364
Views
89
CrossRef citations to date
0
Altmetric
Original articles

Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial

, PhD, , , , , , , , & show all
Pages 234-248 | Received 19 Jan 2009, Published online: 09 Sep 2009

References

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide. Angewandte Chemie 2009; 48: 2308–2312
  • Aksenov MY, Aksenova MV, Carney J, Butterfield DA. Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radical Res 1997; 27: 267–281
  • Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer's disease brain. J Neurochem 2000; 74: 2520–2527
  • Bai J, Xu Z, Zheng Y, Yin H. Shape control of CeO2 nanostructure materials in microemulsion systems. Materials Lett 2006; 6: 1287–1290
  • Biozzi G, Benacerraf B, Halpern BN. Quantitative study of the granulopectic activity of the reticulo-endothelial system. II. A study of the kinetics of the R. E. S. in relation to the dose of carbon injected; relationship between the weight of the organs and their activity. Br J Exp Pathol 1953; 34: 441–457
  • Brigger I, Morizet J, Laudani L, Aubert G, Appel M, Velasco V, Terrier-Lacombe MJ, Desmaele D, d'Angelo J, Couvreur P, Vassal G. Negative preclinical results with stealth nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J Contr Release 2004; 100: 29–40
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Tech 2006; 40: 4374–4381
  • Butterfield DA. beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem Res Toxicol 1997; 10: 495–506
  • Butterfield DA, Stadtman ER. Protein oxidation processes in aging brain. Adv Cell Aging Gerontol 1997; 2: 161–191
  • Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: Potential causes and consequences involving amyloid b-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002; 32: 1050–1060
  • Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43: 658–677
  • Chen C, Zhang P, Chai Z. Distribution of some rare earth elements and their binding species with proteins in human liver studied by instrumental neutron activation analysis combined with biochemical techniques. Anal Chim Acta 2001; 439: 19–27
  • Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 2006; 1: 142–150
  • Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomat 2007; 28: 1918–1925
  • Davies, JC. 2006. Managing the effects of nanotechnology. Project on emerging nanotechnologies, Woodrow Wilson International Center for Scholars.
  • Demoy M, Andreux JP, Weingarten C, Gouritin B, Guilloux V, Couvreur P. Spleen capture of nanoparticles: Influence of animal species and surface characteristics. Pharm Res 1999; 16: 37–41
  • Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, Betbeder D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999; 291: 1017–1022
  • Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TX, Yang Y, Ding Y, Wang X, Her YS. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 2006; 312: 1504–1508
  • Ferin J, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Resp Cell Mol Biol 1992; 6: 535–542
  • Ferin J, Oberdörster G, Penney DP, Soderholm SC, Gelein R, Piper HC. Increased pulmonary toxicity of ultrafine particles? I. Particle clearance, translocation, morphology. J Aerosol Sci 1990; 21: 381–384
  • Fox, JL, Lamson, ML. 1989. RSTRIP: Pharmacokinetic data stripping/least squares parameter optimization, MicroMath, Inc. Salt Lake City, UTUSA.
  • Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharmaceut 2006; 310: 213–219
  • Han, W-Q, Wu, L, Wang, X, Zhu, Y, Rodriguez, JA. 2006. Characterization of CeO2-x nanotubes by HRTEM, EELS and XANES. 231st ACS National Meeting, Atlanta, GA, USA.
  • Hawkins BT, Egleton RD. Fluorescence imaging of blood-brain barrier disruption. J Neurosci Meth 2006; 151: 262–267
  • Health Effects Institute (HEI). 2001. Evaluation of human health risk from cerium added to diesel fuel. HEI Communication 9, Boston, MA, USA.
  • Integrated Laboratory Systems Inc. 2006. Chemical information profile for ceric oxide [CAS No. 1306-38-3]. Supporting Nomination for Toxicological Evaluation by the National Toxicology Program. In: National Toxicology Program, NIEHS, Research Triangle Park, NC, USA; p 21.
  • Jakupec MA, Unfried P, Keppler BK. Pharmacological properties of cerium compounds. Rev Physiol Biochem Pharmacol 2005; 153: 101–111
  • Joshi G, Hardas S, Sultana R, Vore M, St Clair D, Butterfield DA. Glutathione elevation by gamma-glutamylcysteine ethyl ester as a potential therapeutic strategy towards preventing oxidative stress in brain mediated by in vivo administration of adriamycin: Implications for chemobrain. J Neurosci Res 2007; 85: 497–503
  • Kabuto M, Kubota T, Kobayashi H, Ishii H, Nakagawa T, Kawai H, Kitai R, Kodera T, Kaneko M. Experimental study of detection of brain tumor at surgery using fluorescent imaging under a surgical microscope after fluorescein administration. Brain Nerve 1997; 49: 261–265
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. The blood-brain barrier and brain drug delivery. J Nanosci Nanotech 2006; 6: 2712–2735
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 2002; 65: 1513–1530
  • Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA. The glial transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: Role of Ab(1-42). J Neurochem 2001; 78: 413–416
