139
Views
0
CrossRef citations to date
0
Altmetric
Review

Matrix metalloproteinases in chronic rhinosinusitis

, , , &
Pages 547-558 | Received 29 Oct 2023, Accepted 03 Jan 2024, Published online: 22 Jan 2024

References

  • Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020 Feb 20;58(Suppl S29):1–464. doi: 10.4193/Rhin20.401
  • Chapurin N, Wu J, Labby AB, et al. Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol. 2022 Jul;150(1):22–32.
  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020 Oct 29;6(1):86. doi: 10.1038/s41572-020-00218-1
  • Cox TR. The matrix in cancer. Nat Rev Cancer. 2021 Apr;21(4):217–238. doi: 10.1038/s41568-020-00329-7
  • de Almeida LGN, Thode H, Eslambolchi Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol Rev. 2022 Jul;74(3):712–768.
  • Samitas K, Carter A, Kariyawasam HH, et al. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018 May;73(5):993–1002.
  • Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017 Jan 24;12(1):331–357. doi: 10.1146/annurev-pathol-052016-100401
  • Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020 Dec 20;21(24):9739. doi: 10.3390/ijms21249739
  • Huang CC, Wang CH, Wu PW, et al. Increased nasal matrix metalloproteinase-1 and -9 expression in smokers with chronic rhinosinusitis and asthma. Sci Rep. 2019 Oct 25;9(1):15357. doi: 10.1038/s41598-019-51813-6
  • Kumar H, Mandal SK, Gogoi P, et al. Structural and functional role of invariant water molecules in matrix metalloproteinases: a data-mining approach. J Biomol Struct Dyn. 2022;40(20):10074–10085. doi: 10.1080/07391102.2021.1938683
  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 May 2;92(8):827–839. doi: 10.1161/01.RES.0000070112.80711.3D
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020 Apr 26;9(5):1076. doi: 10.3390/cells9051076
  • Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010 Jan;1803(1):20–28. doi: 10.1016/j.bbamcr.2009.04.003
  • Rangasamy L, Geronimo BD, Ortín I, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). Molecules. 2019 Aug 16;24(16):2982. doi: 10.3390/molecules24162982
  • Piskór BM, Przylipiak A, Dąbrowska E, et al. Matrilysins and stromelysins in Pathogenesis and diagnostics of cancers. Cancer Manag Res. 2020;12:10949–10964. 10.2147/CMAR.S235776
  • Mustafa S, Koran S, AlOmair L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: a review. Front Mol Biosci. 2022;9:896099. doi: 10.3389/fmolb.2022.896099
  • Gupta SP, Patil VM. Specificity of binding with matrix metalloproteinases. Exp Suppl. 2012;103:35–56.
  • Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004 Oct;16(5):558–564. doi: 10.1016/j.ceb.2004.07.010
  • Li Y, Fan W, Link F, et al. Transforming growth factor β latency: a mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. JHEP Rep. 2022 Feb;4(2):100397.
  • Tatti O, Vehviläinen P, Lehti K, et al. MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp Cell Res. 2008 Aug 1;314(13):2501–2514. doi: 10.1016/j.yexcr.2008.05.018
  • Pang L, Wei C, Duan J, et al. TGF-β1/Smad signaling, MMP-14, and MSC markers in arterial injury: discovery of the molecular basis of restenosis. Int J Clin Exp Pathol. 2014;7(6):2915–24.
  • Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015 May;44-46:94–112. doi: 10.1016/j.matbio.2015.04.004
  • Clark IM, Swingler TE, Sampieri CL, et al. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 2008;40(6–7):1362–1378. doi: 10.1016/j.biocel.2007.12.006
  • Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol. 2007 Nov;213(2):355–364. doi: 10.1002/jcp.21208
  • Bond M, Chase AJ, Baker AH, et al. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res. 2001 Jun;50(3):556–565.
