www.msel.nist.gov/Nanotube2/NANOTUBE_WORKSHOP_I_SUMMARY.pdf.
  • O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002; 297(5581)593–596
  • Oberdörster G. Ultrafine particles in lung injury and inflammation. Free Radical Biol Med 2006; 41: S4
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7)823–839
  • Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Oyama Y, Saito R, Iijima S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem Phys Lett 2006; 420(4–6)286–290
  • Panessa-Warren BJ, Warren JB, Wong SS, Misewich JA. Biological cellular response to carbon nanoparticle toxicity. J Phys – Condensed Matter 2006; 18(33)S2185–2201
  • Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes Chem Communic (1) 2004; 16–17
  • Parker FS. Applications of infrared, Raman, and resonance Raman spectroscopy in biochemistry. Plenum Press, New York 1983
  • Pedder MA. The measurement of size and diffusion characteristics of aerosols with particle sizes less than 0.01 (m using the Pollak condensation nucleus counter. J Phys D: Appl Phys 1971; 4: 531–538
  • Pelletier M, editor. 1999. Analytical applications of Raman spectroscopy, Oxford: Blackwell Publishing.
  • Peng HQ, Alemany LB, Margrave JL, Khabashesku VN. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc 2003; 125(49)15174–15182
  • Pimenta MA, Dresselhaus G, Dresselhaus MS. Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chemical Phys 2007; 9(11)1276–1291
  • Pimenta MA, Dantas A, Fantini, MSS, de Souza CMC, Samsonidze, LG, Dresselhaus, GG, Dresselhaus GMS, Gruneis A. 2003. Resonance Raman scattering in carbon nanotubes and nanographites. AIP Conference Proceedings. Oral session, no Y15.002.
  • Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 168(1)58–74
  • Qian HH, Gokus T, Anderson N, Novotny L, Meixner AJ, Hartschuh A. Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes. Physica Status Solidi B – Basic Solid State Phys 2006; 243(13)3146–3150
  • Raschke MB, Lienau C. Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering. Appl Phys Lett 2003; 83(24)5089–5091
  • Reimer L. Transmission electron microscopy: Physics of image formation and microanalysis3rd ed. Springer-Verlag, New York 1993
  • Resasco DE, Balzano L, Lolli G, Zhang LA. Catalytic synthesis of single-walled carbon nanotubes: Comparison of different production methods and critical analysis of proposed mechanisms (tutorial). Abstracts of Papers Am Chem Soc 2005; 229: U910
  • Rols S, Anglaret E, Sauvajol JL, Coddens G, Schober H, Dianoux AJ. Structure and dynamics of single-wall-carbon nanotubes probed by neutron scattering. Physica B – Condensed Matter 2000; 276: 276–277
  • Romanenko KV, Fonseca A, Dumonteil S, Nagy JB, de Lacaillerie JDB, Lapina OB, Fraissard J. Xe-129 NMR study of Xe adsorption on multiwall carbon nanotubes. Solid State Nuclear Magnetic Resonance 2005; 28(2–4)135–141
  • Ryabenko AG, Dorofeeva TV, Zvereva GI. UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy. Carbon 2004; 42(8–9)1523–1535
  • Saito R, Gruneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jorio A, Cancado LG, Fantini C, Pimenta MA, Souza AG. Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 2003; 5: 157
  • Sakurai T, Watanabe Y, editors. 2000. Advances in scanning probe microscopy (Advances in Materials Research, 2) Springer Verlag.
  • Saltiel C, Manickavasagam S, Menguc MP, Andrews R. Light-scattering and dispersion behavior of multiwalled carbon nanotubes. J Optical Soc Am a-Optics Image Sci Vision 2005; 22(8)1546–1554
  • Sanchez-Castillo A, Roman-Velazquez CE, Noguez C. Optical circular dichroism of single-wall carbon nanotubes. Phys Rev B 2006; 73((4)045401)
  • Seferyan HY, Nasr MB, Senekerimyan V, Zadoyan R, Collins P, Apkarian VA. Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck. Nano Lett 2006; 6(8)1757–1760
  • Serebryakova NV, Chernozatonskii LA, Kosakovskaya ZY. FTIR-spectroscopy of carbon nanotubes species. Molec Crystals Liquid Crystals Sci Technol Section C – Molec Materials 1996; 8(1–2)27–30
  • Shen K, Pietrass T. H-2 nuclear magnetic resonance spectroscopy of deuterium adsorption on single-walled carbon nanotubes. Appl Phys Lett 2004; 84(9)1567–1569
  • Sherwin MS, editor. 1999. Terahertz spectroscopy and applications: 25–26 January 1999. San Jose, California, Proceedings of Spie, Vol 3617. Society of Photo Optical.
