184
Views
2
CrossRef citations to date
0
Altmetric
Articles

Evaluation of vertical bearing capacity factors for conical footing with varying base roughness using FELA and MARS model

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 471-483 | Received 01 Oct 2022, Accepted 01 Feb 2023, Published online: 08 Feb 2023

References

  • Cassidy MJ, Houlsby GT. 2002. Vertical bearing capacity factors for conical footings on sand. Géotechnique. 52(9):687–692. doi:10.1680/geot.2002.52.9.687.
  • Chakraborty M, Kumar J. 2015. Bearing capacity factors for a conical footing using lower–and upper–bound finite elements limit analysis. Canad Geotech J. 52(12):2134–2140. doi:10.1139/cgj–2014–0507.
  • Chavda JT, Dodagoudar GR. 2019. Finite element evaluation of vertical bearing capacity factors N′c, N′q and N′γ for ring footings. Geotech Geol Eng. 37(2):741–754. doi:10.1007/s10706–018–0645–1.
  • Chavda JT, Dodagoudar GR. 2021. On vertical bearing capacity of ring footings: finite element analysis, observations and recommendations. Int J Geotech Eng. 15(10):1207–1219. doi:10.1080/19386362.2019.1648737.
  • Chavda JT, Dodagoudar GR. 2022. Finite element evaluation of bearing capacity factors for cutting face of open caissons. Int J Geotech Eng. 1:11. doi:10.1080/19386362.2022.2080962.
  • Craig WH, Chua K. 1990. Deep penetration of spudcan foundations on sand and clay. Géotechnique. 40(4):541–556. doi:10.1680/geot.1990.40.4.541.
  • Friedman JH. 1991. Multivariate adaptive regression splines. Annals Stat. 19(1):1–67. DOI: 10.1214/aos/1176347963.
  • Gan Y, Duan Q, Gong W, Tong C, Sun Y, Chu W, Ye A, Miao C, Di Z. 2014. A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environ Model Softw. 51:269–285. doi:10.1016/j.envsoft.2013.09.031.
  • Griffiths DV. 1982. Computation of bearing capacity factors using finite elements. Geotechnique. 32(3):195–202. doi:10.1680/geot.1982.32.3.195.
  • Han D, Xie X, Zheng L, Huang L. 2016. The bearing capacity factor Nγ of strip footings on c–ϕ–γ soil using the method of characteristics. SpringerPlus. 5(1):1–17. doi:10.1186/s40064–016–3084–6.
  • Hossain MS, Hu Y, Randolph MF, White DJ. 2005. Limiting cavity depth for spudcan foundations penetrating clay. Géotechnique. 55(9):679–690. doi:10.1680/geot.2005.55.9.679.
  • Houlsby GT, Martin CM. 2003. Undrained bearing capacity factors for conical footings on clay. Géotechnique. 53(5):513–520. doi:10.1680/geot.2003.53.5.513.
  • Hu P, Stanier SA, Wang D, Cassidy MJ. 2016. Effect of footing shape on penetration in sand overlying clay. Int J Phys Model Geotech. 16(3):119–133. doi:10.1680/jphmg.15.00013.
  • Jearsiripongkul T, Lai VQ, Keawsawasvong S, Nguyen TS, Van CN, Thongchom C, Nuaklong P. 2022. Prediction of uplift capacity of cylindrical caissons in anisotropic and inhomogeneous clays using multivariate adaptive regression splines. Sustainability. 14(8):4456. doi:10.3390/su14084456.
  • Keawsawasvong S. 2021. Bearing capacity of conical footings on clays considering combined effects of anisotropy and non-homogeneity. Ships Offsh Struct. 1–12. doi:10.1080/17445302.2021.1987110.
  • Keawsawasvong S. 2022. Bearing capacity factor for spudcans in anisotropic clay based on AUS failure criterion. Sci Technol Asia. 189–198.
  • Khatri VN, Kumar J. 2009. Bearing capacity factor N( for a rough conical footing. Geomech Eng. 1(3):205–218. doi:10.12989/gae.2009.1.3.205.
  • Kumar J, Chakraborty M. 2015. Bearing capacity factors for ring foundations. J Geotech Geoenviron Eng. 141(10):06015007. doi:10.1061/(ASCE)GT.1943–5606.0001345.
  • Kumar J, Khatri VN. 2011. Bearing capacity factors of circular foundations for a general c–ϕ soil using lower bound finite elements limit analysis. Int J Numer Anal Methods Geomech. 35(3):393–405. doi:10.1002/nag.900.
