905
Views
0
CrossRef citations to date
0
Altmetric
Review

Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 49-61 | Received 25 May 2023, Accepted 01 Nov 2023, Published online: 07 Nov 2023

References

  • Muscogiuri G, Altieri B, Albertelli M, et al. Epidemiology of pancreatic neuroendocrine neoplasms: a gender perspective. Endocrine. 2020;69(2):441–450.
  • Ruggeri RM, Benevento E, De Cicco F, et al. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest. 2023;46(2):213–234.
  • Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–1342.
  • Modica R, Liccardi A, Minotta R, et al. Therapeutic strategies for patients with neuroendocrine neoplasms: current perspectives. Expert Rev Endocrinol Metab. 2022;17(5):389–403.
  • Faggiano A, Di Maio S, Mocerino C, et al. Therapeutic sequences in patients with grade 1−2 neuroendocrine tumors (NET): an observational multicenter study from the ELIOS group. Endocrine. 2019;66(2):417–424.
  • Faggiano A, Lo Calzo F, Pizza G, et al. The safety of available treatments options for neuroendocrine tumors. Expert Opin Drug Saf. 2017;16(10):1149–1161.
  • Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol. 2022;33(1):115–154. doi: 10.1007/s12022-022-09708-2
  • Zatelli MC, Guadagno E, Messina E, et al. Open issues on G3 neuroendocrine neoplasms: back to the future. Endocr Relat Cancer. 2018;25(6):R375–R384.
  • Riihimäki M, Hemminki A, Sundquist K, et al. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer. 2016;139(12):2679–2686.
  • Altieri B, Di Dato C, Martini C, et al. Bone Metastases in Neuroendocrine Neoplasms: From Pathogenesis to Clinical Management. Cancers (Basel). 2019;11(9):11.
  • Kečkéš Š, Palaj J, Waczulíková I, et al. Pretreatment levels of chromogranin a and neuron-specific enolase in patients with gastroenteropancreatic neuroendocrine neoplasia. In Vivo. 2021;35(5):2863–2868.
  • Modica R, Benevento E, Colao A. Endocrine-disrupting chemicals (EDCs) and cancer: new perspectives on an old relationship. J Endocrinol Invest. 2023;46(4):667–677. doi: 10.1007/s40618-022-01983-4
  • Modica R, La Salvia A, Liccardi A, et al. Lipid metabolism and homeostasis in patients with neuroendocrine neoplasms: from risk factor to potential therapeutic target. Metabolites. 2022;12(11):12.
  • Feola T, Puliani G, Sesti F, et al. Risk factors for gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): a three-centric case–control study. J Endocrinol Invest. 2022;45(4):849–857.
  • Colao A, de Nigris F, Modica R, et al. Clinical epigenetics of neuroendocrine tumors: the road ahead. Front Endocrinol. 2020;11:604341. doi: 10.3389/fendo.2020.604341
  • Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–3072.
  • von Arx C, Capozzi M, López-Jiménez E, et al. Updates on the role of molecular alterations and NOTCH signalling in the development of neuroendocrine neoplasms. J Clin Med. 2019;8(9):1277.
  • Barrea L, Muscogiuri G, Modica R, et al. Cardio-metabolic indices and metabolic syndrome as predictors of clinical severity of gastroenteropancreatic neuroendocrine tumors. Front Endocrinol. 2021;12:649496. doi: 10.3389/fendo.2021.649496
  • Altieri B, Di Dato C, Modica R, et al. Bone Metabolism and Vitamin D Implication in Gastroenteropancreatic Neuroendocrine Tumors. Nutrients. 2020;12(4):12.
