601
Views
2
CrossRef citations to date
0
Altmetric
Review

The pathophysiology of MASLD: an immunometabolic perspective

, , , &
Pages 375-386 | Received 06 Sep 2023, Accepted 08 Dec 2023, Published online: 27 Dec 2023

References

  • Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021 Jun 5;397(10290):2212–2224.
  • Quek J, Chan KE, Wong ZY, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023 Jan;8(1):20–30. doi: 10.1016/S2468-1253(22)00317-X
  • Paik JM, Golabi P, Younossi Y, et al. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology. 2020 Nov;72(5):1605–1616. doi: 10.1002/hep.31173
  • Diehl AM, Cause DC. Pathogenesis, and treatment of Nonalcoholic Steatohepatitis. N Engl J Med. 2017 Nov 23;377(21):2063–2072.
  • Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020 Sep;69(9):1691–1705. doi: 10.1136/gutjnl-2020-320622
  • Simon TG, Roelstraete B, Khalili H, et al. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut. 2021 Jul;70(7):1375–1382. doi: 10.1136/gutjnl-2020-322786
  • Diehl AM, Farpour-Lambert NJ, Zhao L, et al. Why we need to curb the emerging worldwide epidemic of nonalcoholic fatty liver disease. Nat Metab. 2019 Nov;1(11):1027–1029. doi: 10.1038/s42255-019-0140-x
  • Harrison SA, Allen AM, Dubourg J, et al. Challenges and opportunities in NASH drug development. Nature Med. 2023 Mar;29(3):562–573. doi: 10.1038/s41591-023-02242-6
  • Tilg H, Byrne CD, Targher G. NASH drug treatment development: challenges and lessons. Lancet Gastroenterol Hepatol. 2023 Aug 16;8(10):943–954.
  • Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology (Baltimore,md). 2023 Jun 24;78(6):1966–1986. doi: 10.1097/HEP.0000000000000520
  • Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023 Jun 20. doi: 10.1097/HEP.0000000000000696
  • Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017 Jan;14(1):32–42. doi: 10.1038/nrgastro.2016.147
  • Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11–20. doi: 10.1038/nrgastro.2017.109
  • Younes R, Govaere O, Petta S, et al. Caucasian lean subjects with non-alcoholic fatty liver disease share long-term prognosis of non-lean: time for reappraisal of BMI-driven approach? Gut. 2022 Feb;71(2):382–390. doi: 10.1136/gutjnl-2020-322564
  • Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade. Hepatology. 2021 Feb;73(2):833–842. doi: 10.1002/hep.31518
  • Tilg H, Adolph TE, Dudek M, et al. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab. 2021 Dec;3(12):1596–1607. doi: 10.1038/s42255-021-00501-9
  • Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nature Med. 2018 Jul;24(7):908–922. doi: 10.1038/s41591-018-0104-9
  • Azzu V, Vacca M, Virtue S, et al. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology. 2020 May;158(7):1899–1912. doi: 10.1053/j.gastro.2019.12.054
  • Chu H, Duan Y, Yang L, et al. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019 Feb;68(2):359–370. doi: 10.1136/gutjnl-2018-316307
  • Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017 Feb 8;542(7640):177–185.
  • Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018 Jan 9;27(1):22–41. doi: 10.1016/j.cmet.2017.08.002
  • Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019 Dec;576(7785):51–60. doi: 10.1038/s41586-019-1797-8
  • Huang DQ, Noureddin N, Ajmera V, et al. Type 2 diabetes, hepatic decompensation, and hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: an individual participant-level data meta-analysis. Lancet Gastroenterol Hepatol. 2023 Jul 4;8(9):829–836. doi: 10.1016/S2468-1253(23)00157-7
  • Jacobs K, Brouha S, Bettencourt R, et al. Association of nonalcoholic fatty liver disease with visceral adiposity but not coronary artery calcification in the elderly. Clin Gastroenterol Hepatol. 2016 Sep;14(9):1337–1344.e3. doi: 10.1016/j.cgh.2016.01.010
  • Pitisuttithum P, Chan WK, Piyachaturawat P, et al. Predictors of advanced fibrosis in elderly patients with biopsy-confirmed nonalcoholic fatty liver disease: the GOASIA study. BMC Gastroenterol. 2020 Apr 6;20(1):88. doi: 10.1186/s12876-020-01240-z
  • Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol. 2020 Jan;17(1):40–52. doi: 10.1038/s41575-019-0212-0
  • Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genet. 2008 Dec;40(12):1461–1465. doi: 10.1038/ng.257
  • Sookoian S, Pirola CJ. Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol. 2017 Mar;23(1):1–12. doi: 10.3350/cmh.2016.0109
  • Meffert PJ, Repp KD, Völzke H, et al. The PNPLA3 SNP rs738409: G allele is associated with increased liver disease-associated mortality but reduced overall mortality in a population-based cohort. J Hepatol. 2018 Apr;68(4):858–860. doi: 10.1016/j.jhep.2017.11.038
  • Stender S, Kozlitina J, Nordestgaard BG, et al. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nature Genet. 2017 Jun;49(6):842–847. doi: 10.1038/ng.3855
  • Wehmeyer MH, Zyriax BC, Jagemann B, et al. Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine (Baltimore). 2016 Jun;95(23):e3887. doi: 10.1097/MD.0000000000003887
  • Younossi ZM, Zelber-Sagi S, Henry L, et al. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2023 Jul 4;20(11):708–722. doi: 10.1038/s41575-023-00800-4
  • Tilg H, Effenberger M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol. 2020 Jul;17(7):387–388. doi: 10.1038/s41575-020-0316-6
  • Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013 Jun;57(6):2525–2531. doi: 10.1002/hep.26299
  • Porto A, Pan Z, Zhou W, et al. Macronutrient and micronutrient intake in adolescents with non-alcoholic fatty liver disease: the association with disease severity. J Pediatr Gastroenterol Nutr. 2022 Nov 1;75(5):666–674. doi: 10.1097/MPG.0000000000003578
  • Lee D, Chiavaroli L, Ayoub-Charette S, et al. Important food sources of fructose-containing sugars and non-alcoholic fatty liver disease: A systematic review and meta-analysis of controlled Trials. Nutrients. 2022 Jul 12;14(14):2846. doi: 10.3390/nu14142846
  • Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010 Jun;51(6):1961–1971. doi: 10.1002/hep.23535
  • Mirtschink P, Jang C, Arany Z, et al. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J. 2018 Jul 7;39(26):2497–2505. doi: 10.1093/eurheartj/ehx518
  • Andres-Hernando A, Orlicky DJ, Kuwabara M, et al. Deletion of fructokinase in the liver or in the intestine reveals differential effects on Sugar-induced metabolic dysfunction. Cell Metab. 2020 Jul 7;32(1):117–127.e3. doi: 10.1016/j.cmet.2020.05.012
  • Herman MA, Samuel VT. The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab. 2016 Oct;27(10):719–730. doi: 10.1016/j.tem.2016.06.005
  • Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020 Mar;579(7800):586–591. doi: 10.1038/s41586-020-2101-7
  • Falony G, Vlachou A, Verbrugghe K, et al. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol. 2006 Dec;72(12):7835–7841. doi: 10.1128/AEM.01296-06
  • Cho YE, Kim DK, Seo W, et al. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through Ethanol-Inducible Cytochrome P450-2E1-mediated Oxidative and nitrative stress. Hepatology. 2021 Jun;73(6):2180–2195. doi: 10.1002/hep.30652
  • Todoric J, Di Caro G, Reibe S, et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab. 2020 Oct;2(10):1034–1045. doi: 10.1038/s42255-020-0261-2
  • Taylor SR, Ramsamooj S, Liang RJ, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature. 2021 Sep;597(7875):263–267. doi: 10.1038/s41586-021-03827-2
  • Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013 Apr;48(4):434–441. doi: 10.1007/s00535-013-0758-5
  • Ebbert JO, Jensen MD. Fat depots, free fatty acids, and dyslipidemia. Nutrients. 2013 Feb 7;5(2):498–508. doi: 10.3390/nu5020498
  • Nielsen S, Guo Z, Johnson CM, et al. Splanchnic lipolysis in human obesity. J Clin Investig. 2004 Jun;113(11):1582–1588. doi: 10.1172/JCI21047
  • Smith GI, Shankaran M, Yoshino M, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Investig. 2020 Mar 2;130(3):1453–1460. doi: 10.1172/JCI134165
  • Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig. 2005 May;115(5):1343–1351. doi: 10.1172/JCI23621
  • Stefan N, Kantartzis K, Haring HU. Causes and metabolic consequences of fatty liver. Endocr Rev. 2008 Dec;29(7):939–960. doi: 10.1210/er.2008-0009
  • Raichur S, Wang ST, Chan PW, et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014 Oct 7;20(4):687–695. doi: 10.1016/j.cmet.2014.09.015
  • Hsu CL, Schnabl B. The gut–liver axis and gut microbiota in health and liver disease. Nature Rev Microbiol. 2023 Jun 14;21(11):719–733. doi: 10.1038/s41579-023-00904-3
  • Pabst O, Hornef MW, Schaap FG, et al. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol. 2023 Jul;20(7):447–461. doi: 10.1038/s41575-023-00771-6
  • Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020 May;17(5):279–297. doi: 10.1038/s41575-020-0269-9
  • Sharpton SR, Schnabl B, Knight R, et al. Current concepts, opportunities, and challenges of gut microbiome-based personalized Medicine in nonalcoholic fatty liver disease. Cell Metab. 2021 Jan 5;33(1):21–32. doi: 10.1016/j.cmet.2020.11.010
  • Frost F, Kacprowski T, Rühlemann M, et al. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut. 2021 Mar;70(3):522–530. doi: 10.1136/gutjnl-2020-322753
  • Alferink LJM, Radjabzadeh D, Erler NS, et al. Microbiomics, metabolomics, predicted metagenomics, and hepatic steatosis in a population-based study of 1,355 adults. Hepatology. 2021 Mar;73(3):968–982. doi: 10.1002/hep.31417
  • Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep. 2018 Jan 23;8(1):1466. doi: 10.1038/s41598-018-19753-9
  • Oh TG, Kim SM, Caussy C, et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 2020 Nov 3;32(5):878–888.e6. doi:10.1016/j.cmet.2020.06.005
  • Loomba R, Seguritan V, Li W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017 May 2;25(5):1054–1062.e5. doi: 10.1016/j.cmet.2017.04.001
  • Wang B, Jiang X, Cao M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep. 2016 Aug 23;6(1):32002. doi: 10.1038/srep32002
  • Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015 Nov;64(11):1744–1754. doi: 10.1136/gutjnl-2014-307913
  • Lee G, You HJ, Bajaj JS, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun. 2020 Oct 5;11(1):4982. doi: 10.1038/s41467-020-18754-5
  • Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Med. 2017 Jan;23(1):107–113. doi: 10.1038/nm.4236
  • Depommier C, Everard A, Druart C, et al. Supplementation with akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Med. 2019 Jul;25(7):1096–1103. doi: 10.1038/s41591-019-0495-2
  • Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004 Nov 2;101(44):15718–23. doi: 10.1073/pnas.0407076101
  • Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022 Nov 1;34(11):1700–1718.
  • Fukui H, Brauner B, Bode JC, et al. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol. 1991 Mar;12(2):162–169. doi: 10.1016/0168-8278(91)90933-3
  • Effenberger M, Waschina S, Bronowski C, et al. A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma. Hepatol Commun. 2023 Jul 1;7(7): doi: 10.1097/HC9.0000000000000182
  • Fei N, Bruneau A, Zhang X, et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease. MBio. 2020 Feb 4;11(1): doi: 10.1128/mBio.03263-19
  • Liu J, Zhuang ZJ, Bian DX, et al. Toll-like receptor-4 signalling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice. Clin Exp Pharmacol Physiol. 2014 Jul;41(7):482–488. doi: 10.1111/1440-1681.12241
  • Tilg H, Diehl AM, Epstein FH. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000 Nov 16;343(20):1467–1476.
  • Rau M, Rehman A, Dittrich M, et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol J. 2018 Dec;6(10):1496–1507. doi: 10.1177/2050640618804444
  • Hegazy AN, West NR, Stubbington MJT, et al. Circulating and tissue-resident CD4(+) T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology. 2017 Nov;153(5):1320–1337.e16. doi: 10.1053/j.gastro.2017.07.047
  • Deng M, Qu F, Chen L, et al. Scfas alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 2020 Jun;245(3):425–437. doi: 10.1530/JOE-20-0018
  • Jin CJ, Sellmann C, Engstler AJ, et al. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br J Nutr. 2015 Dec 14;114(11):1745–1755. doi: 10.1017/S0007114515003621
  • Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015 Apr 1;6(1):6734. doi: 10.1038/ncomms7734
  • Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA. 2008 Oct 28;105(43):16767–72. doi: 10.1073/pnas.0808567105
  • Skelly AN, Sato Y, Kearney S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol. 2019 May;19(5):305–323. doi: 10.1038/s41577-019-0144-5
  • Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013 Apr 25;368(17):1575–1584. doi: 10.1056/NEJMoa1109400
  • Tilg H, Phimister EG. A gut feeling about thrombosis. N Engl J Med. 2016 Jun 23;374(25):2494–2496.
