256
Views
2
CrossRef citations to date
0
Altmetric
Articles

A model-based shape conceptual design framework of blend-wing-body underwater gliders with curved wings

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 497-508 | Received 01 Dec 2022, Accepted 13 Feb 2023, Published online: 21 Feb 2023

References

  • Arima M, Tonai H, Yoshida K. 2014. Development of an ocean-going solar-powered underwater glider. The Twenty-fourth International Ocean and Polar Engineering Conference. OnePetro.
  • Chen W, Wang P, Dong H. 2022. Surrogate-based bilevel shape optimization for blended-wing–body underwater gliders. Eng Optim. 1–22. doi:10.1080/0305215X.2022.2057480.
  • Deb K, Jain H. 2013. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput. 18(4):577–601. doi:10.1109/TEVC.2013.2281535.
  • Dong H, Wang P, Yu X, Song B. 2021. Surrogate-assisted teaching-learning-based optimization for high-dimensional and computationally expensive problems. Appl Soft Comput. 99(2):106934. doi:10.1016/j.asoc.2020.106934.
  • D’Spain GL, Zimmerman R, Jenkins SA, Luby JC, Brodsky P. 2007. Underwater acoustic measurements with a flying wing glider. J Acoust Soc Am. 121(5):3107–3107. doi:10.1121/1.4782033.
  • Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Chiodi AM. 2001. Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J Oceanic Eng. 26(4):424–436. doi:10.1109/48.972073.
  • Fu X, Lei L, Yang G, Li B. 2018. Multi-objective shape optimization of autonomous underwater glider based on fast elitist non-dominated sorting genetic algorithm. Ocean Eng. 157:339–349. doi:10.1016/j.oceaneng.2018.03.055.
  • Helton JC, Davis FJ. 2003. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf. 81(1):23–69. doi:10.1016/S0951-8320(03)00058-9.
  • Hicks RM, Henne PA. 1978. Wing design by numerical optimization. J Aircr. 15(7):407–412. doi:10.2514/3.58379.
  • Hussein R, Deb K. 2016. A generative Kriging Surrogate Model for constrained and unconstrained multi-objective optimization. Proceedings of the Genetic and Evolutionary Computation Conference 2016. July, 573–580. doi:10.1145/2908812.2908866.
  • Jin Y. 2005. A comprehensive survey of fitness approximation in evolutionary computation. Soft comput. 9(1):3–12. doi:10.1007/s00500-003-0328-5.
  • Li C, Wang P, Dong H, Wang X. 2018. A simplified shape optimization strategy for blended-wing-body underwater gliders. Struct Multidiscipl Optim. 58(5):2189–2202. doi:10.1007/s00158-018-2005-4.
  • Li C, Wang P, Li T, Dong H. 2020. Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders. Int J Nav Archit Ocean Eng. 12:455–467. doi:10.1016/j.ijnaoe.2020.05.002.
  • Li J, Wang P, Dong H, Wu X, Chen X, Chen C. 2020a. Shape optimization of blended-wing-body underwater gliders based on free-form deformation. Ships Offsh Struct. 15(3):227–235. doi:10.1080/17445302.2019.1611989.
  • Lyu D, Song B, Pan G, Yuan Z, Li J. 2019. Winglet effect on hydrodynamic performance and trajectory of a blended-wing-body underwater glider. Ocean Eng. 188:106303. doi:10.1016/j.oceaneng.2019.106303.
  • Martin JD, Simpson TW. 2004. Use of kriging models to approximate deterministic computer models. AIAA J. 43(4):853–863. doi:10.2514/1.8650.
  • McKay MDB, Beckman RJ, Conover WJ. 2000. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 42(1):55–61. doi:10.1080/00401706.2000.10485979.
  • Min HQ, Zhou YR, Lu YS, Jiang JZ. 2006. An evolutionary algorithm for constrained multi-objective optimization problems. IEEE Asia-Pacific Conference on Services Computing. IEEE. doi:10.1109/APSCC.2006.30.
  • Rudnick DL. 2016. Ocean research is enabled by underwater gliders. Ann Rev Mar Sci. 8:519–541. doi:10.1146/annurev-marine-122414-033913.
  • Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ. 2004. Underwater gliders for ocean research. Mar Technol Soc J. 38(2):73–84.
  • Sherman J, Davis RE, Owens WB, Valdes J. 2001. The autonomous underwater glider” spray”. IEEE J Oceanic Eng. 26(4):437–446. doi:10.1109/48.972076.
  • Stommel H. 1989. The slocum mission. Oceanography. 2:22–25. https://www.jstor.org/stable/43924447.
  • Stuntz A, Kelly JS, Smith RN. 2016. Enabling persistent autonomy for underwater gliders with ocean model predictions and terrain-based navigation. Front Robot AI. 3:23. doi:10.3389/frobt.2016.00023.
  • Sun C, Song B, Peng W. 2015. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body. Int J Nav Archit Ocean Eng. 7(6):995–1006. doi:10.1515/ijnaoe-2015-0069.
  • Wang S, Yang M, Niu W, Wang Y, Yang S, Zhang L, Deng J. 2021. Multidisciplinary design optimization of underwater gliders for improving endurance. Struct Multidiscipl Optim. 63(6):2835–2851. doi:10.1007/s00158-021-02844-z.
  • Wang W, Dong H, Wang P, Li J, Shen J. 2022. A model-based multidisciplinary conceptual design for blended-wing-body underwater gliders. Ships Offsh Struct. 1–9. doi:10.1080/17445302.2022.2126126.
  • Wang X, Wang GG, Song B, Wang P, Wang Y. 2019. A novel evolutionary sampling assisted optimization method for high-dimensional expensive problems. IEEE Trans Evol Comput. 23(5):815–827. doi:10.1109/TEVC.2019.2890818.
  • Wang Z, Yu J, Zhang A, Wang Y, Zhao W. 2017. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider. China Ocean Engineering. 31(006):709–715. doi:10.1007/s13344-017-0081-7.
  • Webb DC, Simonetti PJ, Jones CP. 2001. SLOCUM: An underwater glider propelled by environmental energy. IEEE J Oceanic Eng. 26(4):447–452. doi:10.1109/48.972077.
  • Yang M, Wang Y, Liang Y, Wang C. 2022. A New approach to system design optimization of underwater gliders. IEEE/ASME Trans Mechatron. doi:10.1109/TMECH.2022.3143125.
  • Yu J, Zhang F, Zhang A, Jin W, Tian Y. 2013. Motion parameter optimization and sensor scheduling for the sea-wing underwater glider. IEEE J Oceanic Eng. 38(2):243–254. doi:10.1109/JOE.2012.2227551.
  • Zarruk GA, Brandner PA, Pearce BW, Phillips AW. 2014. Experimental study of the steady fluid–structure interaction of flexible hydrofoils. J Fluids Struct. 51:326–343. doi:10.1016/j.jfluidstructs.2014.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.