  • Vanoli A, La Rosa S, Luinetti O, et al. Histologic changes in type a chronic atrophic gastritis indicating increased risk of neuroendocrine tumor development: the predictive role of dysplastic and severely hyperplastic enterochromaffin-like cell lesions. Hum Pathol. 2013;44(9):1827–1837. doi: 10.1016/j.humpath.2013.02.005
  • Oberg K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Opin Endocrinol Diabetes Obes. 2009;16(1):72–78. doi: 10.1097/MED.0b013e328320d845
  • Das S, Dasari A. Epidemiology, incidence, and prevalence of Neuroendocrine Neoplasms: are there global differences? Curr Oncol Rep. 2021;23:43. doi: 10.1007/s11912-021-01029-7
  • Rindi G, Inzani F, Solcia E. Pathology of gastrointestinal disorders. Endocrinol Metab Clin North Am. 2010;39(4):713–727. doi: 10.1016/j.ecl.2010.08.009
  • Sei Y, Feng J, Samsel L, et al. Mature enteroendocrine cells contribute to basal and pathological stem cell dynamics in the small intestine. Am J Physiol Gastrointest Liver Physiol. 2018;315(4):G495–G510. doi: 10.1152/ajpgi.00036.2018
  • Asa SL, La Rosa S, Basturk O, et al. Molecular pathology of well-differentiated gastro-entero-pancreatic neuroendocrine tumors. Endocr Pathol. 2021;32(1):169–191. doi: 10.1007/s12022-021-09662-5
  • Banck MS, Kanwar R, Kulkarni AA, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest. 2013;123(6):2502–2508.
  • Cunningham JL, Díaz de Ståhl T, Sjöblom T, et al. Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer. 2011;50(2):82–94.
  • Choi I-S, Estecio MRH, Nagano Y, et al. Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol. 2007;20(7):802–810.
  • Stricker I, Tzivras D, Nambiar S, et al. Site- and grade-specific diversity of LINE1 methylation pattern in gastroenteropancreatic neuroendocrine tumours. Anticancer Res. 2012;32(9):3699–3706.
  • How-Kit A, Dejeux E, Dousset B, et al. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics. 2015;7(8):1245–1258.
  • Edfeldt K, Ahmad T, Åkerström G, et al. TCEB3C a putative tumor suppressor gene of small intestinal neuroendocrine tumors. Endocr Relat Cancer. 2014;21(2):275–284.
  • Zhang H-Y, Rumilla KM, Jin L, et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine. 2006;30(3):299–306.
  • Ruebel K, Leontovich AA, Stilling GA, et al. MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod Pathol. 2010;23(3):367–375.
  • Li S-C, Essaghir A, Martijn C, et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 2013;26(5):685–696.
  • Karpathakis A, Dibra H, Pipinikas C, et al. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin Cancer Res. 2016;22(1):250–258.
  • Cross AJ, Leitzmann MF, Subar AF, et al. A prospective study of meat and fat intake in relation to small intestinal cancer. Cancer Res. 2008;68(22):9274–9279.
  • Klöppel G, Anlauf M, Perren A, et al. Hyperplasia to neoplasia sequence of duodenal and pancreatic neuroendocrine diseases and pseudohyperplasia of the PP-cells in the pancreas. Endocr Pathol. 2014;25(2):181–185.
  • Anlauf M, Schlenger R, Perren A, et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol. 2006;30(5):560–574.
  • Pipeleers-Marichal M, Somers G, Willems G, et al. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger-Ellison syndrome. N Engl J Med. 1990;322(11):723–727.
  • Vortmeyer AO, Huang S, Lubensky I, et al. Non-islet origin of pancreatic islet cell tumors. J Clin Endocrinol Metab. 2004;89(4):1934–1938. doi: 10.1210/jc.2003-031575
  • Perren A, Anlauf M, Henopp T, et al. Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J Clin Endocrinol Metab. 2007;92(3):1118–1128.
  • Pea A, Hruban RH, Wood LD. Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev Gastroenterol Hepatol. 2015;9(11):1407–1419. doi: 10.1586/17474124.2015.1092383
  • Ohmoto A, Rokutan H, Yachida S. Pancreatic neuroendocrine neoplasms: basic biology, Current treatment strategies and prospects for the future. Int J Mol Sci. 2017;18(1):18. doi: 10.3390/ijms18010143
  • de Wilde RF, Heaphy CM, Maitra A, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol. 2012;25(7):1033–1039.
  • Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28(2):245–255.
  • La Rosa S, Vanoli A. Gastric neuroendocrine neoplasms and related precursor lesions. J Clin Pathol. 2014;67(11):938–948. doi: 10.1136/jclinpath-2014-202515
  • La Rosa S, Inzani F, Vanoli A, et al. Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol. 2011;42(10):1373–1384.
  • La Rosa S, Solcia E. New insights into the classification of gastric neuroendocrine tumours, expanding the spectrum of ECL-cell tumours related to hypergastrinaemia. Histopathology. 2020;77(6):862–864. doi: 10.1111/his.14226
  • Solcia E, Bordi C, Creutzfeldt W, et al. Histopathological classification of nonantral gastric endocrine growths in man. Digestion. 1988;41(4):185–200.
