164
Views
0
CrossRef citations to date
0
Altmetric
Review

A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis

, , , &
Pages 463-484 | Received 18 Sep 2023, Accepted 21 Dec 2023, Published online: 01 Jan 2024

References

  • Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4(1):18001. doi: 10.1038/nrdp.2018.1
  • Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol. 2021;22(1):10–18.
  • Yang M, Liu Y, Mo B, et al. Helios but not CD226, TIGIT and Foxp3 is a potential marker for CD4+ treg cells in patients with rheumatoid arthritis. Cell Physiol Biochem. 2019;52:1178–1192.
  • Kanjana K, Chevaisrakul P, Matangkasombut P, et al. Inhibitory activity of FOXP3+ regulatory T cells reveals high specificity for displaying immune tolerance in remission state rheumatoid arthritis. Sci Rep. 2020;10(1):19789. doi: 10.1038/s41598-020-76168-1
  • Go E, Yoo S-J, Choi S, et al. Peripheral blood from rheumatoid arthritis patients shows decreased treg CD25 expression and reduced frequency of effector treg subpopulation. Cells. 2021;10(4):801. doi: 10.3390/cells10040801
  • Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 2020;16(6):316–333. doi: 10.1038/s41584-020-0413-5
  • McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–442. doi: 10.1038/nri2094
  • McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. N Engl J Med. 2011;365(23):2205–2219. doi: 10.1056/NEJMra1004965
  • Alten R, Mischkewitz M. 2021 ACR guideline reflects changes in RA treatment. Nat Rev Rheumatol. 2021;17:513–514. doi: 10.1038/s41584-021-00667-2
  • Fraenkel L, Bathon JM, England BR, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 2021;73(7):924–939. doi: 10.1002/acr.24596
  • Ansboro S, Roelofs AJ, De Bari C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol. 2017;29(2):201–207. doi: 10.1097/BOR.0000000000000370
  • Nouri B, Nair N, Barton A. Predicting treatment response to IL6R blockers in rheumatoid arthritis. Rheumatology. 2020;59(12):3603–3610. doi: 10.1093/rheumatology/keaa529
  • Her M, Kavanaugh A. Alterations in immune function with biologic therapies for autoimmune disease. J Allergy Clin Immunol. 2016;137(1):19–27. doi: 10.1016/j.jaci.2015.10.023
  • Ozen G, Pedro S, England BR, et al. Risk of serious infection in patients with rheumatoid arthritis treated with biologic versus nonbiologic disease‐modifying antirheumatic drugs. ACR Open Rheumatol. 2019;1(7):424–432. doi: 10.1002/acr2.11064
  • Markov A, Thangavelu L, Aravindhan S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 2021;12(1):192. doi: 10.1186/s13287-021-02265-1
  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905
  • Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191. doi: 10.3389/fimmu.2019.01191
  • Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653–664. doi: 10.1016/j.tips.2020.06.009
  • Zhang Q, Li Q, Zhu J, et al. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. PeerJ. 2019;7:e7023. doi: 10.7717/peerj.7023
  • Luque-Campos N, Contreras-López RA, Jose Paredes-Martínez M, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019;10:798. doi: 10.3389/fimmu.2019.00798
  • Li Y, Sheng Q, Zhang C, et al. STAT6 up-regulation amplifies M2 macrophage anti-inflammatory capacity through mesenchymal stem cells. Int Immunopharmacol. 2021;91:107266. doi: 10.1016/j.intimp.2020.107266
  • Yao M, Cui B, Zhang W, et al. Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis. Life Sci. 2021;264:118658. doi: 10.1016/j.lfs.2020.118658
  • Müller L, Tunger A, Wobus M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update. Front Cell Dev Biol [Internet]. 2021 [cited 2023 Aug 11];9. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.637725
  • Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062–e2062. doi: 10.1038/cddis.2015.327
  • Almutairi K, Nossent J, Preen D, et al. The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatol Int. 2021;41(5):863–877. doi: 10.1007/s00296-020-04731-0
  • Nepom GT, Erlich H. MHC Class-II Molecules and Autoimmunity. Annu Rev Immunol. 1991;9(1):493–525. doi: 10.1146/annurev.iy.09.040191.002425
  • Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30(11):1205–1213. doi: 10.1002/art.1780301102
  • Karami J, Aslani S, Jamshidi A, et al. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene. 2019;702:8–16. doi: 10.1016/j.gene.2019.03.033
  • Wu X, Liu Y, Jin S, et al. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat Commun. 2021;12(1):4977. doi: 10.1038/s41467-021-25246-7
  • Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol [Internet]. 2022 [cited 2022 Feb 10];44(1):47–62. doi: 10.1007/s00281-022-00912-0
  • Ha E, Bae S-C, Kim K. Large-scale meta-analysis across East Asian and European populations updated genetic architecture and variant-driven biology of rheumatoid arthritis, identifying 11 novel susceptibility loci. Ann Rheum Dis. 2021;80(5):558–565. doi: 10.1136/annrheumdis-2020-219065
  • Ishigaki K, Sakaue S, Terao C, et al. Trans-ancestry genome-wide association study identifies novel genetic mechanisms in rheumatoid arthritis [Internet]. medRxiv. 2021 [cited 2022 Feb 16]. Available from: https://www.medrxiv.org/content/10.1101/2021.12.01.21267132v1
  • Travers TS, Harlow L, Rosas IO, et al. Extensive citrullination promotes immunogenicity of HSP90 through protein unfolding and exposure of cryptic epitopes. J Immunol. 2016;197(5):1926–1936. doi: 10.4049/jimmunol.1600162
  • Vossenaar ER, Zendman AJW, van Venrooij WJ, et al. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays. 2003;25(11):1106–1118. doi: 10.1002/bies.10357
  • Curran AM, Naik P, Giles JT, et al. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020;16(6):301–315. doi: 10.1038/s41584-020-0409-1
  • Makrygiannakis D, Af KE, Lundberg IE, et al. Citrullination is an inflammation-dependent process. Ann Rheumatic Dis. 2006;65(9):1219–1222. doi: 10.1136/ard.2005.049403
  • Sipilä KH, Ranga V, Rappu P, et al. Joint inflammation related citrullination of functional arginines in extracellular proteins. Sci Rep. 2017;7(1):8246. doi: 10.1038/s41598-017-08597-4
  • Laugisch O, Wong A, Sroka A, et al. Citrullination in the periodontium—a possible link between periodontitis and rheumatoid arthritis. Clin Oral Invest. 2016;20(4):675–683. doi: 10.1007/s00784-015-1556-7
