354
Views
71
CrossRef citations to date
0
Altmetric
Original

Human health implications of nanomaterial exposure

, , , , , PhD &
Pages 9-27 | Received 26 Nov 2007, Published online: 10 Jul 2009

References

  • Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 2004; 22: 47–52
  • Andrä W, Nowak H. Magnetism in medicine: A handbook. Wiley-VCH, Berlin 1998
  • Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, Berge-Lefranc JL, Botta A, Wiesner MR, Bottero JY. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. Environ Sci Technol 2006; 40: 4367–4373
  • Azzazy HM, Mansour MM, Kazmierczak SC. Nanodiagnostics: A new frontier for clinical laboratory medicine. Clin Chem 2006; 52: 1238–1246
  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Non-invasive imaging of quantum dots in mice. Bioconjug Chem 2004; 15: 79–86
  • Barlow PG, Clouter-Baker A, Donaldson K, MacCallum J, Stone V. Carbon black nanoparticles induce type II cells to release chemotaxins for alveolar macrophages. Part Fibre Toxicol 2005; 2: 11–25
  • Bazile DV, Ropert C, Huve P, Verrecchia T, Marlard M, Frydman A, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 1992; 13: 1093–1102
  • Beck-Speier I, Dayal N, Karg E, Maier KL, Schumann G, Schulz H, Semmler M, Takenaka S, Stettmaier K, Bors W, et al. Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic Biol Med 2005; 38: 1080–1092
  • Belgorodsky B, Fadeev L, Kolsenik J, Gozin M. Formation of soluble stable complex between pristine C60-fullerence and a native blood protein. Chembiochem 2006; 7: 1783–1789
  • Bennat C, Müller-Goymann C. Skin penetration and stabilization of formulations containing titanium dioxide as physical UV filter. Inter J Cos Sci 2000; 22: 271–283
  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JL. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide parlicles. Toxicol Sci 2002; 70: 86–97
  • Bermudez E, Mangum JS, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JL. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004; 77: 347–357
  • Bernstein D, Castranova V, Donaldson K, Fubini B, Hadley J, Hesterberg T, Kane A, Lai D, Mcconnell EE, Muhle H, et al. Testing of fibrous particles: Short-term assays and strategies. Inhal Toxicol 2005; 17: 497–537
  • Blundell G, Henderson WJ, Price EW. Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol 1989; 83: 381–385
  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins RPF, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E. 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Particle Fibre Toxicol 3:11.
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160: 121–126
  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005; 88: 412–419
  • Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 2000; 57: 685–691
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175: 191–199
  • Brumfiel G. Nanotechnology: A little knowledge. Nature 2003; 424: 246–248
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 2006; 40: 4374–4381
  • Calderon-Garcidueñas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, et al. Air pollution and brain damage. Toxicol Pathol 2002; 30: 373–389
  • Calderon-Garcidueñas L, Reed W, Maronpot RR, Henriquez-Roldan C, Gado-Chavez R, Calderon-Garcidueñas A, et al. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 2004; 32: 650–658
  • Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB, Kleinman M. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 2005; 26: 133–140
  • Chen B, Wilson S, Das M, Coughlin D, Erlanger B. Antigenicity of fullerenes: Antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci USA 1998; 95: 10809–10813
  • Chen FQ, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 2004; 4: 1827–1832
  • Churg A, Stevens B, Wright J. Comparison of the uptake of fine and ultrafine TIO2 in a tracheal explant system. Am J Physiol 1998; 274: L81–86
  • Corachan M, Tura JM, Campo E, Soley M, Traveria A. Poedoconiosis in Aequatorial Guinea. Report of two cases from different geological environments. Trop Geogr Med 1988; 40: 359–364
  • Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155: 73–85
  • Cunningham MJ, Magnuson SR, Falduto MT. Gene expression profiling of nanoscale materials using a systems biology approach. The Toxicologist 2005; 84: 9
  • Cyrys J, Stolzel M, Heinrich J, Kreyling WG, Menzel N, Wittmaack K, et al. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci Tot Environ 2003; 305: 143–156
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4: 11–18
  • Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF. MoIecular characterizalion of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 2005; 5: 2448–2464
  • Donaldson K, Beswick P, Gilmour P. Free radical activity associated with the surface of particles: A unifying factor in determining biological activity?. Toxicol Lett 1996; 88: 293–298
  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med 2002; 15: 213–220
