559
Views
111
CrossRef citations to date
0
Altmetric
Original

Nanomaterials: A challenge for toxicologists

, &
Pages 1-9 | Received 07 Jul 2008, Published online: 10 Jul 2009

References

  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdörster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA. Meeting report: hazard assessment for nanoparticles – report from an interdisciplinary workshop. Environ Health Perspect 2007; 115(11)1654–1659
  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S. Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicolog Sci 2006; 90(1)23–32
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160: 121–126
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4: 11–18
  • Farah AA, Alvarez-Puebla RA, Fenniri H. Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 2008; 319: 572–576
  • Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006; 114(2)167–172
  • Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV. Research strategies for safety evaluation of nanomaterials, Part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicolog Sci 2005; 88(1)12–17
  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, Yasuhara M, Suzuki K, Yamamoto K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters 2004; 4(11)2163–2169
  • http://ntp.niehs.nih.gov/files/NanoTox-Workshop.pdf - Final Report- Developing Experimental Approaches for the Evaluation of Toxicological Interactions of Nanoscale Materials. A workshop addressing the challenges of conducting and interpreting studies of potential toxic effects of nanoscale materials. 3–4 November 2004. University of Florida, GainesvilleFL, USA.
  • http://www.nano.gov/html/facts/whatIsNano.html - National Nanotechnology Initiative. What is nanotechnology?
  • Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P. Physiological testing of carbon nanotubes: Are they asbestos like?. Fullerene Sci Technol 2001; 9(2)251–254
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 2005; 19: 975–983
  • How different are the Z average and TEM sizes? Available from: Frequently Asked Questions, http://www.malvern.com.
  • Hradil J, Pisarev A, Babic M, Horak D. Dextran-modified iron oxide nanoparticles. China Particuol 2007; 5: 162–168
  • Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. Does nanoparticle activity depend upon size and crystal phase?. Nanotoxicology 2008; 2(1)33–42
  • Kroll A, Pillukat M H, Hahn D, Schnekenburger J. 2008. Current in vitro methods in nanoparticle risk assessment – limitations and challenges. Eur J Pharmaceut Biopharmaceut (published 19 August 2008. Doi: 10.1016/j.ejpb.2008.08.009).
  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Susan H, Lowry GV, Veronesia B. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 2007; 115(11)1631–1637
  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 2005; 5: 1676–1684
  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006; 6(6)1121–1125
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterials dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicolog Sci 2008; 101(2)239–253
  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel Science 2006; 311: 622–627
  • Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10)1058–1062
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823–839
  • Oberdörster G, Oberdörster E, Oberdörster J. Concepts of nanoparticle dose metric and response metric. Environ Health Perspect – Corresp Sect 2007; 115(6)A290
  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angewandte Chemie Int Ed 2004; 43: 5242–5246
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007; 1(1)42–51
  • Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 168: 58–74
  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 2007; 1(2)118–129
  • Scientific Committee on Cosmetic Products and Non-food Products (SCCNFP) . Opinion of the scientific committee on cosmetic products and non-food products intended for consumers concerning titanium dioxide. October 24 2000. SCCNFP/0005/98.
  • Scientific Committee on Consumer Products (SCCP) . 2007. Opinion on safety of nanomaterials in cosmetic products. December 2007. European Commission. SCCP/1147/07.
  • Skebo JE, Grabinski CM, Schrand AM, Schlagr JJ, Hussain SM. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 2007; 26: 135–141
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 2006; 114(3)328–333
  • Stoeger T, Schmid O, Takenaka S, Schulz H. Inflammatory response to TiO2 and carbonaceous particles scales best with BET surface area. Environ Health Perspect – Correspond Sect 2007; 115(6)A290–291
  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticles toxicity assessments. Toxicolog Sci 2007; 95(2)300–312
  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contamin 2008; 25(7)795–821
  • U.S. Environmental Protection Agency, Nanotechnology White Paper . Science Policy Council, February 2007. EPA 100/B-07/001.
  • Wang JJ, Sanderson JSB, Wang H. Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ Molec Mutagenesis 2007; 48: 151–157
  • Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity. Toxicolog Sci 2005; 88: 514–524
  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 2007; 171: 99–110
  • Weibel A, Bouchet R, Boulc'h F, Knauth P. The big problem of small particles: A comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Materials 2005; 17: 2378–2385
  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168: 121–131
  • Wittmaack K. Dose and response metrics in nanotoxicology: Wittmaack responds to Oberdörster et al. and Stoeger et al. Environ Health Perspect – Correspond Sect 2007a; 115(6)A291–92
  • Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: Particle number, surface area, or what?. Environ Health Perspect 2007b; 115(2)187–194
  • Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurement. Nano Lett 2006; 6(4)800–808

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.