926
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Causal role of immune cells in chronic obstructive pulmonary disease: Mendelian randomization study

, , &
Pages 413-421 | Received 09 Nov 2023, Accepted 08 Dec 2023, Published online: 19 Dec 2023

References

  • Adeloye D, Song P, Zhu Y, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022;10(5):447–458. doi: 10.1016/S2213-2600(21)00511-7
  • Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi: 10.1016/S0140-6736(22)00470-6
  • Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–26. doi: 10.1016/S0140-6736(11)60988-4
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi: 10.1016/j.jaci.2016.05.011
  • Polverino F, Seys LJM, Bracke KR, et al. B cells in chronic obstructive pulmonary disease: moving to center stage. Am J Physiol Lung Cell Mol Physiol. 2016;311(4):L687–l695. doi: 10.1152/ajplung.00304.2016
  • Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–54. doi: 10.1056/NEJMra0804752
  • Pouwels SD, Heijink IH, ten Hacken NH, et al. Damps activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014;7(2):215–226. doi: 10.1038/mi.2013.77
  • Habener A, Grychtol R, Gaedcke S, et al. IgA(+) memory B-cells are significantly increased in patients with asthma and small airway dysfunction. Eur Respir J. 2022;60(5):2102130.
  • Suzuki M, Sze MA, Campbell JD, et al. The cellular and molecular determinants of emphysematous destruction in COPD. Sci Rep. 2017;7(1):9562. doi: 10.1038/s41598-017-10126-2
  • Caramori G, Casolari P, Barczyk A, et al. COPD immunopathology. Semin Immunopathol. Semin Immunopathol. 2016;38(4):497–515. doi: 10.1007/s00281-016-0561-5
  • Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017;318(19):1925–1926. doi: 10.1001/jama.2017.17219
  • Thanassoulis G, O’Donnell CJ. Mendelian randomization: nature’s randomized trial in the post-genome era. JAMA. 2009;301(22):2386–8. doi: 10.1001/jama.2009.812
  • Larsson SC, Burgess S. Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med. 2021;19(1):320. doi: 10.1186/s12916-021-02188-x
  • Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2(1):2. doi: 10.1038/s43586-021-00092-5
  • Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25. doi: 10.1093/ije/dyv080
  • Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry. 2023;23(1):23(1. doi: 10.1186/s12888-023-05081-4
  • Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–1045. doi: 10.1038/s41588-020-0684-4
  • Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47(11):1272–1281. doi: 10.1038/ng.3368
  • Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415–1424. doi: 10.1038/s41588-021-00931-x
  • Sun K, Gao Y, Wu H, et al. The causal relationship between gut microbiota and type 2 diabetes: a two-sample Mendelian randomized study. Front Public Health. 2023;11:11. doi: 10.3389/fpubh.2023.1255059
  • Bowden J, Del Greco M F, Minelli C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–1802. doi: 10.1002/sim.7221
  • Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42. doi: 10.1097/EDE.0000000000000559
  • Bulik-Sullivan B, Finucane HK, Anttila V, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41. doi: 10.1038/ng.3406
  • He D, Liu L, Zhang Z, et al. Association between gut microbiota and longevity: a genetic correlation and Mendelian randomization study. BMC Microbiol. 2022;22(1). doi: 10.1186/s12866-022-02703-x
  • Smulski CR, Eibel H. BAFF and BAFF-Receptor in B cell selection and survival. Front Immunol. 2018;9:2285. doi: 10.3389/fimmu.2018.02285
  • Stashenko P, Nadler LM, Hardy R, et al. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125(4):1678–85. doi: 10.4049/jimmunol.125.4.1678
  • Castleman MJ, Santos AL, Lesteberg KE, et al. Activation and pro-inflammatory cytokine production by unswitched memory B cells during SARS-CoV-2 infection. Front Immunol. 2023;14:1213344. doi: 10.3389/fimmu.2023.1213344
  • Abramson JS. Anti-CD19 CAR T-Cell therapy for B-Cell Non-Hodgkin Lymphoma. Transfus Med Rev. 2020;34(1):29–33. doi: 10.1016/j.tmrv.2019.08.003
  • Liao SX, DING T, RAO X-M, et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol Med Rep. 2015;11(1):219–25. doi: 10.3892/mmr.2014.2759
  • Ito T, Carson WF, Cavassani KA, et al. CCR6 as a mediator of immunity in the lung and gut. Exp Cell Res. 2011;317(5):613–9. doi: 10.1016/j.yexcr.2010.12.018
  • Roghanian A, Drost EM, MacNee W, et al. Inflammatory lung secretions inhibit dendritic cell maturation and function via neutrophil elastase. Am J Respir Crit Care Med. 2006;174(11):1189–98. doi: 10.1164/rccm.200605-632OC
  • Zhang DW, Ye J-J, Sun Y, et al. CD19 and POU2AF1 are potential immune-related biomarkers Involved in the emphysema of COPD: on multiple microarray analysis. J Inflamm Res. 2022;15:2491–2507. doi: 10.2147/JIR.S355764
  • Cambier JC, Pleiman CM, Clark MR. Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol. 1994;12(1):457–86. doi: 10.1146/annurev.iy.12.040194.002325
  • Frasca D, Diaz A, Romero M, et al. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol. 2017;87(Pt A):113–120. doi: 10.1016/j.exger.2016.12.001
  • Nevalainen T, Autio A, Kummola L, et al. CD27- IgD- B cell memory subset associates with inflammation and frailty in elderly individuals but only in males. Immun Ageing. 2019;16(1):19. doi: 10.1186/s12979-019-0159-6
  • Jellusova J, Miletic A, Cato M, et al. Context-specific BAFF-R signaling by the NF-κB and PI3K pathways. Cell Rep. 2013;5(4):1022–35. doi: 10.1016/j.celrep.2013.10.022
  • Kayagaki N, Yan M, Seshasayee D, et al. Baff/blys receptor 3 binds the B cell survival factor BAFF Ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity. 2002;17(4):515–24. doi: 10.1016/S1074-7613(02)00425-9
  • Ramwadhdoebe TH, van Baarsen LGM, Boumans MJH, et al. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology (Oxford). 2019;58(6):1075–1085. doi: 10.1093/rheumatology/key428
  • Zhu J, Mallia P, Footitt J, et al. Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. J Allergy Clin Immunol. 2020;146(4):840–850.e7. doi: 10.1016/j.jaci.2020.03.021
  • Zheng X, Zhang L, Chen J, et al. Dendritic cells and Th17/Treg ratio play critical roles in pathogenic process of chronic obstructive pulmonary disease. Biomed Pharmacother. 2018;108:1141–1151. doi: 10.1016/j.biopha.2018.09.113
  • McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005;79(1):17–27. doi: 10.1128/JVI.79.1.17-27.2005
  • Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284(5421):1835–7. doi: 10.1126/science.284.5421.1835
  • Givi ME, Akbari P, Boon L, et al. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice. Am J Physiol Lung Cell Mol Physiol. 2016;310(1):L95–102. doi: 10.1152/ajplung.00251.2014
  • Mori M, Clausson C-M, Sanden C, et al. Expansion of phenotypically altered dendritic cell populations in the small airways and alveolar parenchyma in patients with chronic obstructive pulmonary disease. J Innate Immun. 2022;1–16. doi: 10.1159/000526080
  • Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98. doi: 10.1093/hmg/ddu328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.