  • González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? Periodontol 2000. 2021;87:181–203. doi: 10.1111/prd.12385
  • Ishikawa Y, Terao C. The impact of cigarette smoking on risk of rheumatoid arthritis: a narrative review. Cells. 2020;9(2):475. doi: 10.3390/cells9020475
  • Kay J, Upchurch KS. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology. 2012;51(suppl 6):vi5–vi9. doi: 10.1093/rheumatology/kes279
  • de Brito Rocha S, Baldo DC, Andrade LEC. Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Adv Rheumatology. 2019;59(1):2. doi: 10.1186/s42358-018-0042-8
  • Sokolova MV, Schett G, Steffen U. Autoantibodies in rheumatoid arthritis: historical background and novel findings. Clinic Rev Allerg Immunol. 2021 [cited 2022 Apr 5];63(2):138–151. doi: 10.1007/s12016-021-08890-1
  • Shi J, Knevel R, Suwannalai P, et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proceedings of the National Academy of Sciences. 2011;108. p. 17372–17377. doi: 10.1073/pnas.1114465108
  • Humphreys J, Verheul M, Barton A, et al. Association of anti-carbamylated protein antibodies with long-term disability and increased disease activity in patients with early inflammatory arthritis: results from the Norfolk Arthritis Register. Lancet. 2015;385:S44. doi: 10.1016/S0140-6736(15)60359-2
  • Regueiro C, Nuño L, Ortiz AM, et al. Value of Measuring Anti-carbamylated protein antibodies for classification on early arthritis patients. Sci Rep. 2017;7(1):12023. doi: 10.1038/s41598-017-09657-5
  • Ceccarelli F, Perricone C, Colasanti T, et al. Anti-carbamylated protein antibodies as a new biomarker of erosive joint damage in systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):126. doi: 10.1186/s13075-018-1622-z
  • Elsawy NA, Mohamed RA, Ghazala RA, et al. Anti-carbamylated protein antibodies in premenopausal rheumatoid arthritis women: relation to disease activity and bone loss. Rheumatology. 2021;60(3):1419–1428. doi: 10.1093/rheumatology/keaa549
  • Zhang B, Lei Y, Li X, et al. Elevated levels of anti-carbamylated protein antibody in patients with rheumatoid arthritis: association with disease activity and bone destruction. J Invest Med. 2020;68(6):1186–1192. doi: 10.1136/jim-2019-001249
  • Hussein MS, Gaber RA, Elsabagh HM, et al. Do anti-carbamylated protein antibodies in rheumatoid arthritis reflect local and systemic osteoporosis? A study of osteoprotegrin and receptor activator for nuclear factor kappa B ligand and radiological assessment. Egypt Rheumatol Rehabil. 2021;48(1):18. doi: 10.1186/s43166-021-00067-0
  • Castellanos-Moreira R, Rodríguez-García SC, Gomara MJ, et al. Anti-carbamylated proteins antibody repertoire in rheumatoid arthritis: evidence of a new autoantibody linked to interstitial lung disease. Ann Rheumatic Dis. 2020;79(5):587–594. doi: 10.1136/annrheumdis-2019-216709
  • Oka S, Higuchi T, Furukawa H, et al. Serum rheumatoid factor IgA, anti-citrullinated peptide antibodies with secretory components, and anti-carbamylated protein antibodies associate with interstitial lung disease in rheumatoid arthritis. BMC Musculoskelet Disord. 2022;23(1):46. doi: 10.1186/s12891-021-04985-0
  • Riccardi A, Martinroche G, Contin-Bordes C, et al. Erosive arthritis autoantibodies in systemic sclerosis. Semin Arthritis Rheum. 2022;52:151947. doi: 10.1016/j.semarthrit.2021.11.013
  • Alpizar-Rodriguez D, Finckh A. Is the prevention of rheumatoid arthritis possible? Clin Rheumatol. 2020;39(5):1383–1389. doi: 10.1007/s10067-020-04927-6
  • Finckh A, Escher M, Liang MH, et al. Preventive treatments for rheumatoid arthritis: issues regarding patient preferences. Curr Rheumatol Rep. 2016;18(8):51. doi: 10.1007/s11926-016-0598-4
  • O’Neil LJ, Deane KD. Striking a balance in rheumatoid arthritis prevention trials. Nat Rev Rheumatol. 2021;17(7):385–386. doi: 10.1038/s41584-021-00627-w
  • Mosor E, Stoffer-Marx M, Steiner G, et al. I would never take preventive medication! Perspectives and information needs of people who underwent predictive tests for rheumatoid arthritis. Arthritis Care Res. 2020;72(3):360–368. doi: 10.1002/acr.23841
  • Lahiri M, Morgan C, Symmons DPM, et al. Modifiable risk factors for RA: prevention, better than cure? Rheumatology (Oxford). 2012;51(3):499–512. doi: 10.1093/rheumatology/ker299
  • Salliot C, Nguyen Y, Boutron-Ruault M-C, et al. Environment and lifestyle: their influence on the risk of RA. J Clin Med. 2020;9(10):E3109. doi: 10.3390/jcm9103109
  • Ye D, Mao Y, Xu Y, et al. Lifestyle factors associated with incidence of rheumatoid arthritis in US adults: analysis of National Health and Nutrition Examination Survey database and meta-analysis. BMJ Open. 2021;11(1):e038137. doi: 10.1136/bmjopen-2020-038137
  • Kronzer VL, Huang W, Dellaripa PF, et al. Lifestyle and clinical risk factors for incident rheumatoid arthritis-associated interstitial lung disease. J Rheumatol. 2021;48(5):656–663. doi: 10.3899/jrheum.200863
  • Zaccardelli A, Friedlander HM, Ford JA, et al. Potential of lifestyle changes for reducing the risk of developing rheumatoid arthritis: is an ounce of prevention worth a pound of cure? Clin Ther. 2019;41(7):1323–1345. doi: 10.1016/j.clinthera.2019.04.021
  • Ro J, Kim SH, Kim H-R, et al. Impact of lifestyle and comorbidities on seropositive rheumatoid arthritis risk from Korean health insurance data. Sci Rep. 2022;12(1):2201. doi: 10.1038/s41598-022-06194-8
  • Gwinnutt JM, Verstappen SM, Humphreys JH. The impact of lifestyle behaviours, physical activity and smoking on morbidity and mortality in patients with rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2020;34(2):101562. doi: 10.1016/j.berh.2020.101562
  • Hollan I, Dessein PH, Ronda N, et al. Prevention of cardiovascular disease in rheumatoid arthritis. Autoimmun Rev. 2015;14(10):952–969. doi: 10.1016/j.autrev.2015.06.004
  • van Boheemen L, Bolt JW, Ter Wee MM, et al. Patients’ and rheumatologists’ perceptions on preventive intervention in rheumatoid arthritis and axial spondyloarthritis. Arthritis Res Ther. 2020;22(1):217. doi: 10.1186/s13075-020-02314-9
