135
Views
0
CrossRef citations to date
0
Altmetric
Review

Why does malaise/fatigue occur? Underlying mechanisms and potential relevance to treatments in rheumatoid arthritis

ORCID Icon, , , &
Pages 485-499 | Received 13 Aug 2023, Accepted 12 Jan 2024, Published online: 19 Jan 2024

References

  • Matura LA, Malone S, Jaime-Lara R, et al. A systematic review of biological mechanisms of fatigue in chronic illness. Biol Res Nurs. 2018;20(4):410–421.
  • Primdahl J, Hegelund A, Lorenzen AG, et al. The experience of people with rheumatoid arthritis living with fatigue: a qualitative metasynthesis. BMJ Open. 2019;9(3):e024338. doi: 10.1136/bmjopen-2018-024338
  • Druce KL, Basu N. Predictors of fatigue in rheumatoid arthritis. Rheumatology (Oxford). 2019;58(Suppl 5):v29–v34. doi: 10.1093/rheumatology/kez346
  • Flensner G, Landtblom AM, Soderhamn O, et al. Work capacity and health-related quality of life among individuals with multiple sclerosis reduced by fatigue: a cross-sectional study. BMC Public Health. 2013;13(1):224. doi: 10.1186/1471-2458-13-224
  • Jaime-Lara RB, Koons BC, Matura LA, et al. A qualitative metasynthesis of the experience of fatigue across five chronic conditions. J Pain Symptom Manage. 2020;59(6):1320–1343. doi: 10.1016/j.jpainsymman.2019.12.358
  • Ifesemen OS, McWilliams DF, Norton S, et al. Fatigue in early rheumatoid arthritis: data from the early rheumatoid arthritis network. Rheumatology (Oxford). 2022;61(9):3737–3745. doi: 10.1093/rheumatology/keab947
  • Hewlett S, Cockshott Z, Byron M, et al. Patients’ perceptions of fatigue in rheumatoid arthritis: overwhelming, uncontrollable, ignored. Arthritis Rheum. 2005;53(5):697–702. doi: 10.1002/art.21450
  • Repping-Wuts H, Uitterhoeve R, van Riel P, et al. Fatigue as experienced by patients with rheumatoid arthritis (RA): a qualitative study. Int J Nurs Stud. 2008;45(7):995–1002. doi: 10.1016/j.ijnurstu.2007.06.007
  • Ward MM, Guthrie LC, Dasgupta A. Direct and indirect determinants of the patient global assessment in rheumatoid arthritis: differences by level of disease activity. Arthritis Care Res (Hoboken). 2017;69(3):323–329. doi: 10.1002/acr.22953
  • Lee HJ, Pok LSL, Ng CM, et al. Fatigue and associated factors in a multi-ethnic cohort of rheumatoid arthritis patients. Int J Rheum Dis. 2020;23(8):1088–1093. doi: 10.1111/1756-185X.13897
  • Cho SK, Sung YK, Choi CB, et al. What factors affect discordance between physicians and patients in the global assessment of disease activity in rheumatoid arthritis? Mod Rheumatol. 2017;27(1):35–41. doi: 10.1080/14397595.2016.1176310
  • Davies K, Dures E, Ng WF. Fatigue in inflammatory rheumatic diseases: current knowledge and areas for future research. Nat Rev Rheumatol. 2021;17(11):651–664. doi: 10.1038/s41584-021-00692-1
  • Manjaly ZM, Harrison NA, Critchley HD, et al. Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(6):642–651. doi: 10.1136/jnnp-2018-320050
  • Pope JE. Management of fatigue in rheumatoid arthritis. RMD Open. 2020;6(1):e001084. doi: 10.1136/rmdopen-2019-001084
  • Azizoddin DR, Gandhi N, Weinberg S, et al. Fatigue in systemic lupus: the role of disease activity and its correlates. Lupus. 2019;28(2):163–173. doi: 10.1177/0961203318817826
  • Dures E, Cramp F, Hackett K, et al. Fatigue in inflammatory arthritis. Best Pract Res Clin Rheumatol. 2020;34(2):101526. doi: 10.1016/j.berh.2020.101526
  • Korte SM, Straub RH. Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology (Oxford). 2019;58(Suppl 5):v35–v50.