  • Nagumo Y, Kandori S, Tanuma K, et al. PLD1 promotes tumor invasion by regulation of MMP-13 expression via NF-κB signaling in bladder cancer. Cancer Lett. 2021 Jul 28;511:15–25. doi: 10.1016/j.canlet.2021.04.014
  • Zhang W, Wang F, Xu P, et al. Perfluorooctanoic acid stimulates breast cancer cells invasion and up-regulates matrix metalloproteinase-2/-9 expression mediated by activating NF-κB. Toxicol Lett. 2014 Aug 17;229(1):118–125. doi: 10.1016/j.toxlet.2014.06.004
  • Pillinger MH, Marjanovic N, Kim SY, et al. Matrix metalloproteinase secretion by gastric epithelial cells is regulated by E prostaglandins and MAPKs. J Biol Chem. 2005 Mar 18;280(11):9973–9979. doi: 10.1074/jbc.M413522200
  • Kajanne R, Miettinen P, Mehlem A, et al. EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. J Cell Physiol. 2007 Aug;212(2):489–497.
  • McCawley LJ, Li S, Wattenberg EV, et al. Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem. 1999 Feb 12;274(7):4347–4353. doi: 10.1074/jbc.274.7.4347
  • Kheradmand F, Rishi K, Werb Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci. 2002 Feb 15;115(Pt 4):839–848. doi: 10.1242/jcs.115.4.839
  • Qiu Q, Yang M, Tsang BK, et al. EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3K and MAPK signalling pathways. Reproduction. 2004 Sep;128(3):355–363.
  • Paskeh MDA, Ghadyani F, Hashemi M, et al. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: promises and challenges. Pharmacol Res. 2023 Jan;187:106553.
  • Catterall JB, Carrère S, Koshy PJ, et al. Synergistic induction of matrix metalloproteinase 1 by interleukin-1alpha and oncostatin M in human chondrocytes involves signal transducer and activator of transcription and activator protein 1 transcription factors via a novel mechanism. Arthritis Rheum. 2001 Oct;44(10):2296–2310.
  • Wang D, Dai C, Li Y, et al. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int. 2011 Dec;80(11):1159–1169.
  • Muller A, Gasch J, Albring KF, et al. Interplay of transcription factors STAT3, STAT1 and AP-1 mediates activity of the matrix metallo-proteinase-1 promoter in colorectal carcinoma cells. Neoplasma. 2019 May 23;66(3):357–366. doi: 10.4149/neo_2018_180731N560
  • Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem. 2001 Oct 19;276(42):38502–38510. doi: 10.1074/jbc.M107081200
  • Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018;81:241–330.
  • Willson JA, Muir CA, Evered CL, et al. Stable expression of α1-antitrypsin Portland in MDA-MB-231 cells increased MT1-MMP and MMP-9 levels, but reduced tumour progression. J Cell Commun Signal. 2018 Jun;12(2):479–488.
  • Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015 May;44-46:247–254. doi: 10.1016/j.matbio.2015.03.005
  • Jackson HW, Defamie V, Waterhouse P, et al. Timps: versatile extracellular regulators in cancer. Nat Rev Cancer. 2017 Jan;17(1):38–53.
  • Lygeros S, Danielides G, Grafanaki K, et al. Matrix metalloproteinases and chronic rhinosinusitis with nasal polyposis. Unravelling a puzzle through a systematic review. Rhinology. 2021 Jun 1;59(3):245–257. doi: 10.4193/Rhin20.578
  • Shi LL, Ma J, Deng YK, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2021 Feb;76(2):497–509.
  • de Borja Callejas F, Picado C, Martínez-Antón A, et al. Differential expression of remodeling markers by tissue structure in nasal polyposis. Am J Rhinol Allergy. 2013 May;27(3):e69–74.
  • Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019 Mar;9(3):270–280.
  • Malinsky RR, Valera FC, Cavallari FE, et al. Matrix metalloproteinases and their impact on sinusal extension in chronic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol. 2013 Mar;270(4):1345–1348.
  • Homma T, Kato A, Sakashita M, et al. Potential involvement of the epidermal growth factor receptor ligand epiregulin and matrix metalloproteinase-1 in pathogenesis of chronic rhinosinusitis. Am J Respir Cell Mol Biol. 2017 Sep;57(3):334–345.