  • Gwinnutt JM, Wieczorek M, Balanescu A, et al. 2021 EULAR recommendations regarding lifestyle behaviours and work participation to prevent progression of rheumatic and musculoskeletal diseases. Ann Rheum Dis [Internet]. 2022 Apr 11. Available from: https://ard.bmj.com/content/early/2022/03/07/annrheumdis-2021-222020
  • Wieczorek M, Gwinnutt JM, Ransay-Colle M, et al. Smoking, alcohol consumption and disease-specific outcomes in rheumatic and musculoskeletal diseases (RMDs): systematic reviews informing the 2021 EULAR recommendations for lifestyle improvements in people with RMDs. RMD Open. 2022;8(1):e002170. doi: 10.1136/rmdopen-2021-002170
  • Combe B. Progression in early rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2009;23(1):59–69. doi: 10.1016/j.berh.2008.11.006
  • Figus FA, Piga M, Azzolin I, et al. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun Rev. 2021;20(4):102776. doi: 10.1016/j.autrev.2021.102776
  • Rezuș E, Macovei LA, Burlui AM, et al. Ischemic heart disease and rheumatoid arthritis—two conditions, the same background. Life (Basel). 2021;11(10):1042. doi: 10.3390/life11101042
  • DeMizio DJ, Geraldino-Pardilla LB. Autoimmunity and inflammation link to cardiovascular disease risk in rheumatoid arthritis. Rheumatol Ther. 2020;7(1):19–33. doi: 10.1007/s40744-019-00189-0
  • Ahmed S, Jacob B, Carsons SE, et al. Treatment of cardiovascular disease in rheumatoid arthritis: a complex challenge with increased atherosclerotic risk. Pharmaceuticals (Basel). 2021;15(1):11. doi: 10.3390/ph15010011
  • Agca R, Heslinga SC, Rollefstad S, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheumatic Dis. 2017;76(1):17–28. doi: 10.1136/annrheumdis-2016-209775
  • Sparks JA, Jin Y, Cho S-K, et al. Prevalence, incidence and cause-specific mortality of rheumatoid arthritis–associated interstitial lung disease among older rheumatoid arthritis patients. Rheumatology (Oxford). 2021;60(8):3689–3698. doi: 10.1093/rheumatology/keaa836
  • Akiyama M, Kaneko Y. Pathogenesis, clinical features, and treatment strategy for rheumatoid arthritis-associated interstitial lung disease. Autoimmun Rev. 2022;21(5):103056. doi: 10.1016/j.autrev.2022.103056
  • Luppi F, Sebastiani M, Salvarani C, et al. Acute exacerbation of interstitial lung disease associated with rheumatic disease. Nat Rev Rheumatol. 2022;18(2):85–96. doi: 10.1038/s41584-021-00721-z
  • Manfredi A, Cassone G, Luppi F, et al. Rheumatoid arthritis related interstitial lung disease. Expert Rev Clin Immunol. 2021;17(5):485–497. doi: 10.1080/1744666X.2021.1905524
  • Demoruelle MK, Deane KD. Treatment strategies in early rheumatoid arthritis and prevention of rheumatoid arthritis. Curr Rheumatol Rep. 2012;14(5):472–480. doi: 10.1007/s11926-012-0275-1
  • Monti S, Montecucco C, Bugatti S, et al. Rheumatoid arthritis treatment: the earlier the better to prevent joint damage. RMD Open. 2015;1(Suppl 1):e000057. doi: 10.1136/rmdopen-2015-000057
  • Raza K, Filer A. The therapeutic window of opportunity in rheumatoid arthritis: does it ever close? Ann Rheumatic Dis. 2015;74(5):793–794. doi: 10.1136/annrheumdis-2014-206993
  • Hua C, Buttgereit F, Combe B. Glucocorticoids in rheumatoid arthritis: current status and future studies. RMD Open. 2020;6(1):e000536. doi: 10.1136/rmdopen-2017-000536
  • Pelechas E, Drosos AA. State-of-the-art glucocorticoid-targeted drug therapies for the treatment of rheumatoid arthritis. Expert Opin Pharmacother. 2022;23(6):703–711. doi: 10.1080/14656566.2022.2049238
  • Guo Q, Wang Y, Xu D, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:1–14.
  • Smolen JS, Landewé RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheumatic Dis. 2020;79(6):685–699. doi: 10.1136/annrheumdis-2019-216655
  • Wijbrandts CA, Tak PP Prediction of response to targeted treatment in rheumatoid arthritis. Mayo Clinic Proceedings. 2017;92. p. 1129–1143. doi: 10.1016/j.mayocp.2017.05.009
  • Sarsenova M, Issabekova A, Abisheva S, et al. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int J Mol Sci. 2021;22(21):11592. doi: 10.3390/ijms222111592
  • Debreova M, Culenova M, Smolinska V, et al. Rheumatoid arthritis: From synovium biology to cell-based therapy. Cytotherapy. 2022;24(4):365–375. doi: 10.1016/j.jcyt.2021.10.003
  • Jasim SA, Yumashev AV, Abdelbasset WK, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022;13(1):101. doi: 10.1186/s13287-022-02782-7
  • Lu Y, Li Z, Li L, et al. Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials. 2022;283:121474. doi: 10.1016/j.biomaterials.2022.121474
  • McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med. 2005;11(10):1026–1028. doi: 10.1038/nm1005-1026
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–156. doi: 10.1038/292154a0
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78(12):7634–7638. doi: 10.1073/pnas.78.12.7634
  • Doetschman TC, Eistetter H, Katz M, et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87(1):27–45. doi: 10.1242/dev.87.1.27
  • Rippon HJ, Bishop AE. Embryonic stem cells. Cell Proliferation. 2004;37(1):23–34. doi: 10.1111/j.1365-2184.2004.00298.x
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
  • Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25(10):1177–1181. doi: 10.1038/nbt1335
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019
  • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920. doi: 10.1126/science.1151526
  • Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366:2198–2207. doi: 10.1098/rstb.2011.0016
  • Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–953. doi: 10.1126/science.1164270
  • Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5):381–384. doi: 10.1016/j.stem.2009.04.005
  • Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–630. doi: 10.1016/j.stem.2010.08.012
  • Allison TF, Andrews PW, Avior Y, et al. Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Commun. 2018;9(1):1925. doi: 10.1038/s41467-018-04011-3
  • Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature. 2001;414(6859):92–97. doi: 10.1038/35102154
  • Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–222. doi: 10.2307/3570892
  • Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–454. doi: 10.1038/197452a0
  • Bujko K, Kucia M, Ratajczak J, et al. Hematopoietic stem and progenitor cells (HSPCs). Adv Exp Med Biol. 2019;1201:49–77.