  • Borren NZ, van der Woude CJ, Ananthakrishnan AN. Fatigue in IBD: epidemiology, pathophysiology and management. Nat Rev Gastroenterol Hepatol. 2019;16(4):247–259. doi: 10.1038/s41575-018-0091-9
  • Krajewska-Wlodarczyk M, Owczarczyk-Saczonek A, Placek W. Fatigue - an underestimated symptom in psoriatic arthritis. Reumatologia. 2017;55(3):125–130. doi: 10.5114/reum.2017.68911
  • Nocerino A, Nguyen A, Agrawal M, et al. Fatigue in inflammatory bowel diseases: etiologies and management. Adv Ther. 2020;37(1):97–112. doi: 10.1007/s12325-019-01151-w
  • Seifert O, Baerwald C. Impact of fatigue on rheumatic diseases. Best Pract Res Clin Rheumatol. 2019;33(3):101435. doi: 10.1016/j.berh.2019.101435
  • Dey M, Parodis I, Nikiphorou E. Fatigue in systemic lupus erythematosus and rheumatoid arthritis: a comparison of mechanisms, measures and management. J Clin Med. 2021;10(16):3566. doi: 10.3390/jcm10163566
  • van Erp S, Ercan E, Breedveld P, et al. Cerebral magnetic resonance imaging in quiescent crohn’s disease patients with fatigue. World J Gastroenterol. 2017;23(6):1018–1029. doi: 10.3748/wjg.v23.i6.1018
  • Maeland E, Miyamoto ST, Hammenfors D, et al. Understanding fatigue in sjogren’s syndrome: outcome measures, biomarkers and possible interventions. Front Immunol. 2021;12:703079. doi: 10.3389/fimmu.2021.703079
  • Zielinski MR, Systrom DM, Rose NR. Fatigue, sleep, and autoimmune and related disorders. Front Immunol. 2019;10:1827.
  • Davies K, Mirza K, Tarn J, et al. Fatigue in primary sjogren’s syndrome (pSS) is associated with lower levels of proinflammatory cytokines: a validation study. Rheumatol Int. 2019;39(11):1867–1873. doi: 10.1007/s00296-019-04354-0
  • Silva CFR, Duarte C, Ferreira RJO, et al. Depression, disability and sleep disturbance are the main explanatory factors of fatigue in rheumatoid arthritis: a path analysis model. Clin Exp Rheumatol. 2020;38(2):314–321. doi: 10.55563/clinexprheumatol/hkhbad
  • Koh JH, Kwok SK, Lee J, et al. Autonomic dysfunction in primary sjogren’s syndrome: a prospective cohort analysis of 154 Korean patients. Korean J Intern Med. 2017;32(1):165–173. doi: 10.3904/kjim.2015.219
  • Malkova AM, Shoenfeld Y. Autoimmune autonomic nervous system imbalance and conditions: chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmun Rev. 2023;22(1):103230. doi: 10.1016/j.autrev.2022.103230
  • Han CJ, Jarrett ME, Cain KC, et al. Association of fatigue with TPH2 genetic polymorphisms in women with irritable bowel syndrome. Biol Res Nurs. 2019;21(1):72–79. doi: 10.1177/1099800418806055
  • Marinoska T, Mockel T, Triantafyllias K, et al. NMDA receptors in health and diseases: new roles and signaling pathways - anti-N-methyl-D-aspartate receptor (NMDAR) autoantibodies as potential biomarkers of fatigue in patients with rheumatic diseases. Int J Mol Sci. 2023;24(4):3560. doi: 10.3390/ijms24043560
  • Ayache SS, Chalah MA. Fatigue in multiple sclerosis - insights into evaluation and management. Neurophysiol Clin. 2017;47(2):139–171. doi: 10.1016/j.neucli.2017.02.004
  • Ayache SS, Chalah MA. Fatigue in multiple sclerosis: pathophysiology and emergent interventions. Arch Ital Biol. 2018;156(4):149–152. doi: 10.12871/00039829201841
  • Penner IK, Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nat Rev Neurol. 2017;13(11):662–675. doi: 10.1038/nrneurol.2017.117
  • Ormstad H, Simonsen CS, Broch L, et al. Chronic fatigue and depression due to multiple sclerosis: immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Mult Scler Relat Disord. 2020;46:102533. doi: 10.1016/j.msard.2020.102533
  • Langeskov-Christensen M, Bisson EJ, Finlayson ML, et al. Potential pathophysiological pathways that can explain the positive effects of exercise on fatigue in multiple sclerosis: a scoping review. J Neurol Sci. 2017;373:307–320. doi: 10.1016/j.jns.2017.01.002
  • Wang H, Liu Y, Zhao J, et al. Possible inflammatory mechanisms and predictors of parkinson’s disease patients with fatigue (brief review). Clin Neurol Neurosur. 2021;208:106844. doi: 10.1016/j.clineuro.2021.106844
  • Akcali A, Zengin F, Aksoy SN, et al. Fatigue in multiple sclerosis: is it related to cytokines and hypothalamic-pituitary-adrenal axis? Mult Scler Relat Disord. 2017;15:37–41. doi: 10.1016/j.msard.2017.03.004
  • Melief J, Huitinga I, Gold SM. The stress-axis in multiple sclerosis: Clinical, cellular, and molecular aspects. Handb Clin Neurol. 2021;181:119–126.