  • Chen YM, Liu Y, Zhou RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016 Jan 8;6(1):19076. doi: 10.1038/srep19076
  • Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med. 2013 May;19(5):576–585. doi: 10.1038/nm.3145
  • Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019 Dec 14;394(10215):2184–2196. doi: 10.1016/S0140-6736(19)33041-7
  • Traussnigg S, Schattenberg JM, Demir M, et al. Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. Lancet Gastroenterol Hepatol. 2019 Oct;4(10):781–793. doi: 10.1016/S2468-1253(19)30184-0
  • Scorletti E, Afolabi PR, Miles EA, et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology. 2020 May;158(6):1597–1610.e7. doi: 10.1053/j.gastro.2020.01.031
  • Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007 Jun;45(6):1366–1374. doi: 10.1002/hep.21655
  • Ioannou GN. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab. 2016 Feb;27(2):84–95. doi: 10.1016/j.tem.2015.11.008
  • Koh EH, Yoon JE, Ko MS, et al. Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut. 2021 Oct;70(10):1954–1964. doi: 10.1136/gutjnl-2020-322509
  • Mooring M, Fowl BH, Lum SZC, et al. Hepatocyte stress increases expression of yes-associated protein and transcriptional coactivator with PDZ-Binding motif in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology. 2020 May;71(5):1813–1830. doi: 10.1002/hep.30928
  • Min HK, Kapoor A, Fuchs M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012 May 2;15(5):665–674. doi: 10.1016/j.cmet.2012.04.004
  • Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017 Dec;18(12):758–770. doi: 10.1038/nrm.2017.87
  • Wang X, Zheng Z, Caviglia JM, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016 Dec 13;24(6):848–862. doi: 10.1016/j.cmet.2016.09.016
  • Marí M, Caballero F, Colell A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and fas-mediated steatohepatitis. Cell Metab. 2006 Sep;4(3):185–198. doi: 10.1016/j.cmet.2006.07.006
  • Ioannou GN, Landis CS, Jin GY, et al. Cholesterol crystals in hepatocyte lipid droplets are strongly associated with human nonalcoholic steatohepatitis. Hepatol Commun. 2019 Jun;3(6):776–791. doi: 10.1002/hep4.1348
  • Alsamman S, Christenson SA, Yu A, et al. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci, trans med. 2020 Aug 19;12(557). doi: 10.1126/scitranslmed.aay8798
  • Xie C, Yagai T, Luo Y, et al. Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis. Nature Med. 2017 Nov;23(11):1298–1308. doi: 10.1038/nm.4412
  • Turpin-Nolan SM, Brüning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol. 2020 Apr;16(4):224–233. doi: 10.1038/s41574-020-0320-5
  • Teruel T, Hernandez R, Lorenzo M. Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes. 2001 Nov;50(11):2563–71. doi: 10.2337/diabetes.50.11.2563
  • Xia JY, Holland WL, Kusminski CM, et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 2015 Aug 4;22(2):266–278. doi: 10.1016/j.cmet.2015.06.007
  • Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010 May 6;362(18):1675–1685. doi: 10.1056/NEJMoa0907929
  • Francque SM, Bedossa P, Ratziu V, et al. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med. 2021 Oct 21;385(17):1547–1558. doi: 10.1056/NEJMoa2036205
  • Lebeaupin C, Vallée D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018 Oct;69(4):927–947. doi: 10.1016/j.jhep.2018.06.008
  • Tirosh A, Tuncman G, Calay ES, et al. Intercellular Transmission of hepatic ER stress in obesity disrupts systemic metabolism. Cell Metab. 2021 Feb 2;33(2):319–333.e6. doi: 10.1016/j.cmet.2020.11.009
  • Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000 Jan 28;287(5453):664–666. doi: 10.1126/science.287.5453.664
  • Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004 Oct 15;306(5695):457–461. doi: 10.1126/science.1103160
  • Tarantino G, Caputi A. Jnks, insulin resistance and inflammation: a possible link between NAFLD and coronary artery disease. World J Gastroenterol. 2011 Sep 7;17(33):3785–94.