  • Sonoda Y. Immunophenotype and functional characteristics of human primitive CD34-negative hematopoietic stem cells: the significance of the intra-bone marrow injection. J Autoimmun. 2008;30(3):136–144. doi: 10.1016/j.jaut.2007.12.004
  • Mann Z, Sengar M, Verma YK, et al. Hematopoietic stem cell factors: their functional role in self-renewal and clinical aspects. Front Cell Dev Biol [Internet]. 2022 [cited 2023 Mar 17];10. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2022.664261
  • Thomas ED, Lochte HL, Lu WC, et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–496. doi: 10.1056/NEJM195709122571102
  • Gluckman E, Broxmeyer HE, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-Identical sibling. N Engl J Med. 1989;321(17):1174–1178. doi: 10.1056/NEJM198910263211707
  • Hatzimichael E, Tuthill M. Hematopoietic stem cell transplantation. Stem Cells Cloning. 2010;3:105–117. doi: 10.2147/SCCAA.S6815
  • Greinix HT, Eikema D-J, Koster L, et al. Incidence of acute Graft-Versus-Host disease and survival after allogeneic hematopoietic cell transplantation over time: a study from the transplant complications and chronic malignancies working party of the EBMT. Blood. 2018;132(Supplement 1):2120. doi: 10.1182/blood-2018-99-111764
  • Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35–42. doi: 10.1038/nm.3028
  • Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2:83–92.
  • Macrin D, Joseph JP, Pillai AA, et al. Eminent sources of adult mesenchymal stem cells and their therapeutic Imminence. Stem Cell Rev And Rep. 2017;13(6):741–756. doi: 10.1007/s12015-017-9759-8
  • Lv F-J, Tuan RS, Cheung KMC, et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32(6):1408–1419. doi: 10.1002/stem.1681
  • Tobiasch E. Differentiation potential of adult human mesenchymal stem cells. In: Artmann G, Minger S Hescheler J editors. Stem cell engineering: principles and applications [Internet]. Berlin (Heidelberg): Springer; 2011 [cited 2023 Mar 20]. p. 61–77. doi: 10.1007/978-3-642-11865-4_3
  • Suman S, Domingues A, Ratajczak J, et al. Potential clinical applications of stem cells in regenerative medicine. Adv Exp Med Biol. 2019;1201:1–22.
  • da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26(9):2287–2299. doi: 10.1634/stemcells.2007-1122
  • Dore-Duffy P, Katychev A, Wang X, et al. CNS microvascular pericytes exhibit multipotential stem Cell activity. J Cereb Blood Flow Metab. 2006;26(5):613–624. doi: 10.1038/sj.jcbfm.9600272
  • Covas DT, Panepucci RA, Fontes AM, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642–654. doi: 10.1016/j.exphem.2007.12.015
  • Janebodin K, Zeng Y, Buranaphatthana W, et al. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res. 2013;92(6):524–531. doi: 10.1177/0022034513485599
  • Pisciotta A, Bertoni L, Vallarola A, et al. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regen Res. 2019;15(3):373–381. doi: 10.4103/1673-5374.266043
  • Fan X-L, Zhang Y, Li X, et al. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci. 2020;77(14):2771–2794. doi: 10.1007/s00018-020-03454-6
  • Ferreira JR, Teixeira GQ, Santos SG, et al. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol [Internet]. 2018 [cited 2023 Mar 26];9. doi: 10.3389/fimmu.2018.02837
  • Tan L, Liu X, Dou H, et al. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis. 2022;9(2):296–309. doi: 10.1016/j.gendis.2020.10.006
  • Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010;20(5):510–518. doi: 10.1038/cr.2010.44
  • Bulati M, Miceli V, Gallo A, et al. The immunomodulatory properties of the human amnion-derived mesenchymal stromal/stem cells are induced by INF-γ produced by activated lymphomonocytes and are mediated by cell-to-cell contact and soluble factors. Front Immunol [Internet]. 2020 [cited 2023 Mar 26];11. doi: 10.3389/fimmu.2020.00054
  • Noronha NDC, Mizukami A, Caliári-Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131. doi: 10.1186/s13287-019-1224-y
  • Park B-W, Jung S-H, Das S, et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor–engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020;6(13):eaay6994. doi: 10.1126/sciadv.aay6994
  • Raza SS, Seth P, Khan MA. ‘Primed’ mesenchymal stem cells: a potential novel therapeutic for COVID-19 patients. Stem Cell Rev And Rep. 2021;17(1):153–162. doi: 10.1007/s12015-020-09999-0
  • Naji A, Eitoku M, Favier B, et al. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76(17):3323–3348. doi: 10.1007/s00018-019-03125-1
  • Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–216. doi: 10.1016/j.stem.2009.02.001
  • Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience. 2019;15:421–438. doi: 10.1016/j.isci.2019.05.004
  • Yuan M, Hu X, Yao L, et al. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther. 2022;13(1):179. doi: 10.1186/s13287-022-02858-4
  • Eseonu OI, De Bari C. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis. Rheumatology. 2015;54(2):210–218. doi: 10.1093/rheumatology/keu377
  • Al-Kharboosh R, ReFaey K, Lara-Velazquez M, et al. Inflammatory mediators in glioma microenvironment play a dual role in gliomagenesis and mesenchymal stem cell homing: implication for cellular therapy. Mayo Clinic Proceedings: Innovations, Quality & Outcomes. 2020;4. p. 443–459. doi: 10.1016/j.mayocpiqo.2020.04.006
  • Gnecchi M, Danieli P, Malpasso G, et al. Paracrine mechanisms of mesenchymal stem cells in tissue repair. In: Gnecchi M, editor. Mesenchymal stem cells: methods and protocols [Internet]. NY (NY): Springer; 2016. [cited 2023 Mar 26]. p. 123–146. doi: 10.1007/978-1-4939-3584-0_7
  • PK L, Kandoi S, Misra R, et al. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9. doi: 10.1016/j.cytogfr.2019.04.002
  • Kim H-S, Choi D-Y, Yun SJ, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res. 2012;11(2):839–849. doi: 10.1021/pr200682z
  • Dabrowska S, Andrzejewska A, Janowski M, et al. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Front Immunol. 2020;11:591065. doi: 10.3389/fimmu.2020.591065
  • Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–222. doi: 10.1016/j.scr.2009.12.003
  • Kalimuthu S, Gangadaran P, Li XJ, et al. In vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model. Sci Rep. 2016;6(1):30418. doi: 10.1038/srep30418
  • Ophelders DRMG, Wolfs TGAM, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med. 2016;5(6):754–763. doi: 10.5966/sctm.2015-0197
  • Damania A, Jaiman D, Teotia AK, et al. Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Res Ther. 2018;9(1):31. doi: 10.1186/s13287-017-0752-6
  • Ruppert KA, Nguyen TT, Prabhakara KS, et al. Human mesenchymal stromal cell-derived extracellular vesicles modify microglial response and improve clinical outcomes in experimental spinal cord injury. Sci Rep. 2018;8(1):480. doi: 10.1038/s41598-017-18867-w
  • Driscoll J, Patel T. The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease. J Gastroenterol. 2019;54(9):763–773. doi: 10.1007/s00535-019-01599-1
  • Sun DZ, Abelson B, Babbar P, et al. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol. 2019;16(6):363–375. doi: 10.1038/s41585-019-0169-3
  • Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging Cell-free alternative for improving wound repair. Int J Mol Sci. 2020;21(19):7038. doi: 10.3390/ijms21197038
  • Rosochowicz MA, Lach MS, Richter M, et al. Conditioned medium – is it an undervalued lab waste with the potential for osteoarthritis management? Stem Cell Rev And Rep [Internet]. 2023 [[cited 2023 Mar 26]];19(5):1185–1213. doi: 10.1007/s12015-023-10517-1
  • Ikehara S, Good RA, Nakamura T, et al. Rationale for bone marrow transplantation in the treatment of autoimmune diseases. Proc Natl Acad Sci U S A. 1985;82(8):2483–2487. doi: 10.1073/pnas.82.8.2483
  • van Bekkum DW, Bohre EP, Houben PF, et al. Regression of adjuvant-induced arthritis in rats following bone marrow transplantation. Proc Natl Acad Sci, USA. 1989;86(24):10090–10094. doi: 10.1073/pnas.86.24.10090
  • Smith-Berdan S, Gille D, Weissman IL, et al. Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood. 2007;110(4):1370–1378. doi: 10.1182/blood-2007-03-081497
  • Sullivan KM, Shah A, Sarantopoulos S, et al. Review: hematopoietic stem cell transplantation for scleroderma: effective immunomodulatory therapy for patients with pulmonary involvement. Arthritis & Rheumat. 2016;68(10):2361–2371. doi: 10.1002/art.39748
  • Snowden JA, Passweg J, Moore JJ, et al. Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol. 2004;31(3):482–488.