  • Sander C, Modes F, Schlake HP, et al. Capturing fatigue parameters: the impact of vagal processing in multiple sclerosis related cognitive fatigue. Mult Scler Relat Disord. 2019;32:13–18. doi: 10.1016/j.msard.2019.04.013
  • De Doncker W, Dantzer R, Ormstad H, et al. Mechanisms of poststroke fatigue. J Neurol Neurosurg Psychiatry. 2018;89(3):287–293. doi: 10.1136/jnnp-2017-316007
  • Rzepinski L, Zawadka-Kunikowska M, Newton JL, et al. Cardiovascular autonomic dysfunction in multiple sclerosis - findings and relationships with clinical outcomes and fatigue severity. Neurol Sci. 2022;43(8):4829–4839. doi: 10.1007/s10072-022-06099-4
  • Kluger BM. Fatigue in Parkinson’s disease. Int Rev Neurobiol. 2017;133:743–768.
  • Nassif DV, Pereira JS. Fatigue in parkinson’s disease: concepts and clinical approach. Psychogeriatrics. 2018;18(2):143–150. doi: 10.1111/psyg.12302
  • Pauletti C, Mannarelli D, Locuratolo N, et al. Serotonergic central tone in parkinson’s disease with fatigue: evidence from the loudness dependence of auditory evoked potentials (LDAEP). Neurosci Lett. 2021;764:136242. doi: 10.1016/j.neulet.2021.136242
  • Carandini T, Mancini M, Bogdan I, et al. Disruption of brainstem monoaminergic fibre tracts in multiple sclerosis as a putative mechanism for cognitive fatigue: a fixel-based analysis. NeuroImage Clin. 2021;30:102587. doi: 10.1016/j.nicl.2021.102587
  • Cercignani M, Dipasquale O, Bogdan I, et al. Cognitive fatigue in multiple sclerosis is associated with alterations in the functional connectivity of monoamine circuits. Brain Commun. 2021;3(2):fcab023. doi: 10.1093/braincomms/fcab023
  • Carandini T, Cercignani M, Galimberti D, et al. The distinct roles of monoamines in multiple sclerosis: a bridge between the immune and nervous systems? Brain Behav Immun. 2021;94:381–391. doi: 10.1016/j.bbi.2021.02.030
  • Azzolino D, Arosio B, Marzetti E, et al. Nutritional status as a mediator of fatigue and its underlying mechanisms in older people. Nutrients. 2020;12(2):444. doi: 10.3390/nu12020444
  • Gerber LH, Weinstein AA, Mehta R, et al. Importance of fatigue and its measurement in chronic liver disease. World J Gastroenterol. 2019;25(28):3669–3683. doi: 10.3748/wjg.v25.i28.3669
  • Hackney AJ, Klinedinst NJ, Resnick B, et al. A review and synthesis of correlates of fatigue in osteoarthritis. Int J Orthop Trauma Nurs. 2019;33:4–10. doi: 10.1016/j.ijotn.2019.01.003
  • Kawada T. Chronic obstructive pulmonary disease, sleep apnea and fatigues. Clin Respir J. 2018;12(9):2459. doi: 10.1111/crj.12949
  • Spruit MA, Vercoulen JH, Sprangers MAG, et al. Fatigue in COPD: an important yet ignored symptom. Lancet Respir Med. 2017;5(7):542–544. doi: 10.1016/S2213-2600(17)30158-3
  • Masel BE, Zgaljardic DJ, Forman J. Post-traumatic hypopituitarism and fatigue. Neuropsychol Rehabil. 2017;27(7):1071–1079. doi: 10.1080/09602011.2015.1125374
  • Zhou Y. Abnormal structural and functional hypothalamic connectivity in mild traumatic brain injury. J Magn Reson Imaging. 2017;45(4):1105–1112. doi: 10.1002/jmri.25413
  • Souron R, Morel J, Gergele L, et al. Relationship between intensive care unit-acquired weakness, fatigability and fatigue: what role for the central nervous system? J Crit Care. 2021;62:101–110. doi: 10.1016/j.jcrc.2020.11.019