  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 2005; 39: 9370–9376
  • Lin W, Huang YW, Zhou XD, Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 2006; 25: 451–457
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Targeting 2004; 12: 635–641
  • Lovric J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005; 83: 377–385
  • Luther, W. 2004. Industrial application of nanomaterials – chances and risks. Technology analysis. Future Technologies Division of VDI Technologiezentrum GmbH, Dusseldorf, Germany.
  • Mai H-X, Sun L-D, Zhang Y-W, Si R, Feng W, Zhang H-P, Liu H-C, Yan C-H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods and nanocubes. J Phy Chem B 2005; 109: 24380–24385
  • Mamot C, Nguyen JB, Pourdehnad M, Hadaczek P, Saito R, Bringas JR, Drummond DC, Hong K, Kirpotin DB, McKnight T, Berger MS, Park JW, Bankiewicz KS. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 2004; 68: 1–9
  • Maynard, AD. 2006. Nanotechnology: A research strategy for addressing risk. Project on emerging nanotechnologies, Woodrow Wilson International Center for Scholars.
  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311: 622–627
  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105: 411–414
  • Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 2007; 73: 549–559
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle Fibre Toxicol 2005a; 2: 35
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005b; 113: 823–839
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002; 65: 1531–1543
  • Park EJ, Choi J, Park YK, Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicol 2008; 245: 90–100
  • Perluigi, M, Sultana, R, Cenini, G, Di Domenico, F, Memo, M, Pierce, WM, Coccia, R, Butterfield, DA. 2009. Redox proteomics identification of HNE-modified brain proteins in Alzheimer's disease: Role of lipid peroxidation in Alzheimer's disease pathogenesis. Proteomics-Clin Appl, in press.
  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci 2004; 59: 478–493
  • Qi L, Sehgal A, Castaing J-C, Chapel J-P, Fresnais J, Berret J-F, Cousin F. Redispersible hybrid nanopowders: Cerium oxide nanoparticle complexes with phosphonated-PEG oligomers. ACS Nano 2008; 2: 879–888
  • Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 2008; 30: 107–120
  • Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 2007; 4: 10
  • Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Comm 2006; 342: 86–91
  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, Kreyling WG. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 2004; 16: 453–459
  • Si R, Zhang Y-W, You L-P, Yan C-H. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angewandte Chemie. Int Ed 2005; 44: 3256–3260
  • Singh N, Cohen CA, Rzigalinski BA. Treatment of neurodegenerative disorders with radical nanomedicine. Ann NY Acad Sci 2007; 1122: 219–230
  • Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 2007; 26: 135–141
  • Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, Butterfield DA. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem 1997; 69: 1161–1169
  • Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J Neurochem 2005; 92: 749–758
  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001; 109(Suppl. 4)547–551
  • Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong D, St Clair D, Butterfield DA. Adriamycin-induced, TNF-mediated central nervous system toxicity. Neurobiol Dis 2006; 23: 127–139
  • Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, Ratanachaiyavong D, St Clair DK, Butterfield DA. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: Insight into the mechanism of chemobrain. J Neurochem 2007; 100: 191–201
  • Tarnuzzer RW, Colon J, Patil S, Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 2005; 5: 2573–2577
  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 2006; 40: 6151–6156
  • Trovarelli A. Catalysis by ceria and related materials. Imperial College Press, London 2002
  • UK MNT Network (UK Micro Nano Technology Network). Nanoscale combustion catalyst reduces diesel consumption by up to 10%. Accessed 7 March 2009 from the website: http://nanocentral.eu/uploads/downloads/nanoscalecombustion.pdf.
  • Unfried K, Albrecht C, Klotz L-O, von Mikecz A, Grether-Beck S, Schins RPF. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 2007; 1: 52–71
  • Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 1988; 8: 282–284
  • Wang CF, Hegsted DM. Normal blood volume, plasma volume and thiocyanate space in rats and their relation to body weight. Am J Physiol 1949; 156: 218–226
  • Warheit DB, Borm PJ, Hennes C, Lademann J. Testing strategies to establish the safety of nanomaterials: Conclusions of an ECETOC workshop. Inhal Toxicol 2007; 19: 631–643
  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008; 2: 2121–2134
  • Yang S, Gao L. Controlled synthesis and self-assembly of CeO2 nanocubes. J Am Chem Soc 2006; 128: 9330–9331
  • Yu T, Joo J, Park YI, Hyeon T. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angewandte Chemie, Int Ed 2005; 44: 7411–7414
  • Zhang F, Wang P, Koberstein J, Khalid S, Chan S-W. Cerium oxidation state in ceria nanoparticles studied with x-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surface Sci 2004; 563: 74–82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.