  • Gratwohl A, Passweg J, Bocelli-Tyndall C, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 2005;35(9):869–879. doi: 10.1038/sj.bmt.1704892
  • Farge D, Labopin M, Tyndall A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European group for blood and marrow transplantation working party on autoimmune diseases. Haematologica. 2010;95:284–292. doi: 10.3324/haematol.2009.013458
  • Franceschetti T, De Bari C. The potential role of adult stem cells in the management of the rheumatic diseases. Ther Adv Musculoskelet Dis. 2017;9(7):165–179. doi: 10.1177/1759720X17704639
  • Colmegna I, Weyand CM. Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology (Oxford). 2011;50(2):252–260. doi: 10.1093/rheumatology/keq298
  • Silva J MF, Ladomenou F, Carpenter B, et al. Allogeneic hematopoietic stem cell transplantation for severe, refractory juvenile idiopathic arthritis. Blood Adv. 2018;2(7):777–786. doi: 10.1182/bloodadvances.2017014449
  • Cipriani P, Carubbi F, Liakouli V, et al. Stem cells in autoimmune diseases: Implications for pathogenesis and future trends in therapy. Autoimmun Rev. 2013;12(7):709–716. doi: 10.1016/j.autrev.2012.10.004
  • Maumus M, Guérit D, Toupet K, et al. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther. 2011;2(2):14. doi: 10.1186/scrt55
  • Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018;27(7):873–880. doi: 10.17219/acem/73720
  • Pedrosa M, Gomes J, Laranjeira P, et al. Immunomodulatory effect of human bone marrow-derived mesenchymal stromal/stem cells on peripheral blood T cells from rheumatoid arthritis patients. J Tissue Eng Regen Med. 2020;14(1):16–28. doi: 10.1002/term.2958
  • van Hamburg JP, Asmawidjaja PS, Davelaar N, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63(1):73–83. doi: 10.1002/art.30093
  • Eljaafari A, Tartelin M-L, Aissaoui H, et al. Bone marrow–derived and synovium-derived mesenchymal cells promote Th17 cell expansion and activation through caspase 1 activation: Contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2147–2157. doi: 10.1002/art.34391
  • Sun Y, Deng W, Yao G, et al. Citrullinated fibrinogen impairs immunomodulatory function of bone marrow mesenchymal stem cells by triggering toll-like receptor. Clin Immunol. 2018;193:38–45. doi: 10.1016/j.clim.2018.01.008
  • Berthelot J-M, Le Goff B, Maugars Y. Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis Res Ther. 2019;21(1):239. doi: 10.1186/s13075-019-2014-8
  • Kastrinaki M-C, Sidiropoulos P, Roche S, et al. Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Ann Rheum Dis. 2008;67(6):741–749. doi: 10.1136/ard.2007.076174
  • Bocelli-Tyndall C, Bracci L, Spagnoli G, et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology. 2007;46(3):403–408. doi: 10.1093/rheumatology/kel267
  • Lamas JR, Fernandez-Gutierrez B, Mucientes A, et al. RNA sequencing of mesenchymal stem cells reveals a blocking of differentiation and immunomodulatory activities under inflammatory conditions in rheumatoid arthritis patients. Arthritis Res Ther. 2019;21(1):112. doi: 10.1186/s13075-019-1894-y
  • Kuca-Warnawin E, Kurowska W, Prochorec-Sobieszek M, et al. Rheumatoid arthritis bone marrow environment supports Th17 response. Arthritis Res Ther. 2017;19(1):274. doi: 10.1186/s13075-017-1483-x
  • Liu R, Li X, Zhang Z, et al. Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Sci Rep. 2015;5(1):12777. doi: 10.1038/srep12777
  • Greish S, Abogresha N, Abdel-Hady Z, et al. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J Stem Cells. 2012;4(10):101–109. doi: 10.4252/wjsc.v4.i10.101
  • Ma D, Xu K, Zhang G, et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol. 2019;74:105687. doi: 10.1016/j.intimp.2019.105687
  • Gu J, Gu W, Lin C, et al. Human umbilical cord mesenchymal stem cells improve the immune‑associated inflammatory and prothrombotic state in collagen type‑II‑induced arthritic rats. Mol Med Rep. 2015;12(5):7463–7470. doi: 10.3892/mmr.2015.4394
  • Sun Y, Kong W, Huang S, et al. Comparable therapeutic potential of umbilical cord mesenchymal stem cells in collagen-induced arthritis to TNF inhibitor or anti-CD20 treatment. Clin Exp Rheumatol. 2017;35:288–295.