  • Boberg E, Iacobaeus E, Greenfield MS, et al. Reduced prefrontal cortex and sympathetic nervous system activity correlate with fatigue after aHSCT. Bone Marrow Transplant. 2022;57(3):360–369. doi: 10.1038/s41409-021-01539-9
  • Bower JE. The role of neuro-immune interactions in cancer-related fatigue: biobehavioral risk factors and mechanisms. Cancer. 2019;125(3):353–364. doi: 10.1002/cncr.31790
  • Kolak A, Kaminska M, Wysokinska E, et al. The problem of fatigue in patients suffering from neoplastic disease. Contemp Oncol (Pozn). 2017;21(2):131–135. doi: 10.5114/wo.2017.68621
  • Paulsen O, Laird B, Aass N, et al. The relationship between pro-inflammatory cytokines and pain, appetite and fatigue in patients with advanced cancer. PLoS One. 2017;12(5):e0177620. doi: 10.1371/journal.pone.0177620
  • Xiao C, Miller AH, Felger J, et al. Depressive symptoms and inflammation are independent risk factors of fatigue in breast cancer survivors. Psychol Med. 2017;47(10):1733–1743. doi: 10.1017/S0033291717000150
  • van Roekel EH, Bours MJL, Breukink SO, et al. Longitudinal associations of plasma metabolites with persistent fatigue among colorectal cancer survivors up to 2 years after treatment. Int J Cancer. 2023;152(2):214–226. doi: 10.1002/ijc.34252
  • Klysiak M, Wieder-Huszla S, Branecka-Wozniak D, et al. Analysis of the occurrence of predicative factors of chronic fatigue in female patients with cancer of the reproductive organs with respect to stage of treatment. Int J Environ Res Public Health. 2023;20(4):3732. doi: 10.3390/ijerph20043732
  • Joly F, Lange M, Dos Santos M, et al. Long-term fatigue and cognitive disorders in breast cancer survivors. Cancers (Basel). 2019;11(12):1896. doi: 10.3390/cancers11121896
  • O’Higgins CM, Brady B, O’Connor B, et al. The pathophysiology of cancer-related fatigue: current controversies. Support Care Cancer. 2018;26(10):3353–3364. doi: 10.1007/s00520-018-4318-7
  • Yang S, Chu S, Gao Y, et al. A narrative review of cancer-related fatigue (CRF) and its possible pathogenesis. Cells. 2019;8(7):738. doi: 10.3390/cells8070738
  • Rusin A, Seymour C, Cocchetto A, et al. Commonalities in the features of cancer and chronic fatigue syndrome (CFS): evidence for stress-induced phenotype instability? Int J Mol Sci. 2022;23(2):691. doi: 10.3390/ijms23020691
  • Kumar NB, Fink A, Levis S, et al. Thyroid function in the etiology of fatigue in breast cancer. Oncotarget. 2018;9(39):25723–25737. doi: 10.18632/oncotarget.25438
  • Russell A, Hepgul N, Nikkheslat N, et al. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology. 2019;100:276–285. doi: 10.1016/j.psyneuen.2018.11.032
  • Montoya JG, Holmes TH, Anderson JN, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci U S A. 2017;114(34):E7150–E7158. doi: 10.1073/pnas.1710519114
  • Lv Y, Zhang T, Cai J, et al. Bioinformatics and systems biology approach to identify the pathogenetic link of long COVID and myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol. 2022;13:952987. doi: 10.3389/fimmu.2022.952987
  • Tate WP, Walker MOM, Peppercorn K, et al. Towards a better understanding of the complexities of myalgic encephalomyelitis/chronic fatigue syndrome and long COVID. Int J Mol Sci. 2023;24(6):5124. doi: 10.3390/ijms24065124