  • Simon A, Thiebault C, Reynaud C, Gouget B, Carriere M. Toxicity of oxide nanoparticles and carbon nanotubes on cultured pneumocytes: Impact of size, structure and surface charge. Toxicol Lett 2006; 164: S222
  • Singjai P, Songmee N, Tunkasiri T, Vilaithong T. Atomic force microscopy imaging and cutting of beaded carbon nanotubes deposited on glass. Surface Interface Analysis 2002; 33(10–11)900–904
  • Smith BC. Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press, Boca Raton 1996
  • Smith C, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 2007; 82(2)94–109
  • Smith E, Dent G, editors. 2005. Modern Raman spectroscopy: A practical approach. ChichesterUK: Wiley.
  • Spence JCH. High-Resolution Electron Microscopy (Monographs on the Physics and Chemistry of Materials)3rd ed. Oxford University Press, USA 2003
  • Stanton MF, Wrench C. Mechanisms of mesothelioma induction with asbestos and fibrous glass. J Nat Cancer Instit 1972; 48(3)797–821
  • Stephan O, Taverna D, Kociak M, Suenaga K, Henrard L, Colliex C. Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: From multiwalled to single-walled nanotubes. Phys Rev B 2002; 66(15)155422
  • Stuart BH. Infrared spectroscopy: Fundamentals and applications. Wiley, ChichesterUK 2004
  • Sugano M, Kasuya A, Tohji K, Saito Y, Nishina Y. Resonance Raman scattering and diameter-dependent electronic states in single-wall carbon nanotubes. Chem Phys Lett 1998; 292(4–6)575–579
  • Suzuki Y, Yuen SR. Asbestos fibers contributing to the induction of human malignant mesothelioma. Carcinogenesis Bioassays and Protecting Public Health. New York Acad Sci 2002; 982: 160–176
  • Suzuki Y, Yuen SR, Ashley R. Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: Pathological evidence. Int J Hygiene Environ Health 2005; 208(3)201–210
  • Telg H, Maultzsch J, Reich S, Hennrich F, Thomsen C. Chirality distribution and transition energies of carbon nanotubes (93, art no. 177401, 2004). Physical Rev Lett 2004; 93(18)
  • Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science 1996; 273(5274)483–487
  • Thostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Sci Technol 2001; 61(13)1899–1912
  • Tian FR, Cui DX, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol in Vitro 2006; 20(7)1202–1212
  • Trojanowicz M. Analytical applications of carbon nanotubes: A review. Trac-Trends in Analyt Chem 2006; 25(5)480–489
  • Tsang SC, deOliveira P, Davis JJ, Green MLH, Hill HAO. The structure of the carbon nanotube and its surface topography probed by transmission electron microscopy and atomic force microscopy. Chem Phys Lett 1996; 249(5–6)413–422
  • Tsyboulski DA, Bachilo SM, Weisman RB. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett 2005; 5(5)975–979
  • Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 2006; 128: 37–46
  • Valcarcel M, Simonet BM, Cardenas S, Suarez B. Present and future applications of carbon nanotubes to analytical science. Analyt Bioanalytical Chem 2005; 382(8)1783–1790
  • Valeur B. Molecular fluorescence: Principles and applications. Wiley-VCH, Weinheim 2001
  • Wang ZL, Hui C. Electron microscopy of nanotubes. Kluwer Academic Publishers. 2003
  • Weisman RB. Fluorescence spectroscopy of single-walled carbon nanotubes: A new tool for basic and applied research. Abstracts of Papers of the Am Chem Soc 2004; 227: U254–254
  • Wilson EB, Decius JC, Cross PC. Molecular vibrations: The theory of infrared and Raman vibrational spectra. Dover Publications Inc, New York 1980
  • Woolard DL, Loerop WR, Shur MS, editors. 2003. Terahertz sensing technology, Vol. 1: Electronic devices and advanced systems technology (Selected Topics in Electronics & Systems), World Scientific Pub Co Inc.
  • Wu TM, Lin YW, Liao CS. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 2005; 43(4)734–740
  • Yoshida H, Takeda S. Image formation in a transmission electron microscope equipped with an environmental cell: Single-walled carbon nanotubes in source gases. Phys Rev B 2005; 72(19)
  • Zhao W, Viswanathan T, Tang BZ. UV-VIS-IR absorption properties of polymer-wrapped carbon nanotubes. Abstracts of Papers of the Am Chem Soc 2000; 219: U342–342
  • Zhu WH, Minami N, Kazaoui S, Kim Y. Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states. J Materials Chem 2003; 13(9)2196–2201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.