  • Wang Q, Li X, Luo J, et al. The allogeneic umbilical cord mesenchymal stem cells regulate the function of T helper 17 cells from patients with rheumatoid arthritis in an in vitro co-culture system. BMC Musculoskelet Disord. 2012;13(1):249. doi: 10.1186/1471-2474-13-249
  • Zeng J, Wang F, Mao M. Co‑culture of fibroblast‑like synoviocytes with umbilical cord‑mesenchymal stem cells inhibits expression of pro‑inflammatory proteins, induces apoptosis and promotes chondrogenesis. Mol Med Rep. 2016;14(4):3887–3893. doi: 10.3892/mmr.2016.5721
  • Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019;11(6):347–374. doi: 10.4252/wjsc.v11.i6.347
  • Ceccarelli S, Pontecorvi P, Anastasiadou E, et al. Immunomodulatory effect of adipose-derived stem cells: the cutting edge of clinical application. Front Cell Dev Biol. 2020;8:236. doi: 10.3389/fcell.2020.00236
  • Valencia J, Blanco B, Yáñez R, et al. Comparative analysis of the immunomodulatory capacities of human bone marrow– and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy. 2016;18(10):1297–1311. doi: 10.1016/j.jcyt.2016.07.006
  • Baharlou R, Rashidi N, Ahmadi-Vasmehjani A, et al. Immunomodulatory effects of human adipose tissue-derived mesenchymal stem cells on T cell subsets in patients with rheumatoid arthritis. Iran J Allergy Asthma Immunol. 2019;18:114–119. doi: 10.18502/ijaai.v18i1.637
  • Vasilev G, Ivanova M, Ivanova-Todorova E, et al. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol Int. 2019;39(5):819–826. doi: 10.1007/s00296-019-04296-7
  • Lopez-Santalla M, Mancheño-Corvo P, Menta R, et al. Human adipose-derived mesenchymal stem cells modulate experimental autoimmune arthritis by modifying early adaptive T Cell responses. Stem Cells. 2015;33(12):3493–3503. doi: 10.1002/stem.2113
  • Mancheño-Corvo P, Menta R, Del Río B, et al. T lymphocyte prestimulation impairs in a time-dependent manner the capacity of adipose mesenchymal stem cells to inhibit proliferation: role of interferon γ, Poly I: C, and tryptophan metabolism in restoring adipose mesenchymal stem cell inhibitory effect. Stem Cells Dev. 2015;24(18):2158–2170. doi: 10.1089/scd.2014.0508
  • Zhang L, Wang X-Y, Zhou P-J, et al. Use of immune modulation by human adipose-derived mesenchymal stem cells to treat experimental arthritis in mice. Am J Transl Res. 2017;9:2595–2607.
  • Chang Q, Li C, Lu Y, et al. Adipose-derived mesenchymal stromal cells suppress osteoclastogenesis and bone erosion in collagen-induced arthritis. Scand J Immunol. 2020;92(2):e12877. doi: 10.1111/sji.12877
  • Ueyama H, Okano T, Orita K, et al. Local transplantation of adipose-derived stem cells has a significant therapeutic effect in a mouse model of rheumatoid arthritis. Sci Rep. 2020;10(1):3076. doi: 10.1038/s41598-020-60041-2
  • Skalska U, Kuca-Warnawin E, Kornatka A, et al. Articular and subcutaneous adipose tissues of rheumatoid arthritis patients represent equal sources of immunoregulatory mesenchymal stem cells. Autoimmunity. 2017;50(8):441–450. doi: 10.1080/08916934.2017.1411481
  • Ibarretxe G, Crende O, Aurrekoetxea M, et al. Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. Stem Cells Int. 2012;2012:103503. doi: 10.1155/2012/103503
  • Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018;20(4):479–498. doi: 10.1016/j.jcyt.2017.12.011
  • Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications. Stem Cells Transl Med. 2020;9(4):445–464. doi: 10.1002/sctm.19-0398
  • Croci S, Bonacini M, Dolci G, et al. Human dental pulp stem cells modulate cytokine production in vitro by peripheral blood mononuclear cells from coronavirus disease 2019 patients. Front Cell Dev Biol. 2020;8:609204. doi: 10.3389/fcell.2020.609204
  • Li P, Ou Q, Shi S, et al. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 2023;20(6):558–569. doi: 10.1038/s41423-023-00998-y
  • Zhao Y, Wang L, Jin Y, et al. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res. 2012;91(10):948–954. doi: 10.1177/0022034512458690
  • Pisciotta A, Bertani G, Bertoni L, et al. Modulation of cell death and promotion of chondrogenic differentiation by Fas/FasL in human dental pulp stem cells (hDpscs). Front Cell Dev Biol. 2020;8:279. doi: 10.3389/fcell.2020.00279
  • Di Tinco R, Bertani G, Pisciotta A, et al. Role of PD-L1 in licensing immunoregulatory function of dental pulp mesenchymal stem cells. Stem Cell Res Ther. 2021;12(1):598. doi: 10.1186/s13287-021-02664-4
  • Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–2827. doi: 10.1182/blood-2004-09-3696
  • Chikuma S, Terawaki S, Hayashi T, et al. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo. J Immunol. 2009;182(11):6682–6689. doi: 10.4049/jimmunol.0900080
  • Duré M, Macian F. IL-2 signaling prevents T cell anergy by inhibiting the expression of anergy-inducing genes. Mol Immunol. 2009;46(5):999–1006. doi: 10.1016/j.molimm.2008.09.029
  • Pharoah DS, Varsani H, Tatham RW, et al. Expression of the inflammatory chemokines CCL5, CCL3 and CXCL10 in juvenile idiopathic arthritis, and demonstration of CCL5 production by an atypical subset of CD8+ T cells. Arthritis Res Ther. 2006;8(2):R50. doi: 10.1186/ar1913
  • Pisciotta A, Di Tinco R, Bertani G, et al. Human dental pulp stem cells (hDpscs) promote the lipofibroblast transition in the early stage of a fibro-inflammatory process. Front Cell Dev Biol. 2023;11:1196023. doi: 10.3389/fcell.2023.1196023
  • Pisciotta A, Riccio M, Carnevale G, et al. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther. 2015;6(1):156. doi: 10.1186/s13287-015-0141-y
  • Zordani A, Pisciotta A, Bertoni L, et al. Regenerative potential of human dental pulp stem cells in the treatment of stress urinary incontinence: In vitro and in vivo study. Cell Proliferation. 2019;52(6):e12675. doi: 10.1111/cpr.12675
  • Gandia C, Armiñan A, García-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26(3):638–645. doi: 10.1634/stemcells.2007-0484
  • Inoue T, Sugiyama M, Hattori H, et al. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2013;19(1–2):24–29. doi: 10.1089/ten.tea.2011.0385
  • Botelho J, Cavacas MA, Machado V, et al. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med. 2017;49(8):644–651. doi: 10.1080/07853890.2017.1347705