  • Donaldson K, Tran C-L. Inflammation caused by particles and fibers. Inhal Toxicol 2002; 14: 5–27
  • Donaldson K, Tran L, Jimenez L, Duffin R, Newby DE, Mills N, MacNee W, Stone V. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2: 10–24
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicological and workplace safety. Toxicol Sci 2006; 92: 5–22
  • Dowling A. Development of nanotechnologies. Nanotoday 2004; X: 30–35
  • Dreher KL. Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicol Sci 2004; 77: 3–5
  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 1997; 418: 87–90
  • Erhardt D. Materials conservation: Not-so-new technology. Nat Mater 2003; 2: 509–510
  • Fechter LD, Johnson DL, Lynch RA. The relationship of particle size to olfactory nerve uptake of a non-soluble form of manganese into brain. Neurotoxicology 2002; 23: 177–183
  • Feikert T, Mercer P, Corson N, Gelein R, Opanashuk L, Elder A, et al. Inhaled solid ultrafine particles. UFP are efficiently translocated via neuronal naso-olfactory pathways [Abstract]. Toxicologist 2004; 78(suppl. 1)435–436
  • Ferin J, Oberdörster G, Soderholm SC, Gelein R. Pulmonary tissue access of ultrafine particles. J Aerosol Med 1991; 4: 57–68
  • Ferin J, Oberdörster G. Translocation of particles from pulmonary alveoli into the interstitium. J Aerosol Med 1992; 5: 179–187
  • Ferin J, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Resp Cell Mol Biol 1992; 6: 535–542
  • Ghio AJ, Stonehuerner J, Dailey LA, Carter JD. Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal Toxicol 1999; 11: 37–49
  • Gianutsos G, Morrow GR, Morris JB. Accumulation of manganese in rat brain following intranasal administration. Fundam Appl Toxicol 1997; 37: 102–105
  • Giles J. Nanotechnology: What is there to fear from something so small?. Nature 2003; 426: 750
  • Gilmour MI, O'Connor S, Dick CA, Miller CA, Linak WP. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. J Air Waste Manag Assoc 2004; 54: 286–295
  • Goetze T, Gansau C, Buske N, Roerder M, Gornert P, Baht M. Biocompatible magnetic core/shell nanoparticles. J Magn Magn Mater 2002; 252: 399–402
  • Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 2005; 1: 121–123
  • Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005; 26: 1565–1573
  • Gwinn MR, Vallyathan V. Nanoparticles: Health effects-pros and cons. Environ Health Perspect. 2006; 114: 1818–1825
  • Häfeli U, Schütt W, Teller J, Zborowski M. Scientific and clinical applications of magnetic microspheres. Plenum Press, New York 1997
  • Hallmans G, Liden S. Penetration of 65Zn through the skin of rats. Acta Dermatol Venereol 1979; 59: 105–112
  • Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Sci Total Environ 2004; 326: 1–31
  • Hardman R. Toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006; 114: 165–172
  • Hart G, Hesterberg T. In vitro toxicity of respirable-size particles of diatomaceous earth and crystalline silica compared with asbestos and titanium dioxide. J Occup Environ Med 1998; 40: 29–42
  • Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med 2004; 229: 383–392
  • Hiura TS, Li N, Kaplan R, Horwitz M, Seagrave JC, Nel AE. The role of a mitochondrial pathway in the induction of apoptosis by chemicals extracted from diesel exhaust particles. J Immunol 2000; 165: 2703–2711
  • Hoshino A, Hanaki K, Suzuki K, Yamamoto K. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 2004a; 314: 46–53
  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, Hasuhara M, Suzuki K, Yamamoto K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004b; 4: 2163–2169
  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djurie S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 2006; 91: 173–183
  • Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T. Effects of nanoparticles on antigen-related airway inflammation in mice. Respir Res 2005; 6: 106–118
  • Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J Pharm Pharmacol 1990; 42: 821–826
  • Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 1994; 105: 157–168
  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005; 39: 1378–1383
  • Joo SH, Feitz AJ, Waite TD. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 2004; 38: 2242–2247
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett 2006; 165: 88–100
  • Kane AB. Animal models of malignant mesolhelioma. Inhal Toxicol 2006; 18: 1001–1004
  • Keceli S, Alanyali H. A study on the evaluation of the cytotoxicity of Al2O3, Nb2O5, Ta2O5, TiO2, and ZrO2. Turk J Eng Environ Sci 2004; 28: 49–54
  • Kim KH, Junj J, Park BK, Han YK, Park JT. Cyclic voltametry modeling, geometries, and electronic properties for metallofullerene complexes with mu3-eta2: eta2-C60 bonding mode. J Comput Chem 2007; 28: 100–106
  • Kim S, Lim YS, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004; 22: 93–97
  • Koppenol WH. The centennial of the Fenton reaction. Free Rad Biol Med 1993; 15: 645–651
  • Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotech 2004; 4: 484–488
  • Kreyling WG, Semmler-Behnke M, Moller W. Ultrafine particle-lung interactions: Does size matter?. J Aerosol Med 2006; 19: 74–83
  • Lacava ZGM, Azevedo RB, Martins EV, Lacava LM, Freitas MLL, Garcia VAP, Rebula CA, Lemos APC, Sousa MH, Tourinho FA, Da Silva MF, Morais PCJ. TITELTEXT FEHLT Magn Magn Mater 1999; 201: 431–434
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004; 77: 126–134
  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36: 189–217
  • Li G, Li L, Boerio-Goates J, Woodfield BF. High purity anatase TiO2 nanocrystals: Near room temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc 2005; 127: 8659–8666
  • Li Z, Hulderman T, Salmon R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster M, Simeonova PP. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Persepect 2007; 115: 377–382
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111: 455–460
  • Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004; 22: 198–203
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12: 635–641
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006; 40: 4346–4352
  • Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 2006; 25: 1132–1137
  • Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005; 83: 377–385
  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 2005; 24: 2757–2762
  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 2005; 5: 1676–1684
  • Matsuda M, Hunt G. Nanotechnology and public health. Nippon Koshu Eisei Zasshi 2005; 52: 923–927
  • Maureena R, Vallyathan V. Nanoparticles: Health effects – pros and cons. Environ Health Prospect 2006; 114: 1818–1825
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 2004; 67: 87–107
  • Maynard AD, Kuempel E. Airborne nanostructured particles and occupational health. J Nanopart Res 2005; 7: 587–614
  • McConnell EE, Axten C, Hesterberg TW, Chevalier J, Miller WC, Everitt J, Oberdörster Chase GR, Thevenaz P, Kotin P. Studies on the inhalation toxicology of two fiberglasses and amosite asbestos in the Syrian golden hamster. Part II. Results of chronic exposure. Inhal Toxicol 1999; 11: 785–835
  • Mei L, Sun H, Jin X, Zhu D, Sun R, Zang M, Song C. Modified paclitaxel-loaded nanoparticles for inhibition of hypoplasia in a rabbit arterial balloon injury model. Phar Res. 2007; 24: 955–962
  • Möller W, Brown DM, Kreyling WG, Stone V. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: Role of intracellular calcium. Part Fibre Toxicol 2005; 2: 7–19
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005a; 155: 377–384
  • Monteiro-Riviere NA, Wang YY, Hong SM, Inman AO, Nemanich RJ, Tan J, et al. Proteomic analysis of nanooparticle exposure in human keratonicyte cell culture. The Toxicologist 2005b; 84: 2183
  • Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environ Int 2006; 32: 967–976
  • Muller J, Huaux F, Morcau N, Misson P, Heiliera JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207: 221–231
  • Muller J, Huax F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207: 221–231
  • Nagaveni K, Sivalingam G, Hegde M, Madras G. Photocatalytic degradation of organic compounds over combustion-sized nano-TiO2. Environ Sci Technol 2004; 38: 1600–1604
  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622–627
  • Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105: 411–414
  • Nikula KJ, Avila KJ, Griffith WC, Mauderly JL. Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust. Fundam Appl Toxicol 1997; 37: 37–53
  • Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environ Health Perspect 2004a; 112: 1058–1062
  • Oberdörster E. 2004b. Toxicity of nC60 fullerenes to two aquatic species: Daphnia and largemouth bass [Abstract]. In: 227th American Chemical Society National Meeting, Anaheim, CA; 27 March–1 April 2004. Washington, DC: American Chemical Society, IEC 21.
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004c; 16: 437–445
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health 2002; 65A: 1531–1543
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005a; 113: 823–839
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H. 2005b. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Oldfors A, Fardeau M. The permeability of the basal lamina at the neuromuscular junction. An ultrastructural study of rat skeletal muscle using particulate tracers. Neuropathol Appl Neurobiol 1983; 9: 419–432
  • Peters K, Unger R, Kirkpatrick J, Gatti A, Monari E. Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation. J Mater Sci Mater Med 2004; 15: 321–325
  • Peters A, Veronesi B, Calderon-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Ruthishauser B, Schürch S, Schulz H. 2006. Translocation and potential neurological effects of fine and ultrafine particles: A critical update. Particle Fibre Toxicol 3: pp 13.