  • Lutz L, Rohrhofer J, Zehetmayer S, et al. Evaluation of immune dysregulation in an Austrian patient cohort suffering from myalgic encephalomyelitis/chronic fatigue syndrome. Biomolecules. 2021;11(9):1359. doi: 10.3390/biom11091359
  • Maya J, Leddy SM, Gottschalk CG, et al. Altered fatty acid oxidation in lymphocyte populations of myalgic encephalomyelitis/chronic fatigue syndrome. Int J Mol Sci. 2023;24(3):2010. doi: 10.3390/ijms24032010
  • Kavyani B, Lidbury BA, Schloeffel R, et al. Could the kynurenine pathway be the key missing piece of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) complex puzzle? Cell Mol Life Sci. 2022;79(8):412. doi: 10.1007/s00018-022-04380-5
  • Morris G, Anderson G, Maes M. Hypothalamic-pituitary-adrenal hypofunction in myalgic encephalomyelitis (me)/chronic fatigue syndrome (CFS) as a consequence of activated immune-inflammatory and oxidative and nitrosative pathways. Mol Neurobiol. 2017;54(9):6806–6819. doi: 10.1007/s12035-016-0170-2
  • Bjorklund G, Dadar M, Pivina L, et al. Environmental, neuro-immune, and neuro-oxidative stress interactions in chronic fatigue syndrome. Mol Neurobiol. 2020;57(11):4598–4607. doi: 10.1007/s12035-020-01939-w
  • Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med. 2021;27(9):895–906. doi: 10.1016/j.molmed.2021.06.002
  • de Vega WC, Herrera S, Vernon SD, et al. Epigenetic modifications and glucocorticoid sensitivity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). BMC Med Genomics. 2017;10(1):11. doi: 10.1186/s12920-017-0248-3
  • De Bellis A, Bellastella G, Pernice V, et al. Hypothalamic-pituitary autoimmunity and related impairment of hormone secretions in chronic fatigue syndrome. J Clin Endocrinol Metab. 2021;106(12):e5147–e5155. doi: 10.1210/clinem/dgab429
  • Murga Gandasegui I, Aranburu Laka L, Gargiulo PA, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: a neurological entity? Medicina (Kaunas). 2021;57(10):1030. doi: 10.3390/medicina57101030
  • Sherif ZA, Gomez CR, Connors TJ, et al. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023;12:e86002. doi: 10.7554/eLife.86002
  • Maamar M, Artime A, Pariente E, et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin. 2022n;38(6):901–909. doi: 10.1080/03007995.2022.2042991
  • Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis. 2021;53(10):737–754. doi: 10.1080/23744235.2021.1924397
  • Al-Hakeim HK, Al-Rubaye HT, Al-Hadrawi DS, et al. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study. Mol Psychiatry. 2023;28(2):564–578. doi: 10.1038/s41380-022-01836-9
  • Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, et al. Pathophysiology of post-COVID syndromes: a new perspective. Virol J. 2022;19(1):158. doi: 10.1186/s12985-022-01891-2
  • Walitt B, Johnson TP. The pathogenesis of neurologic symptoms of the postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Neurol. 2022;35(3):384–391. doi: 10.1097/WCO.0000000000001051
  • Yavropoulou MP, Tsokos GC, Chrousos GP, et al. Protracted stress-induced hypocortisolemia may account for the clinical and immune manifestations of long COVID. Clin Immunol. 2022;245:109133. doi: 10.1016/j.clim.2022.109133
  • Dotan A, David P, Arnheim D, et al. The autonomic aspects of the post-COVID19 syndrome. Autoimmun Rev. 2022;21(5):103071. doi: 10.1016/j.autrev.2022.103071