  • Fernandes TL, Cortez de SantAnna JP, Frisene I, et al. Systematic review of human dental pulp stem cells for cartilage regeneration. Tissue Eng Part B Rev. 2020;26(1):1–12. doi: 10.1089/ten.teb.2019.0140
  • Matsushita Y, Ishigami M, Matsubara K, et al. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J Tissue Eng Regen Med. 2017;11(6):1888–1896. doi: 10.1002/term.2086
  • Mattei V, Martellucci S, Pulcini F, et al. Regenerative potential of DPSCs and revascularization: Direct, paracrine or autocrine effect? Stem Cell Rev And Rep. 2021;17(5):1635–1646. doi: 10.1007/s12015-021-10162-6
  • Li Y, Duan X, Chen Y, et al. Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci. 2022;14(1):2. doi: 10.1038/s41368-021-00152-2
  • Ishikawa J, Takahashi N, Matsumoto T, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone. 2016;83:210–219. doi: 10.1016/j.bone.2015.11.012
  • Matsubara K, Matsushita Y, Sakai K, et al. Secreted ectodomain of sialic acid-binding ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci. 2015;35(6):2452–2464. doi: 10.1523/JNEUROSCI.4088-14.2015
  • Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy. 2015;17(8):1119–1129. doi: 10.1016/j.jcyt.2015.04.009
  • Janssen EM, Dy SM, Meara AS, et al. Analysis of patient preferences in lung cancer - estimating acceptable tradeoffs between treatment benefit and side effects. Patient Prefer Adherence. 2020;14:927–937. doi: 10.2147/PPA.S235430
  • Dong X, Kong F, Liu C, et al. Pulp stem cells with hepatocyte growth factor overexpression exhibit dual effects in rheumatoid arthritis. Stem Cell Res Ther. 2020;11(1):229. doi: 10.1186/s13287-020-01747-y
  • Liu L, Wong CW, Han M, et al. Meta-analysis of preclinical studies of mesenchymal stromal cells to treat rheumatoid arthritis. EBioMedicine. 2019;47:563–577. doi: 10.1016/j.ebiom.2019.08.073
  • Djouad F, Bouffi C, Ghannam S, et al. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5(7):392–399.**. doi: 10.1038/nrrheum.2009.104
  • Sullivan KM, Sarantopoulos S. Allogeneic HSCT for autoimmune disease: a shared decision. Nat Rev Rheumatol. 2019;15(12):701–702. doi: 10.1038/s41584-019-0306-7
  • Jaime-Pérez JC, González-Treviño M, Meléndez-Flores JD, et al. Autologous ATG-free hematopoietic stem cell transplantation for refractory autoimmune rheumatic diseases: a Latin American cohort. Clin Rheumatol. 2022;41(3):869–876. doi: 10.1007/s10067-021-05931-0
  • Mehta K, Jaiswal P, Briggs F, et al. In-patient outcomes of hematopoietic stem Cell transplantation in patients with immune mediated inflammatory diseases: a nationwide study. Sci Rep. 2018;8(1):6825. doi: 10.1038/s41598-018-24060-4
  • Snowden JA, Kapoor S, Wilson AG. Stem cell transplantation in rheumatoid arthritis. Autoimmunity. 2008;41(8):625–631. doi: 10.1080/08916930802198550
  • Muthu S, Jeyaraman M, Ranjan R, et al. Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: A systematic review with meta-analysis. World J Biol Chem. 2021;12(6):114–130. doi: 10.4331/wjbc.v12.i6.114
  • Swart JF, Delemarre EM, van Wijk F, et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev Rheumatol. 2017;13(4):244–256. doi: 10.1038/nrrheum.2017.7
  • Snowden JA, Sharrack B, Akil M, et al. Autologous haematopoietic stem cell transplantation (aHSCT) for severe resistant autoimmune and inflammatory diseases – a guide for the generalist. Clin Med. 2018;18(4):329–334. doi: 10.7861/clinmedicine.18-4-329
  • Alavi M, Tavakkol-Afshari J, Shariati-Sarabi Z, et al. Intravenous injection of autologous bone marrow-derived mesenchymal stem cells on the gene expression and plasma level of CCL5 in refractory rheumatoid arthritis. J Res Med Sci. 2020;25(1):111. doi: 10.4103/jrms.JRMS_308_20
  • Ghoryani M, Shariati-Sarabi Z, Tavakkol-Afshari J, et al. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomed Pharmacother. 2019;109:1834–1840. doi: 10.1016/j.biopha.2018.11.056
  • Wang L, Wang L, Cong X, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22(24):3192–3202. doi: 10.1089/scd.2013.0023
  • Shadmanfar S, Labibzadeh N, Emadedin M, et al. Intra-articular knee implantation of autologous bone marrow–derived mesenchymal stromal cells in rheumatoid arthritis patients with knee involvement: Results of a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy. 2018;20(4):499–506. doi: 10.1016/j.jcyt.2017.12.009
  • Vij R, Stebbings KA, Kim H, et al. Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: a phase I/IIa, open-label, non-randomized pilot trial. Stem Cell Res Ther. 2022;13(1):88. doi: 10.1186/s13287-022-02763-w
  • Álvaro-Gracia JM, Jover JA, García-Vicuña R, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis. 2017;76(1):196–202. doi: 10.1136/annrheumdis-2015-208918
  • Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–1266. doi: 10.1002/stem.1634
  • Lv X, Wang L, Zou X, et al. Umbilical cord mesenchymal stem cell therapy for regenerative treatment of rheumatoid arthritis: opportunities and challenges. Drug Des Devel Ther. 2021;15:3927–3936. doi: 10.2147/DDDT.S323107
  • Chen Y, Zhang Q, Peng W, et al. Efficacy and safety of mesenchymal stem cells for the treatment of patients infected with COVID-19: a systematic review and meta-analysis protocol. BMJ Open. 2020;10(12):e042085. doi: 10.1136/bmjopen-2020-042085
  • Jiang P, Mao L, Qiao L, et al. Efficacy and safety of mesenchymal stem cell injections for patients with osteoarthritis: a meta-analysis and review of RCTs. Arch Orthop Trauma Surg. 2021;141(7):1241–1251. doi: 10.1007/s00402-020-03703-0
  • Li T, Luo C, Zhang J, et al. Efficacy and safety of mesenchymal stem cells co-infusion in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Stem Cell Res Ther. 2021;12(1):246. doi: 10.1186/s13287-021-02304-x
  • Cui J, Jin L, Ding M, et al. Efficacy and safety of mesenchymal stem cells in the treatment of systemic sclerosis: a systematic review and meta-analysis. Stem Cell Res Ther. 2022;13(1):118. doi: 10.1186/s13287-022-02786-3
  • Wright A, Arthaud-Day ML, Weiss ML. Therapeutic use of mesenchymal stromal cells: the need for inclusive characterization guidelines to accommodate all tissue sources and species. Front Cell Dev Biol [Internet]. 2021;9 [cited 2023 Apr 5]. doi: 10.3389/fcell.2021.632717
  • ISSCR Guidelines [Internet]. [cited 2022 Apr 20]. Available from: https://www.isscr.org/policy/guidelines-for-stem-cell-research-and-clinical-translation.