  • Cho JS, Kang JH, Um JY, et al. Lipopolysaccharide induces pro-inflammatory cytokines and MMP production via TLR4 in nasal polyp-derived fibroblast and organ culture. PLoS One. 2014;9(11):e90683. doi: 10.1371/journal.pone.0090683
  • Eyibilen A, Cayli S, Aladag I, et al. Distribution of matrix metalloproteinases MMP-1, MMP-2, MMP-8 and tissue inhibitor of matrix metalloproteinases-2 in nasal polyposis and chronic rhinosinusitis. Histol Histopathol. 2011 May;26(5):615–621.
  • Kim DK, Eun KM, Kim MK, et al. Comparison between signature cytokines of nasal tissues in subtypes of chronic rhinosinusitis. Allergy Asthma Immunol Res. 2019 Mar;11(2):201–211.
  • Li X, Meng J, Qiao X, et al. Expression of TGF, matrix metalloproteinases, and tissue inhibitors in Chinese chronic rhinosinusitis. J Allergy Clin Immunol. 2010 May;125(5):1061–1068.
  • Wang LF, Chien CY, Chiang FY, et al. Corelationship between matrix metalloproteinase 2 and 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Am J Rhinol Allergy. 2012 Jan;26(1):e1–4.
  • Chen X, Chang L, Li X, et al. Tc17/IL-17A up-regulated the expression of MMP-9 via NF-κB pathway in nasal epithelial cells of patients with chronic rhinosinusitis. Front Immunol. 2018;9:2121. doi: 10.3389/fimmu.2018.02121
  • Can IH, Ceylan K, Caydere M, et al. The expression of MMP-2, MMP-7, MMP-9, and TIMP-1 in chronic rhinosinusitis and nasal polyposis. Otolaryngol Head Neck Surg. 2008 Aug;139(2):211–215.
  • Du K, Wang M, Zhang N, et al. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs. Clin Transl Allergy. 2021 Aug;11(7):e12059.
  • Vetuschi A, Pompili S, Di Marco GP, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps? Eur J Histochem. 2020 Jan 23;64(1):3079. doi: 10.4081/ejh.2020.3079
  • Boruk M, Railwah C, Lora A, et al. Elevated S100A9 expression in chronic rhinosinusitis coincides with elevated MMP production and proliferation in vitro. Sci Rep. 2020 Oct 1;10(1):16350. doi: 10.1038/s41598-020-73480-8
  • Watelet JB, Bachert C, Claeys C, et al. Matrix metalloproteinases MMP-7, MMP-9 and their tissue inhibitor TIMP-1: expression in chronic sinusitis vs nasal polyposis. Allergy. 2004 Jan;59(1):54–60.
  • Tsuda T, Nishide M, Maeda Y, et al. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol. 2020 Mar;145(3):843–854.e4.
  • Lygeros S, Danielides G, Kyriakopoulos GC, et al. Evaluation of MMP-12 expression in chronic rhinosinusitis with nasal polyposis. Rhinology. 2022 Feb 1;60(1):39–46. doi: 10.4193/Rhin21.320
  • Kim DW, Eun KM, Roh EY, et al. Chronic rhinosinusitis without nasal polyps in Asian patients shows mixed inflammatory patterns and neutrophil-related disease severity. Mediators Inflamm. 2019;2019:7138643. doi: 10.1155/2019/7138643
  • Scheau C, Badarau IA, Costache R, et al. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst). 2019;2019:9423907. doi: 10.1155/2019/9423907
  • Wells JM, Gaggar A, Blalock JE. MMP generated matrikines. Matrix Biol. 2015 May;44-46:122–129. doi: 10.1016/j.matbio.2015.01.016
  • Li K, Tay FR, Yiu CKY. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther. 2020 Mar;207:107465. doi: 10.1016/j.pharmthera.2019.107465
  • Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem. 2020 May 15;194:112260. doi: 10.1016/j.ejmech.2020.112260
  • Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol. 2017 Dec 5;816:93–106. doi: 10.1016/j.ejphar.2017.09.007
  • Hannocks MJ, Zhang X, Gerwien H, et al. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 2019 Jan;75–76:102–113.