  • Annibale B, Azzoni C, Corleto VD, et al. Atrophic body gastritis patients with enterochromaffin-like cell dysplasia are at increased risk for the development of type I gastric carcinoid. Eur J Gastroenterol Hepatol. 2001;13(12):1449–1456.
  • Toh B-H, Chan J, Kyaw T, et al. Cutting edge issues in autoimmune gastritis. Clin Rev Allergy Immunol. 2012;42(3):269–278.
  • Neumann WL, Coss E, Rugge M, et al. Autoimmune atrophic gastritis—pathogenesis, pathology and management. Nat Rev Gastroenterol Hepatol. 2013;10(9):529–541.
  • Whittingham S, Mackay IR. Autoimmune gastritis: historical antecedents, outstanding discoveries, and unresolved problems. Int Rev Immunol. 2005;24(1–2):1–29. doi: 10.1080/08830180590884413
  • Lahner E, Centanni M, Agnello G, et al. Occurrence and risk factors for autoimmune thyroid disease in patients with atrophic body gastritis. Am J Med. 2008;121(2):136–141.
  • Rugge M, Fassan M, Pizzi M, et al. Autoimmune gastritis: histology phenotype and OLGA staging. Aliment Pharmacol Ther. 2012;35(12):1460–1466.
  • Vannella L, Sbrozzi-Vanni A, Lahner E, et al. Development of type I gastric carcinoid in patients with chronic atrophic gastritis. Aliment Pharmacol Ther. 2011;33(12):1361–1369.
  • Calvete O, Reyes J, Zuñiga S, et al. Exome sequencing identifies ATP4A gene as responsible of an atypical familial type I gastric neuroendocrine tumour. Hum Mol Genet. 2015;24(10):2914–2922.
  • Solcia E, Capella C, Fiocca R, et al. Gastric argyrophil carcinoidosis in patients with Zollinger-Ellison syndrome due to type 1 multiple endocrine neoplasia. A newly recognized association. Am J Surg Pathol. 1990;14(6):503–513.
  • Rindi G, Bordi C, Rappel S, et al. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg. 1996;20(2):168–172.
  • Abraham SC, Carney JA, Ooi A, et al. Achlorhydria, parietal cell hyperplasia, and multiple gastric carcinoids: a new disorder. Am J Surg Pathol. 2005;29(7):969–975.
  • Berna MJ, Annibale B, Marignani M, et al. A prospective study of gastric carcinoids and enterochromaffin-like cell changes in multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome: identification of risk factors. J Clin Endocrinol Metab. 2008;93(5):1582–1591.
  • Trinh V-H, Shi C, Ma C. Gastric neuroendocrine tumours from long-term proton pump inhibitor users are indolent tumours with good prognosis. Histopathology. 2020;77(6):865–876. doi: 10.1111/his.14220
  • Song H, Zhu J, Lu D. Long-term proton pump inhibitor (PPI) use and the development of gastric pre-malignant lesions. Cochrane Database Syst Rev. 2014; CD010623. doi: 10.1002/14651858.CD010623.pub2
  • Jianu CS, Fossmark R, Viset T, et al. Gastric carcinoids after long-term use of a proton pump inhibitor. Aliment Pharmacol Ther. 2012;36(7):644–649.
  • Cavalcoli F, Zilli A, Conte D, et al. Gastric neuroendocrine neoplasms and proton pump inhibitors: fact or coincidence? Scand J Gastroenterol. 2015;50(11):1397–1403.
  • Haga Y, Nakatsura T, Shibata Y, et al. Human gastric carcinoid detected during long-term antiulcer therapy of H2 receptor antagonist and proton pump inhibitor. Dig Dis Sci. 1998;43(2):253–257.
  • Lahner E, Pilozzi E, Esposito G, et al. Gastric carcinoid in the absence of atrophic body gastritis and with low Ki67 index: a clinical challenge. Scand J Gastroenterol. 2014;49(4):506–510.
  • Nandy N, Hanson JA, Strickland RG, et al. Solitary gastric carcinoid tumor associated with long-term use of omeprazole: a case report and review of the literature. Dig Dis Sci. 2016;61(3):708–712.
  • Milione M, Parente P, Grillo F, et al. Neuroendocrine neoplasms of the duodenum, ampullary region, jejunum and ileum. Pathologica. 2021;113(1):12–18.