  • Wang Y, Huang J, Gong L, et al. The plasticity of mesenchymal stem cells in regulating surface HLA-I. iScience. 2019;15:66–78. doi: 10.1016/j.isci.2019.04.011
  • Petrus-Reurer S, Romano M, Howlett S, et al. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol. 2021;4(1):1–16. doi: 10.1038/s42003-021-02237-4
  • Jossen V, van den Bos C, Eibl R, et al. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol. 2018;102(9):3981–3994. doi: 10.1007/s00253-018-8912-x
  • Czapla J, Matuszczak S, Kulik K, et al. The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Res Ther. 2019;10(1):235. doi: 10.1186/s13287-019-1331-9
  • Harrell CR, Volarevic A, Djonov VG, et al. Mesenchymal stem Cell: a friend or foe in Anti-tumor immunity. Int J Mol Sci. 2021;22(22):12429. doi: 10.3390/ijms222212429
  • Liang W, Chen X, Zhang S, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett. 2021;26(1):3. doi: 10.1186/s11658-020-00246-5
  • Guiotto M, Raffoul W, Hart AM, et al. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. J Transl Med. 2020;18(1):351. doi: 10.1186/s12967-020-02489-4
  • Palombella S, Perucca Orfei C, Castellini G, et al. Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Res Ther. 2022;13(1):142. doi: 10.1186/s13287-022-02815-1
  • Oikonomopoulos A, van Deen WK, Manansala A-R, et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep. 2015;5(1):16570. doi: 10.1038/srep16570
  • Bui HTH, Nguyen LT, Than UTT. Influences of xeno-free media on mesenchymal stem Cell expansion for clinical application. Tissue Eng Regen Med. 2021;18(1):15–23. doi: 10.1007/s13770-020-00306-z
  • Han L, Ma C, Peng H, et al. Define mesenchymal stem cell from its fate: biodisposition of human mesenchymal stem cells in normal and concanavalin A–induced liver injury mice. J Pharmacol Exp Ther. 2021;379(2):125–133. doi: 10.1124/jpet.121.000607
  • Masterson CH, Tabuchi A, Hogan G, et al. Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Sci Rep. 2021;11(1):5265. doi: 10.1038/s41598-021-83894-7
  • Kallmeyer K, André-Lévigne D, Baquié M, et al. Fate of systemically and locally administered adipose-derived mesenchymal stromal cells and their effect on wound healing. Stem Cells Transl Med. 2020;9(1):131–144. doi: 10.1002/sctm.19-0091
  • Karamini A, Bakopoulou A, Andreadis D, et al. Therapeutic potential of mesenchymal stromal stem cells in rheumatoid arthritis: a systematic review of in vivo studies. Stem Cell Rev And Rep. 2020;16(2):276–287. doi: 10.1007/s12015-020-09954-z
  • Moll G, Ankrum JA, Kamhieh-Milz J, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol Med. 2019;25(2):149–163. doi: 10.1016/j.molmed.2018.12.006
  • Bagno LL, Salerno AG, Balkan W, et al. Mechanism of action of mesenchymal stem cells (MSCs): impact of delivery method. Expert Opin Biol Ther. 2022;22(4):449–463. doi: 10.1080/14712598.2022.2016695
  • Satué M, Schüler C, Ginner N, et al. Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep. 2019;9(1):10153. doi: 10.1038/s41598-019-46554-5
  • To K, Khan W. Mesenchymal stem cell transplantation in rheumatoid arthritis. In: Pham P editor. Stem cell transplantation for autoimmune diseases and inflammation [Internet]. Cham: Springer International Publishing; 2019 [cited 2022 Apr 20]. p. 63–74. doi: 10.1007/978-3-030-23421-8_4
  • Rad F, Ghorbani M, Mohammadi Roushandeh A, et al. Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep. 2019;46(1):1533–1549. doi: 10.1007/s11033-019-04588-y
  • Alghamdi M, Alamry SA, Bahlas SM, et al. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci. 2021;79(1):25. doi: 10.1007/s00018-021-04020-4
  • Huldani H, Abdalkareem Jasim S, Olegovich Bokov D, et al. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol. 2022;106:108634. doi: 10.1016/j.intimp.2022.108634
  • Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624
  • Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493–507. doi: 10.1038/s41581-018-0023-5
  • Turner L. ISSCR’s Guidelines for stem cell research and clinical translation: supporting development of safe and efficacious stem cell-based interventions. Stem Cell Rep. 2021;16(6):1394–1397. doi: 10.1016/j.stemcr.2021.05.011
  • Guleria I, de Los Angeles Muñiz M, Wilgo M, et al. How do I: Evaluate the safety and legitimacy of unproven cellular therapies? Transfusion. 2022;62(3):518–532. doi: 10.1111/trf.16814
  • Bakopoulou A, Apatzidou D, Aggelidou E, et al. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Res Ther. 2017;8(1):247. doi: 10.1186/s13287-017-0705-0
  • Lechanteur C, Briquet A, Bettonville V, et al. MSC manufacturing for academic clinical trials: from a clinical-grade to a full GMP-compliant process. Cells. 2021;10(6):1320. doi: 10.3390/cells10061320
  • Sanz-Nogués C, O’Brien T. Current good manufacturing practice considerations for mesenchymal stromal cells as therapeutic agents. Biomater Biosyst. 2021;2:100018. doi: 10.1016/j.bbiosy.2021.100018
  • Tyndall A, Walker UA, Cope A, et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther. 2007;9:301. doi: 10.1186/ar2103
  • Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Proliferation. 2020;53(1):e12712. doi: 10.1111/cpr.12712
  • Askenasy N. Enhanced killing activity of regulatory T cells ameliorates inflammation and autoimmunity. Autoimmun Rev. 2013;12(10):972–975. doi: 10.1016/j.autrev.2013.04.005
  • Negi N, Griffin MD. Effects of mesenchymal stromal cells on regulatory T cells: Current understanding and clinical relevance. Stem Cells. 2020;38(5):596–605. doi: 10.1002/stem.3151
  • François M, Romieu-Mourez R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–195. doi: 10.1038/mt.2011.189
  • Luz-Crawford P, Jorgensen C, Djouad F. Mesenchymal stem cells direct the immunological fate of macrophages. In: Kloc M editor. Macrophages: origin, functions and biointervention [Internet]. Cham: Springer International Publishing; 2017 [cited 2023 Apr 11]. p. 61–72. doi: 10.1007/978-3-319-54090-0_4
  • Suzdaltseva Y, Goryunov K, Silina E, et al. Equilibrium among inflammatory factors determines human MSC-Mediated immunosuppressive effect. Cells. 2022;11(7):1210. doi: 10.3390/cells11071210
  • Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088. doi: 10.1371/journal.pone.0010088
  • Dehnavi S, Sadeghi M, Tavakol Afshari J, et al. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol. 2023;393–394:104771.
  • De Bari C. Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? Arthritis Res Ther. 2015;17(1):113. doi: 10.1186/s13075-015-0634-1
  • Murray IR, Chahla J, Safran MR, et al. International expert consensus on a cell therapy communication tool: DOSES. JBJS. 2019;101(10):904. doi: 10.2106/JBJS.18.00915
  • Peltzer J, Aletti M, Frescaline N, et al. Mesenchymal stromal cells based therapy in systemic sclerosis: rational and challenges. Front Immunol [Internet]. 2018 [cited 2023 Nov 8];9. doi: 10.3389/fimmu.2018.02013
  • Műzes G, Sipos F. Issues and opportunities of stem cell therapy in autoimmune diseases. World J Stem Cells. 2019;11(4):212–221. doi: 10.4252/wjsc.v11.i4.212

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.