  • Lai VQ, Lai F, Yang D, Shiau J, Yodsomjai W, Keawsawasvong S. 2022a. Determining seismic bearing capacity of footings embedded in cohesive soil slopes using multivariate adaptive regression splines. Int J Geosynth Ground Eng. 8(4):1–18. doi:10.1007/s40891-022-00390-2.
  • Lai VQ, Sangjinda K, Keawsawasvong S, Eskandarinejad A, Chauhan VB, Sae-Long W, Limkatanyu S. 2022b. A machine learning regression approach for predicting the bearing capacity of a strip footing on rock mass under inclined and eccentric load. Front Built Environ. 8:962331. doi:10.3389/fbuil.2022.962331.
  • Lai VQ, Shiau J, Keawsawasvong S, Seehavong S, Cabangon LT. 2022c. Undrained stability of unsupported rectangular excavations: anisotropy and non-homogeneity in 3D. Buildings. 12(9):1425. doi:10.3390/buildings12091425.
  • Lai VQ, Shiau J, Keawsawasvong S, Tran DT. 2022d. Bearing capacity of ring foundations on anisotropic and heterogenous clays: FEA, NGI-ADP, and MARS. Geotech Geol Eng. 1–16. doi:10.1007/s10706-022-02117-6.
  • Loukidis D, Salgado R. 2009. Bearing capacity of strip and circular footings in sand using finite elements. Comput Geotech. 36(5):871–879. doi:10.1016/j.compgeo.2009.01.012.
  • Martin CM. 2004. ABC–Analysis of bearing capacity. Available online from www–civil. eng. ox.ac. uk/people/cmm/software/abc.
  • Meyerhof GG. 1961. The ultimate bearing capacity of wedge–shaped foundations. 5th International Conference on Soil Mechanics And Foundation Engineering, 2, 105–109.
  • Meyerhof GG. 1963. Some recent research on the bearing capacity of foundations. Canad Geotech J. 1(1):16–26.
  • Phuor T, Harahap IS, Ng CY. 2022. Bearing capacity factors for rough conical footing by viscoplasticity finite–element analysis. Int J Geomech. 22(1):04021266. doi:10.1061/(ASCE)GM.1943–5622.0002256.
  • Raja MNA, Shukla SK. 2021. Multivariate adaptive regression splines model for reinforced soil foundations. Geosynth Int. 28(4):368–390. doi:10.1680/jgein.20.00049.
  • Seyedi Hosseininia E. 2016. Bearing capacity factors of ring footings. Iran J Sci Technol Trans Civil Eng. 40(2):121–132. doi:10.1007/s40996–016–0003–6.
  • Shiau J, Lai VQ, Keawsawasvong S. 2022. Multivariate adaptive regression splines analysis for 3D slope stability in anisotropic and heterogenous clay. J Rock Mechan Geotech Eng. doi:10.1016/j.jrmge.2022.05.016.
  • Sirimontree S, Jearsiripongkul T, Lai VQ, Eskandarinejad A, Lawongkerd J, Seehavong S, Thongchom C, Nuaklong P, Keawsawasvong S. 2022. Prediction of penetration resistance of a spherical penetrometer in clay using multivariate adaptive regression splines model. Sustainability. 14(6):3222. doi:10.3390/su14063222.
  • Steinberg D, Colla P, Martin L. 1999. Accessed 27 June 2022. https://www.emc.ncep.noaa.gov/research/JointOSSEs/references/MarsUserGuide.pdf.
  • Terzaghi K. 1943. Theoretical soil mechanics. New York: John Wiley and Sons.
  • Ukritchon B, Whittle AJ, Klangvijit C. 2003. Calculations of bearing capacity factor Nγ using numerical limit analyses. J Geotech Geoenviron Eng. 129(5):468–474. doi:10.1061/(ASCE)1090–0241(2003)129:6(468).
  • White DJ, Teh KL, Leung CF, Chow YK. 2008. A comparison of the bearing capacity of flat and conical circular foundations on sand. Géotechnique. 58(10):781–792. doi:10.1680/geot.2008.3781.
  • Yodsomjai W, Lai VQ, Banyong R, Chauhan VB, Thongchom C, Keawsawasvong S. 2022. A machine learning regression approach for predicting basal heave stability of braced excavation in non-homogeneous clay. Arab J Geosci. 15(9):1–14. doi:10.1007/s12517-022-10161-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.