  • Vinik AI, McLeod MK, Fig LM, et al. Clinical features, diagnosis, and localization of carcinoid tumors and their management. Gastroenterol Clin North Am. 1989;18(4):865–896.
  • Burke AP, Sobin LH, Federspiel BH, et al. Carcinoid tumors of the duodenum. A clinicopathologic study of 99 cases. Arch Pathol Lab Med. 1990;114(7):700–704.
  • Anlauf M, Enosawa T, Henopp T, et al. Primary lymph node gastrinoma or occult duodenal microgastrinoma with lymph node metastases in a MEN1 patient: the need for a systematic search for the primary tumor. Am J Surg Pathol. 2008;32(7):1101–1105.
  • Mete O, Asa SL. Precursor lesions of endocrine system neoplasms. Pathology. 2013;45(3):316–330. doi: 10.1097/PAT.0b013e32835f45c5
  • Anlauf M, Perren A, Klöppel G. Endocrine precursor lesions and microadenomas of the duodenum and pancreas with and without MEN1: criteria, molecular concepts and clinical significance. Pathobiology. 2007;74(5):279–284. doi: 10.1159/000105810
  • Mpilla G, Aboukameel A, Muqbil I, et al. PAK4-NAMPT dual inhibition as a novel strategy for therapy resistant pancreatic neuroendocrine tumors. Cancers (Basel). 2019;11(12):11.
  • Holle GE, Spann W, Eisenmenger W, et al. Diffuse somatostatin-immunoreactive D-cell hyperplasia in the stomach and duodenum. Gastroenterology. 1986;91(3):733–739.
  • Mastracci L, Rindi G, Grillo F, et al. Neuroendocrine neoplasms of the esophagus and stomach. Pathologica. 2021;113(1):5–11.
  • Giannetta E, Guarnotta V, Rota F, et al. A rare rarity: neuroendocrine tumor of the esophagus. Crit Rev Oncol Hematol. 2019;137:92–107. doi: 10.1016/j.critrevonc.2019.02.012
  • Hoang MP, Hobbs CM, Sobin LH, et al. Carcinoid tumor of the esophagus: a clinicopathologic study of four cases. Am J Surg Pathol. 2002;26(4):517–522.
  • Cai W, Ge W, Yuan Y, et al. A 10-year population-based study of the differences between NECs and carcinomas of the esophagus in terms of clinicopathology and survival. J Cancer. 2019;10(6):1520–1527.
  • Konishi T, Watanabe T, Kishimoto J, et al. Prognosis and risk factors of metastasis in colorectal carcinoids: results of a nationwide registry over 15 years. Gut. 2007;56(6):863–868.
  • Volante M, Grillo F, Massa F, et al. Neuroendocrine neoplasms of the appendix, colon and rectum. Pathologica. 2021;113(1):19–27.
  • Yu J, Refsum E, Perrin V, et al. Inflammatory bowel disease and risk of adenocarcinoma and neuroendocrine tumors in the small bowel. Ann Oncol. 2022;33(6):649–656.
  • Derikx LAAP, Vierdag W-M, Kievit W, et al. Is the prevalence of colonic neuroendocrine tumors increased in patients with inflammatory bowel disease? Int J Cancer. 2016;139(3):535–542.
  • Moyana TN, Satkunam N. A comparative immunohistochemical study of jejunoileal and appendiceal carcinoids. Implications for histogenesis and pathogenesis. Cancer. 1992;70(5):1081–1088. doi: 10.1002/1097-0142(19920901)70:5<1081:AID-CNCR2820700512>3.0.CO;2-9
  • Nascimbeni R, Villanacci V, Di Fabio F, et al. Solitary microcarcinoid of the rectal stump in ulcerative colitis. Neuroendocrinology. 2005;81(6):400–404.
  • Lyss AP. Appendiceal malignancies. Semin Oncol. 1988;15(2):129–137.
  • Pape U-F, Niederle B, Costa F, et al. ENETS consensus guidelines for neuroendocrine neoplasms of the appendix (excluding goblet cell carcinomas). Neuroendocrinology. 2016;103(2):144–152.