  • Kostamo K, Toskala E, Tervahartiala T, et al. Role of matrix metalloproteinases in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2008 Feb;8(1):21–27.
  • Wang LF, Chien CY, Chiang FY, et al. Expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in recurrent chronic rhinosinusitis with nasal polyposis. Kaohsiung J Med Sci. 2013 Jan;29(1):26–31.
  • Park JH, Shin JM, Yang HW, et al. Cigarette smoke extract stimulates MMP-2 production in nasal fibroblasts via ROS/PI3K, akt, and NF-κB signaling pathways. Antioxidants (Basel). 2020 Aug 12;9(8):739. doi: 10.3390/antiox9080739
  • Wang LF, Tai CF, Chien CY, et al. Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis. Kaohsiung J Med Sci. 2015 May;31(5):235–240.
  • Kim DK, Jin HR, Eun KM, et al. The role of interleukin-33 in chronic rhinosinusitis. Thorax. 2017 Jul;72(7):635–645.
  • Wen W, Zhu S, Ma R, et al. Correlation analysis of TGF-β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α in refractory chronic rhinosinusitis: a retrospective study. Allergol Immunopathol (Madr). 2022;50(4):137–142. doi: 10.15586/aei.v50i4.527
  • Huang Y, Wang M, Hong Y, et al. Reduced expression of antimicrobial protein secretory leukoprotease inhibitor and clusterin in chronic rhinosinusitis with nasal polyps. J Immunol Res. 2021;2021:1057186. doi: 10.1155/2021/1057186
  • de Borja Callejas F, Martínez-Antón A, Picado C, et al. Corticosteroid treatment regulates mucosal remodeling in chronic rhinosinusitis with nasal polyps. Laryngoscope. 2015 May;125(5):E158–167.
  • Xiang R, Zhang QP, Zhang W, et al. Different effects of allergic rhinitis on nasal mucosa remodeling in chronic rhinosinusitis with and without nasal polyps. Eur Arch Otorhinolaryngol. 2019 Jan;276(1):115–130.
  • Mudd PA, Katial RK, Alam R, et al. Variations in expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in nasal mucosa of aspirin-sensitive versus aspirin-tolerant patients with nasal polyposis. Ann Allergy Asthma Immunol. 2011 Oct;107(4):353–359.
  • Yeo NK, Eom DW, Oh MY, et al. Expression of matrix metalloproteinase 2 and 9 and tissue inhibitor of metalloproteinase 1 in nonrecurrent vs recurrent nasal polyps. Ann Allergy Asthma Immunol. 2013 Sep;111(3):205–210.
  • Liu Z, Liu H, Yu D, et al. Downregulation of miR‑29b‑3p promotes α‑tubulin deacetylation by targeting the interaction of matrix metalloproteinase‑9 with integrin β1 in nasal polyps. Int J Mol Med. 2021 Jul;48(1):126.
  • Tsuda T, Maeda Y, Nishide M, et al. Eosinophil-derived neurotoxin enhances airway remodeling in eosinophilic chronic rhinosinusitis and correlates with disease severity. Int Immunol. 2019 Feb 6;31(1):33–40. doi: 10.1093/intimm/dxy061
  • Li X, Huang J, Chen X, et al. IL-19 induced by IL-13/IL-17A in the nasal epithelium of patients with chronic rhinosinusitis upregulates MMP-9 expression via ERK/NF-κB signaling pathway. Clin Transl Allergy. 2021 Mar;11(1):e12003.
  • Liang Y, Yang N, Pan G, et al. Elevated IL-33 promotes expression of MMP2 and MMP9 via activating STAT3 in alveolar macrophages during LPS-induced acute lung injury. Cell Mol Biol Lett. 2018;23(1):52. doi: 10.1186/s11658-018-0117-x
  • Park SK, Jin SY, Yeon SH, et al. Role of Toll-like receptor 9 signaling on activation of nasal polyp-derived fibroblasts and its association with nasal polypogenesis. Int Forum Allergy Rhinol. 2018 Sep;8(9):1001–1012.