  • Kakazu E, Mauer AS, Yin M, et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res. 2016 Feb;57(2):233–245. doi: 10.1194/jlr.M063412
  • Anand PK. Lipids, inflammasomes, metabolism, and disease. Immunol Rev. 2020 Sep;297(1):108–122. doi: 10.1111/imr.12891
  • Wen H, Gris D, Lei Y, et al. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011 May;12(5):408–15. doi: 10.1038/ni.2022
  • Yu X, Hao M, Liu Y, et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur J Pharmacol. 2019 Dec 1;864:172715.
  • Huang S, Wu B, He Y, et al. Canagliflozin ameliorates the development of NAFLD by preventing NLRP3-mediated pyroptosis through FGF21-ERK1/2 pathway. Hepatol Commun. 2023 Mar 1;7(3):e0045. doi: 10.1097/HC9.0000000000000045
  • Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Med. 2011 Feb;17(2):179–188. doi: 10.1038/nm.2279
  • Yang G, Lee HE, Lee JY. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci Rep. 2016 Apr 14;6(1):24399.
  • Chen Y, Ma K. NLRC4 inflammasome activation regulated by TNF-α promotes inflammatory responses in nonalcoholic fatty liver disease. Biochem Biophys Res Commun. 2019 Apr 9;511(3):524–530. doi: 10.1016/j.bbrc.2019.02.099
  • Arroyo V, Angeli P, Moreau R, et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol. 2021 Mar;74(3):670–685. doi: 10.1016/j.jhep.2020.11.048
  • Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003 Feb;37(2):343–50. doi: 10.1053/jhep.2003.50048
  • Crespo J, Cayón A, Fernández-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001 Dec;34(6):1158–63. doi: 10.1053/jhep.2001.29628
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993 Jan 1;259(5091):87–91.
  • Kamari Y, Shaish A, Vax E, et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol. 2011 Nov;55(5):1086–1094. doi: 10.1016/j.jhep.2011.01.048
  • Whitham M, Pal M, Petzold T, et al. Adipocyte-specific deletion of IL-6 does not attenuate obesity-induced weight gain or glucose intolerance in mice. Am J Physiol Endocrinol Metab. 2019 Oct 1;317(4):E597–e604. doi: 10.1152/ajpendo.00206.2019
  • Widjaja AA, Singh BK, Adami E, et al. Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis. Gastroenterology. 2019 Sep;157(3):777–792.e14. doi: 10.1053/j.gastro.2019.05.002
  • Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol. 2022 Jul;22(7):429–443. doi: 10.1038/s41577-021-00639-3
  • Tosello-Trampont AC, Landes SG, Nguyen V, et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem. 2012 Nov 23;287(48):40161–40172. doi: 10.1074/jbc.M112.417014
  • Pan J, Ou Z, Cai C, et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release. Cell Immunol. 2018 Oct;332:111–120.
  • Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012 Mar;61(3):416–426. doi: 10.1136/gutjnl-2011-300304
  • van der Windt DJ, Sud V, Zhang H, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology. 2018 Oct;68(4):1347–1360. doi: 10.1002/hep.29914
  • Han H, Ge X, Komakula SSB, et al. Macrophage-derived Osteopontin (SPP1) protects from Nonalcoholic Steatohepatitis. Gastroenterology. 2023 Jul;165(1):201–217. doi: 10.1053/j.gastro.2023.03.228
  • Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013 Aug;58(2):589–602. doi: 10.1002/hep.26267
  • Albano E, Mottaran E, Vidali M, et al. Immune response towards lipid peroxidation products as a predictor of progression of non-alcoholic fatty liver disease to advanced fibrosis. Gut. 2005 Jul;54(7):987–93. doi: 10.1136/gut.2004.057968
  • Deczkowska A, David E, Ramadori P, et al. XCR1(+) type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nature Med. 2021 Jun;27(6):1043–1054. doi: 10.1038/s41591-021-01344-3
  • Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019 Dec;576(7785):143–148. doi: 10.1038/s41586-019-1785-z
  • Wolf MJ, Adili A, Piotrowitz K, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014 Oct 13;26(4):549–564. doi: 10.1016/j.ccell.2014.09.003
  • Tarantino G, Costantini S, Finelli C, et al. Is serum interleukin-17 associated with early atherosclerosis in obese patients? J Transl Med. 2014 Aug 6;12(1):214. doi: 10.1186/s12967-014-0214-1
  • Dudek M, Pfister D, Donakonda S, et al. Auto-aggressive CXCR6(+) CD8 T cells cause liver immune pathology in NASH. Nature. 2021 Apr;592(7854):444–449. doi: 10.1038/s41586-021-03233-8
  • Pfister D, Núñez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021 Apr;592(7854):450–456. doi: 10.1038/s41586-021-03362-0
  • Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology. 2020 Sep;72(3):892–905. doi: 10.1002/hep.31108
  • Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011 Feb;11(2):85–97. doi: 10.1038/nri2921
  • Gehrke N, Schattenberg JM. Metabolic inflammation-A role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology. 2020 May;158(7):1929–1947.e6. doi: 10.1053/j.gastro.2020.02.020
  • Foley KP, Chen Y, Barra NG, et al. Inflammation promotes adipocyte lipolysis via IRE1 kinase. J Biol Chem. 2021 Jan;296:100440.
