363
Views
49
CrossRef citations to date
0
Altmetric
Original articles

Nanomaterials properties vs. biological oxidative damage: Implications for toxicity screening and exposure assessment

, MSc , ScD, , &
Pages 249-261 | Received 13 Dec 2008, Published online: 09 Sep 2009

References

  • Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential – a workshop report and consensus statement. Inhal Toxicol 2008; 20(1)75–99
  • Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 2008; 101: 122–131
  • Baierl T, Drosselmeyer E, Seidel A, Hippeli S. Comparison of immunological effects of Fullerene C60 and raw soot from Fullerene production on alveolar macrophages and macrophage like cells in vitro. Exp Toxicol Pathol 1996; 48(6)508–511
  • Barlow PG, Donaldson K, MacCallum J, Clouter A, Stone V. Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration. Toxicol Lett 2005; 155(3)397–401
  • Bello D, Wardle BL, Yamamoto N, Guzman deVilloria R, Garcia EJ, Hart AJ, Ahn K, Ellenbecker MJ, Hallock M. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 2009; 11: 231–249
  • Borm PJ, Kelly F, Kunzli N, Schins RP, Donaldson K. Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. Occup Environ Med 2007; 64(2)73–74
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B 2008; 112(43)13608–13619
  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2: 10
  • Eby, GN. 2008. INAA Laboratory Website. Accessed 15 February 2009 from the website: http://faculty.uml.edu/Nelson_Eby/Analytical%20Methods/INAA/trace_element_analysis_trace_ele.htm.
  • Foucaud L, Wilson MR, Brown DM, Stone V. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 2007; 174(1–3)1–9
  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. 60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 2005; 5: 2578–2585
  • Hansen SF, Larsen BH, Stig I., Olsen SI, Anders Baun A. Categorization framework to aid hazard identification of nanomaterials Nanotoxicology 2007; 1(3)243–250
  • Hebert, P. 2006. Nanotechnology in $32 billion worth of products; global funding for nanotech R&D reaches $9.6 billion. Accessed 15 October 2008 from the website: http://www.luxresearchinc.com/press/RELEASE_TNR4.pdf.
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7)975–983
  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005; 39(5)1378–1383
  • Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. Does nanoparticle activity depend upon size and crystal phase?. Nanotoxicology 2008; 2(1)33–42
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett 2006; 165(1)88–100
  • Kelly F, Mudway IS. Particle-mediated extracellular oxidative stress in the lung. Particle toxicology, K Donaldson, P Borm. CRC Press; Taylor & Francis Group, Boca Raton, FL 2007; 89–117
  • Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med 2003; 60(8)612–616
  • Koike E, Kobayashi T. Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere 2006; 65(6)946–951
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004; 77(1)126–134
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007; 41(11)4158–4163
  • Liu X, Guo L, Morris D, Kane AB, Hurt RH. Target removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon 2008; 46: 489–500
  • Liu X, Gurel V, Morris D, Murray DW, Zhitkovich A, Kane AB, Hurt RH. Biolavailability of nickel in single -wall carbon nanotubes. Adv Materials 2007; 19: 2790–2796
  • Lynch RM, Voy BH, Glass FD, Mahurin SM, Zhao B, Hu H, Saxton AM, Donnell RL, Cheng M-D. Assessing the pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology 2007; 1(2)157–166
  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 2005; 5(9)1676–1684
  • Maynard, AD. 2007. Weighing nanotechnology's risks; flying blind. The International Herald Tribune, 29 March 2007. The New York Times Media Group.
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 2004; 67(1)87–107
  • Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD. Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 2007; 4(12)D125–130
  • Miyawaki J, Yudasaka M, Azami T, Kubo Y, Iijima S. Toxicity of Single-walled carbon nanohorns. ACS Nano 2008; 2(2)213–226
  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup Environ Med 2007; 64(9)609–615
  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761)622–627
  • Ntziachristos L, Froines JR, Cho AK, Sioutas C. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part Fibre Toxicol 2007; 4: 5
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005a; 2: 8
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005b; 113(7)823–839
  • Parlini, A. 2008. New nanotech products hitting the market at a rate of 3–4 per week. Accessed 20 September 2008 from the website: http://www.eurekalert.org/pub_releases/2008-04/poen-nnp042308.php.
  • Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 168(1)58–74
  • Rogers EJ, Hsieh SF, Organti N, Schmidt D, Bello D. A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: human blood serum. Toxicol In Vitro 2008a; 22(6)1639–1647
  • Rogers EJ, Bello D, Hsieh S. Oxidative stress as a screening metric of potential toxicity by nanoparticles and airborne particulate matter. Inhal Toxicol 2008b; 20(9)895
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92(1)174–185
  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003; 66(20)1909–1926
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 2008; 295(4)L552–565
  • Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, Young SH, Gao F, Tyurina YY, Oury TD, Kagan VE. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol 2007; 221(3)339–348
  • Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO(2): Role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 2007; 222(2)141–151
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 2006; 114(3)328–333
  • Tsai S, Ada E, Isaacs J, Ellenbecker MJ. Airborne nanoparticle exposures associated with the manual handling of nanoalumina in fume hoods. J Nanoparticle Res 2009; 11: 147–161
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007; 230(1)90–104
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006a; 6(8)1794–1807
  • Xia T, Kovochich M, Nel A. The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med 2006b; 5(4)817–836
  • Yudasaka M, Iijima S, Crespi VH. Single-wall carbon nanohorns and nanocones. Carbon nanotubes: Topics Applied Physics, A Jorio, G Dresselhaus, MS Dresselhaus. Springer-Verlag, Berlin, Heidelberg 2008; 605–629

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.