  • Moertel CG, Dockerty MB, Judd ES. Carcinoid tumors of the vermiform appendix. Cancer. 1968;21(2):270–278. doi: 10.1002/1097-0142(196802)21:2<270:AID-CNCR2820210217>3.0.CO;2-9
  • Auböck L, Höfler H. Extraepithelial intraneural endocrine cells as starting-points for gastrointestinal carcinoids. Virchows Arch A Pathol Anat Histopathol. Virchows Arch A Pathological Anatomy Histopathol. 1983;401(1):17–33. doi: 10.1007/BF00644786
  • Papadaki L, Rode J, Dhillon AP, et al. Fine structure of a neuroendocrine complex in the mucosa of the appendix. Gastroenterology. 1983;84(3):490–497.
  • Sesia SB, Mayr J, Bruder E, et al. Neurogenic appendicopathy: clinical, macroscopic, and histopathological presentation in pediatric patients. Eur J Pediatr Surg. 2013;23(3):238–242.
  • Karkouche R, Bachet J-B, Sandrini J, et al. Colorectal neuroendocrine carcinomas and adenocarcinomas share oncogenic pathways. A clinico-pathologic study of 12 cases. Eur J Gastroenterol Hepatol. 2012;24(12):1430–1437.
  • Sorbye H, Strosberg J, Baudin E, et al. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014;120(18):2814–2823.
  • Ikegame K, Hatakeyama K, Terashima M, et al. Molecular profiling of gastric neuroendocrine carcinomas. Eur J Surg Oncol. 2023;49(9):106987.
  • Venizelos A, Elvebakken H, Perren A, et al. The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2021;29(1):1–14.
  • Idrees K, Padmanabhan C, Liu E, et al. Frequent BRAF mutations suggest a novel oncogenic driver in colonic neuroendocrine carcinoma. J Surg Oncol. 2018;117(2):284–289.
  • Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–184.
  • Scarpa A, Chang DK, Nones K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71.
  • Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355(6320):78–83.
  • Grassia R, Bodini P, Dizioli P, et al. Neuroendocrine carcinomas arising in ulcerative colitis: coincidences or possible correlations? World J Gastroenterol. 2009;15(33):4193–4195.
  • Bolzacchini E, Chini C, Cortelezzi CC, et al. Poorly differentiated neuroendocrine carcinoma of the sigmoid tract in long-standing ulcerative colitis: report of a case and review of the literature. Int J Surg Pathol. 2018;26(5):479–483.
  • Sigel JE, Goldblum JR. Neuroendocrine neoplasms arising in inflammatory bowel disease: a report of 14 cases. Mod Pathol. 1998;11(6):537–542.
  • Travis WD, Brambilla E, Burke AP, et al. Introduction to the 2015 World Health Organization classification of tumors of the lung, Pleura, thymus, and heart. J Thorac Oncol. 2015;10(9):1240–1242.
  • McGuire AL, Maziak DE, Sekhon HS. Diffuse intrapulmonary neuroendocrine cell hyperplasia. Can Respir J. 2013;20(6):406–408. doi: 10.1155/2013/190409
  • Rossi G, Cavazza A, Spagnolo P, et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia syndrome. Eur Respir J. 2016;47(6):1829–1841.
  • Rea F, Rizzardi G, Zuin A, et al. Outcome and surgical strategy in bronchial carcinoid tumors: single institution experience with 252 patients. Eur J Cardiothorac Surg. 2007;31(2):186–191.
  • Travis WD, Rush W, Flieder DB, et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol. 1998;22(8):934–944.
  • Caplin ME, Pavel M, Ćwikła JB, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016;23(3):191–199.
  • Dingemans A-M, Früh M, Ardizzoni A, et al. Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. 2021;32(7):839–853.
  • Onuki N, Wistuba IIR, Travis WD, et al. Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer. 1999;85(3):600–607.
  • Alì G, Boldrini L, Capodanno A, et al. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Ther Med. 2011;2(5):787–792.
  • Noguchi M, Furukawa KT, Morimoto M. Pulmonary neuroendocrine cells: physiology, tissue homeostasis and disease. Dis Model Mech. 2020;13(12):13. doi: 10.1242/dmm.046920
  • Fu XW, Spindel ER. Recruitment of GABA(A) receptors in chemoreceptor pulmonary neuroepithelial bodies by prenatal nicotine exposure in monkey lung. Adv Exp Med Biol. 2009;648:439–445.
  • Fu XW, Nurse CA, Wong V, et al. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J Physiol. 2002;539(2):503–510.
  • Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, et al. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? J Cell Physiol. 2019;234(9):14666–14679.
  • Pesch B, Kendzia B, Gustavsson P, et al. Cigarette smoking and lung cancer—relative risk estimates for the major histological types from a pooled analysis of case–control studies. Int J Cancer. 2012;131(5):1210–1219.
  • Varghese AM, Zakowski MF, Yu HA, et al. Small-cell lung cancers in patients who never smoked cigarettes. J Thorac Oncol. 2014;9(6):892–896.
  • Offin M, Chan JM, Tenet M, et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-Mutant lung Cancers at risk for Histologic transformation and inferior clinical outcomes. J Thorac Oncol. 2019;14(10):1784–1793.
  • Xiong W-M, Xu Q-P, Li X, et al. The association between human papillomavirus infection and lung cancer: a system review and meta-analysis. Oncotarget. 2017;8(56):96419–96432.
  • Rekhtman N. Lung neuroendocrine neoplasms: recent progress and persistent challenges. Mod Pathol. 2022;35:36–50. doi: 10.1038/s41379-021-00943-2
  • Borczuk AC. Pulmonary Neuroendocrine Tumors. Surg Pathol Clin. 2020;13(1):35–55. doi: 10.1016/j.path.2019.10.002
  • Modlin IM, Kidd M, Filosso P-L, et al. Molecular strategies in the management of bronchopulmonary and thymic neuroendocrine neoplasms. J Thorac Dis. 2017;9(S15):S1458–S1473.
  • Bohnenberger H, Ströbel P. Recent advances and conceptual changes in the classification of neuroendocrine tumors of the thymus. Virchows Arch. 2021;478(1):129–135. doi: 10.1007/s00428-021-03037-1
  • Ströbel P, Zettl A, Shilo K, et al. Tumor genetics and survival of thymic neuroendocrine neoplasms: a multi-institutional clinicopathologic study. Genes Chromosomes Cancer. 2014;53(9):738–749.
  • Dinter H, Bohnenberger H, Beck J, et al. Molecular classification of neuroendocrine tumors of the thymus. J Thorac Oncol. 2019;14(8):1472–1483.
  • Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi: 10.1016/j.cell.2012.03.003
  • Teh BT, Zedenius J, Kytölä S, et al. Thymic carcinoids in multiple endocrine neoplasia type 1. Ann Surg. 1998;228(1):99–105.
  • Gibril F, Chen Y-J, Schrump DS, et al. Prospective study of thymic carcinoids in patients with multiple endocrine neoplasia type 1. J Clin Endocrinol Metab. 2003;88(3):1066–1081.
  • Cowen T, Thrasivoulou C, Shaw SA, et al. Transplanted sweat glands from mature and aged donors determine cholinergic phenotype and altered density of host sympathetic nerves. J Auton Nerv Syst. 1996;58(3):153–162.
  • Wong LH, McGhie JD, Sim M, et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20(3):351–360.
  • Liu R, Wang W, Ye L, et al. p21-activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocrine. 2010;38(1):38–47.
  • Bi Y, Liu R, Ye L, et al. Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel molecular mechanism. Endocr Relat Cancer. 2009;16(4):1273–1282.
  • Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995;268(5208):225–232. doi: 10.1126/science.7716513
  • Xavier-Junior JCC, Ocanha‐Xavier JP, Xavier-Junior JCCO-X JP. WHO (2018). Classification of skin tumors. Am J Dermatopathol. 2019;41(9):699–700. doi: 10.1097/DAD.0000000000001446
  • Becker JC, Stang A, DeCaprio JA, et al. Merkel cell carcinoma. Nat Rev Dis Primers. 2017;3(1):17077.
  • Schadendorf D, Lebbé C, Zur Hausen A, et al. Merkel cell carcinoma: Epidemiology, prognosis, therapy and unmet medical needs. Eur J Cancer. 2017;71:53–69. doi: 10.1016/j.ejca.2016.10.022
  • Park SY, Doolittle-Amieva C, Moshiri Y, et al. How we treat Merkel cell carcinoma: within and beyond current guidelines. Future Oncol. 2021;17(11):1363–1377.
  • DeCaprio JA. Molecular pathogenesis of Merkel cell carcinoma. Annu Rev Pathol. 2021;16(1):69–91. doi: 10.1146/annurev-pathmechdis-012419-032817
  • Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel). 2020;12(7):12. doi: 10.3390/cancers12071774
  • Wong SQ, Waldeck K, Vergara IA, et al. UV-Associated mutations underlie the etiology of MCV-Negative Merkel cell carcinomas. Cancer Res. 2015;75(24):5228–5234.