  • Kanai K, Asano K, Hisamitsu T, et al. Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro. Mediators Inflamm. 2004 Dec;13(5–6):313–319.
  • Zeng M, Li ZY, Ma J, et al. Clarithromycin and dexamethasone show similar anti-inflammatory effects on distinct phenotypic chronic rhinosinusitis: an explant model study. BMC Immunol. 2015 Jun 6;16(1):37. doi: 10.1186/s12865-015-0096-x
  • Van Zele T, Gevaert P, Holtappels G, et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol. 2010 May;125(5):1069–1076.e4.
  • Murdaca G, Paladin F, Gangemi S. Role of vitamin D in the clinical course of nasal polyposis. Biomedicines. 2021 Jul 21;9(8):855. doi: 10.3390/biomedicines9080855
  • Park SK, Jin YD, Park YK, et al. IL-25-induced activation of nasal fibroblast and its association with the remodeling of chronic rhinosinusitis with nasal polyposis. PLoS One. 2017;12(8):e0181806. doi: 10.1371/journal.pone.0181806
  • Homma T, Kato A, Sakashita M, et al. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors. Am J Respir Cell Mol Biol. 2015 Apr;52(4):471–481.
  • Mittal R, Patel AP, Debs LH, et al. Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol. 2016 Dec;231(12):2599–2621.
  • Nwomeh BC, Liang HX, Cohen IK, et al. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res. 1999 Feb;81(2):189–195.
  • Nakamura H, Fujii Y, Ohuchi E, et al. Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur J Biochem. 1998 Apr 1;253(1):67–75. doi: 10.1046/j.1432-1327.1998.2530067.x
  • Kostamo K, Sorsa T, Leino M, et al. In vivo relationship between collagenase-2 and interleukin-8 but not tumour necrosis factor-alpha in chronic rhinosinusitis with nasal polyposis. Allergy. 2005 Oct;60(10):1275–1279.
  • Wang C, Lou H, Wang X, et al. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2015 Apr;135(4):922–929.e6. doi: 10.1016/j.jaci.2014.10.018
  • Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007 Jan;87(1):69–98. doi: 10.1152/physrev.00022.2006
  • Xiao Y, Lian H, Zhong XS, et al. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein claudin-7. Front Immunol. 2022;13:1020902. doi: 10.3389/fimmu.2022.1020902
  • Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)sars. Bioorg Med Chem. 2007 Mar 15;15(6):2223–2268. doi: 10.1016/j.bmc.2007.01.011
  • Makino A, Shibata T, Nagayasu M, et al. RSV infection-elicited high MMP-12-producing macrophages exacerbate allergic airway inflammation with neutrophil infiltration. iScience. 2021 Oct 22;24(10):103201. doi: 10.1016/j.isci.2021.103201
  • Kostamo K, Tervahartiala T, Sorsa T, et al. Metalloproteinase function in chronic rhinosinusitis with nasal polyposis. Laryngoscope. 2007 Apr;117(4):638–643.
  • Gong X, Han Z, Fan H, et al. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol. 2023;14:1238673. doi: 10.3389/fimmu.2023.1238673
  • Yao Y, Xie S, Yang C, et al. Biomarkers in the evaluation and management of chronic rhinosinusitis with nasal polyposis. Eur Arch Otorhinolaryngol. 2017 Oct;274(10):3559–3566.
  • Lygeros S, Danielides G, Kyriakopoulos GC, et al. Profili dell’espressione di MMP-9 e EMMPRIN nella rinosinusite cronica con poliposi nasali. Acta Otorhinolaryngol Ital. 2023 Jul 28;43(6):400–408. Online ahead of print. doi: 10.14639
  • Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021 Dec;288(24):7162–7182. doi: 10.1111/febs.15701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.