  • Petri-Fink A, Chastellain M, Juillerat-Jenneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005; 26: 2685–2694
  • Powell MC, Kanarek MS. Nanomaterial health effects – part 1: Background and current knowledge. WMJ 2006; 105: 16–20
  • Radomski A, Jurasz P, Alonso-Escalano D, Drews J, Morandi M, Malinski T, Radomski MW. Nanoparlicle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005; 146: 882–893
  • Rahman Q, Lohani M, Dopp E, Pemsel H, Weiss DG, Schiffmannn D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 2002; 110: 797–800
  • Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A, Moussa F. Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J Photochem Photobiol B 2002; 67: 157–162
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004; 377: 159–169
  • Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004; 61: 442–447
  • Roco MC. 2005. Environmentally responsible development of nanotechnology. Environ. Sci Technol 106–112.
  • Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett Jan 2007; 7(1)155–160
  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties Toxicol Sci May 2006; 91(1)159–165
  • Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 2004; 112: 1099–1103
  • Sayes CM, Fortner J, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin V. The differential cytotoxicity of water-soluble fullerenes. Nano Lett 2004; 4: 1881–1887
  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 2005; 161: 135–142
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92: 174–185
  • Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small. Lancet 2005; 365: 923–924
  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 2004; 16: 453–459
  • Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol Immunol 2004; 48: 669–675
  • Shvedova AA, Kisin E, Keshava N, Murray AR, Gorelik O, Arepalli S, , et al 2004a. Cytotoxic and genotoxic effects of single wall carbon nanotube exposure on human keratinocytes and bronchial epithelial cells [Abstract]. In: 227th American Chemical Society National Meeting, Anaheim, CA; 27 March–1 April 2004. Washington, DC: American Chemical Society, IEC 20.
  • Shvedova AA, Kisin E, Murray A, Schwegler-Berry D, Gandelsman V, Baron P, , et al 2004b. Exposure of human bronchial cells to carbon nanotubes caused oxidative stress and cytotoxicity. In: Proceedings of the Meeting of the SFRR Europe 2004, Ioannina, Greece. Philadelphia: Taylor & Francis Group. pp 91–103.
  • Shvedova M, Kisin ER, Merrer R, Murray AR, Johnson VJ, Potapovich AI. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol 2005; 289: 698–708
  • Song C, Zhu Z, Yang J, Sun H, Leng X, Wu L, Tang L, Wang P, Levy R. Uptake of drug-containing nanoparticles in dog catotid and femoral arteries. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2000; 22(5)440–443
  • Stearns R, Paulauskis J, Godleski J. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001; 24: 108–115
  • Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Rad Biol Med 2004; 36: 976–984
  • Tamaoki J, Isono K, Takeyama K, Tagaya E, Nakata J, Nagai A. Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1127–1133
  • Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, et al. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 2003; 111: 1202–1208
  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB. Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nanoparticles. Toxicol Sci 2006; 89: 42–50
  • Uchino T, Tokunaga H, Ando M, Utsumi H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol in Vitro 2002; 16: 629–635
  • Veronesi B, Makwana O, Pooler M, Chen LC. Effects of subchronic exposures to concentrated ambient particles. VII. Degeneration of dopaminergic neurons in Apo E − /− mice. Inhal Toxicol 2005; 17: 235–241
  • Warheit DB, Hartsky MA. Role of alveolar macrophage chemotaxis and phagocytosis in pulmonary clearance responses to inhaled particles: comparisons among rodent species. Microsc Res Tech 1993; 26: 412–422
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004; 77: 117–125
  • Whitesides G. Nanoscience, nanotechnology, and chemistry. Small 2005; 1: 172–179
  • Williams D. The risks of nanotechnology. Med Device Technol 2005; 16: 9–10
  • Wilson M, Lightbody J, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 2002; 184: 172–179
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6: 1794–1807
  • Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 1995; 2: 385–389
  • Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 2003; 125: 12803–12809
  • Yamamoto A, Honma R, Sumita M, Hanawa T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res 2004; 68A: 244–256
  • Yamawaki H, Iwai N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 2006; 290: C 1495–1502
  • Yang K, Wen Y, Wang C. Clinical application of anticancer nanoparticles targeting metastasis foci of cervical lymph nodes in patients with oral carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi 2003; 21(6)447–450
  • Yang L, Watts DJ. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 2005 in press.
  • Zhao Q, Han B, Wang Z, Gao C, Peng C, Shen J. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: Doxorubicin loading and in vitro and in vivo studies. Nanomedicine 2007; 3(1)63–74
  • Zhang A, Sun Y. Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 2004; 10: 3191–3193
  • Zhu Y, Zhao Q, Li Y, Cai X, Li W. The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus. J Nanosci Nanotechnol 2006; 6: 1357–1364

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.