  • Cheng J, Park DE, Berrios C, et al. Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLOS Pathog. 2017;13(10):e1006668.
  • Wells SA, Asa SL, Dralle H, et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid: Offic J Am Thyroid Association. 2015;25(6):567–610.
  • Pavlidis E, Sapalidis K, Chatzinikolaou F, et al. Medullary thyroid cancer: molecular factors, management and treatment. Rom J Morphol Embryol. 2020;61(3):681–686.
  • Bongarzone I. RET genetic screening in patients with medullary thyroid cancer: an update. Front Endocrinol (Lausanne). 2020;11:571205. & FL.
  • Frank-Raue K. Hereditary medullary thyroid carcinoma: current state of knowledge and future perspectives. Eur J Endocrinol. 2021;185(3): R119–R132. BS, & RF.
  • Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12(4):192–202. doi: 10.1038/nrendo.2016.11
  • Kondo T. Aspects of the pathogenesis of medullary thyroid carcinoma. Endocrinol Metab Clin North Am. 2018;47(3): 481–493. & ES.
  • Machens A, Lorenz K, Sekulla C, et al. Molecular epidemiology of multiple endocrine neoplasia 2: implications for RET screening in the new millenium. Eur J Endocrinol. 2013;168(3):307–314.
  • Ciampi R, Romei C, Ramone T, et al. Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience. 2019;20:324–336. doi: 10.1016/j.isci.2019.09.030
  • Wang N, Kjellin H, Sofiadis A, et al. Genetic and epigenetic background and protein expression profiles in relation to telomerase activation in medullary thyroid carcinoma. Oncotarget. 2016;7(16):21332–21346.
  • Abraham D, Jackson N, Gundara JS, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res. 2011;17(14):4772–4781.
  • Ceolin L, Goularte APP, Ferreira CV, et al. Global DNA methylation profile in medullary thyroid cancer patients. Exp Mol Pathol. 2018;105(1):110–114.
  • Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20):6243s–6249s. doi: 10.1158/1078-0432.CCR-06-0931
  • Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80:1546–1556.
  • Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66(23):11089–11093. doi: 10.1158/0008-5472.CAN-06-2407
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342. doi: 10.1038/nature01658
  • Shupp AB, Kolb AD, Mukhopadhyay D, et al. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel). 2018;10(6):10.
  • Bendre MS, Margulies AG, Walser B, et al. Tumor-derived interleukin-8 stimulates osteolysis Independent of the receptor activator of nuclear factor-κB ligand pathway. Cancer Res. 2005;65(23):11001–11009.
  • Cives M, Quaresmini D, Rizzo FM, et al. Osteotropism of neuroendocrine tumors: role of the CXCL12/CXCR4 pathway in promoting EMT in vitro. Oncotarget. 2017;8(14):22534–22549.
  • Pusceddu S, Prinzi N, Tafuto S, et al. Association of Upfront Peptide receptor radionuclide therapy with progression-free survival Among patients with enteropancreatic neuroendocrine tumors. JAMA Netw Open. 2022;5(2):e220290.
  • Lania A, Ferraù F, Rubino M, et al. Neoadjuvant therapy for Neuroendocrine Neoplasms: recent progresses and future approaches. Front Endocrinol. 2021;12:651438. doi: 10.3389/fendo.2021.651438
  • Albertelli M, Dotto A, Di Dato C, et al. PRRT: identikit of the perfect patient. Rev Endocr Metab Disord. 2021;22(3):563–579.
  • Massironi S, Campana D, Pusceddu S, et al. Second primary neoplasms in patients with lung and gastroenteropancreatic neuroendocrine neoplasms: data from a retrospective multi-centric study. Dig Liver Dis. 2021;53(3):367–374.
  • Ravindranathan D, Master VA, Bilen MA. Inflammatory markers in Cancer immunotherapy. Biology. 2021;10(4):10. doi: 10.3390/biology10040325
  • Scandurra C, Modica R, Maldonato NM, et al. Quality of life in patients with neuroendocrine neoplasms: the role of severity, clinical heterogeneity, and resilience. J Clin Endocrinol Metab. 2021;106(1):e316–e327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.