  • Micu ES, Amzolini AM, Barău Abu-Alhija A, et al. Systemic and adipose tissue inflammation in NASH: correlations with histopathological aspects. Rom J Morphol Embryol. 2021 Apr;62(2):509–515. doi: 10.47162/RJME.62.2.17
  • Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006 Mar;55(3):415–24. doi: 10.1136/gut.2005.071118
  • Wolf D, Hallmann R, Sass G, et al. TNF-alpha-induced expression of adhesion molecules in the liver is under the control of TNFR1–relevance for concanavalin A-induced hepatitis. J Immunol (Baltimore, Md : 1950). 2001 Jan 15;166(2):1300–7. doi: 10.4049/jimmunol.166.2.1300
  • Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997 Oct 9;389(6651):610–4. doi: 10.1038/39335
  • Schwärzler J, Mayr L, Radlinger B, et al. Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int J Obes (Lond). 2022 May;46(5):951–959. doi: 10.1038/s41366-022-01064-9
  • Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002 Nov 21;420(6913):333–336. doi: 10.1038/nature01137
  • Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of ikkbeta. Science. 2001 Aug 31;293(5535):1673–7. doi: 10.1126/science.1061620
  • Shimobayashi M, Albert V, Woelnerhanssen B, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Investig. 2018 Apr 2;128(4):1538–1550. doi: 10.1172/JCI96139
  • Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019 Sep;15(9):507–524. doi: 10.1038/s41574-019-0230-6
  • Morris A. Mechanisms of leptin resistance revealed. Nat Rev Endocrinol. 2018 Nov;14(11):628. doi: 10.1038/s41574-018-0091-4
  • Polyzos SA, Aronis KN, Kountouras J, et al. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia. 2016 Jan;59(1):30–43. doi: 10.1007/s00125-015-3769-3
  • Huang XD, Fan Y, Zhang H, et al. Serum leptin and soluble leptin receptor in non-alcoholic fatty liver disease. World J Gastroenterol. 2008 May 14;14(18):2888–93. doi: 10.3748/wjg.14.2888
  • Hackl MT, Fürnsinn C, Schuh CM, et al. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun. 2019 Jun 20;10(1):2717. doi: 10.1038/s41467-019-10684-1
  • Oben JA, Roskams T, Yang S, et al. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut. 2004 Mar;53(3):438–45. doi: 10.1136/gut.2003.026658
  • Shen J, Sakaida I, Uchida K, et al. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005 Aug 12;77(13):1502–15. doi: 10.1016/j.lfs.2005.04.004
  • Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017 Jun 21;18(6):1321.
  • Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 2001 Aug;7(8):947–953. doi: 10.1038/90992
  • Awazawa M, Ueki K, Inabe K, et al. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab. 2011 Apr 6;13(4):401–412. doi: 10.1016/j.cmet.2011.02.010
  • Combs TP, Marliss EB. Adiponectin signaling in the liver. Rev Endocr Metab Disord. 2014 Jun;15(2):137–147. doi: 10.1007/s11154-013-9280-6
  • Newsome PN, Buchholtz K, Cusi K, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021 Mar 25;384(12):1113–1124. doi: 10.1056/NEJMoa2028395
  • Chalasani N, Abdelmalek MF, Garcia-Tsao G, et al. Effects of Belapectin, an Inhibitor of Galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology. 2020 Apr;158(5):1334–1345.e5. doi: 10.1053/j.gastro.2019.11.296
  • Vuppalanchi R, Noureddin M, Alkhouri N, et al. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2021 Jun;18(6):373–392. doi: 10.1038/s41575-020-00408-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.