  • Roerink ME, van der Schaaf ME, Dinarello CA, et al. Interleukin-1 as a mediator of fatigue in disease: a narrative review. J Neuroinflammation. 2017;14(1):16. doi: 10.1186/s12974-017-0796-7
  • Yang X, Li F, Ma J, et al. Study on the relationship between the miRNA-centered ceRNA regulatory network and fatigue. J Mol Neurosci. 2021;71(10):1967–1974. doi: 10.1007/s12031-021-01845-3
  • Omdal R. The biological basis of chronic fatigue: neuroinflammation and innate immunity. Curr Opin Neurol. 2020;33(3):391–396. doi: 10.1097/WCO.0000000000000817
  • Yamashita M. Potential role of neuroactive tryptophan metabolites in central fatigue: establishment of the fatigue circuit. Int J Tryptophan Res. 2020;13:1178646920936279. doi: 10.1177/1178646920936279
  • Deary V, Hagenaars SP, Harris SE, et al. Genetic contributions to self-reported tiredness. Mol Psychiatry. 2018;23(3):609–620. doi: 10.1038/mp.2017.5
  • Eshragh J, Dhruva A, Paul SM, et al. Associations between neurotransmitter genes and fatigue and energy levels in women after breast cancer surgery. J Pain Symptom Manage. 2017;53(1):67–84. doi: 10.1016/j.jpainsymman.2016.08.004
  • Vergaelen E, Claes S, Kempke S, et al. High prevalence of fatigue in adults with a 22q11.2 deletion syndrome. Am J Med Genet A. 2017;173(4):858–867. doi: 10.1002/ajmg.a.38094
  • Das S, Taylor K, Kozubek J, et al. Genetic risk factors for ME/CFS identified using combinatorial analysis. J Transl Med. 2022;20(1):598. doi: 10.1186/s12967-022-03815-8
  • Proschinger S, Freese J. Neuroimmunological and neuroenergetic aspects in exercise-induced fatigue. Exerc Immunol Rev. 2019;25:8–19.
  • Hemmatzadeh M, Ahangar Parvin E, Mohammadi H, et al. The role of immune regulatory molecules in rheumatoid arthritis: implication for etiopathogenesis and prospective for treatment. J Cell Physiol. 2022;237(9):3541–3553. doi: 10.1002/jcp.30855
  • Miller WL. The hypothalamic-pituitary-adrenal axis: a brief history. Horm Res Paediatr. 2018;89(4):212–223. doi: 10.1159/000487755
  • Wolff ASB, Kucuka I, Oftedal BE. Autoimmune primary adrenal insufficiency - current diagnostic approaches and future perspectives. Front Endocrinol. 2023;14:1285901. doi: 10.3389/fendo.2023.1285901
  • Martin-Grace J, Dineen R, Sherlock M, et al. Adrenal insufficiency: Physiology, clinical presentation and diagnostic challenges. Clin Chim Acta. 2020;505:78–91. doi: 10.1016/j.cca.2020.01.029
  • van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J Autoimmun. 2020;110:102392. doi: 10.1016/j.jaut.2019.102392
  • Hanly JG, Lethbridge L. Use of disease-modifying antirheumatic drugs, biologics, and corticosteroids in older patients with rheumatoid arthritis over 20 years. J Rheumatol. 2021;48(7):977–984. doi: 10.3899/jrheum.200310
  • Bhatt S, Kanoujia J, Mohanalakshmi S, et al. Role of brain-gut-microbiota axis in depression: Emerging therapeutic avenues. CNS Neurol Disord Drug Targets. 2022;22(2):276–288. doi: 10.2174/1871527321666220329140804
  • Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340. doi: 10.1016/j.smrv.2020.101340
  • Morita-Tanaka S, Yamada T, Takayama K. The landscape of cancer cachexia in advanced non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12(1):168–180. doi: 10.21037/tlcr-22-561
  • Kanda E. Nutritional management in elderly CKD patients in Japan. J Nutr Sci Vitaminol (Tokyo). 2022;68(Supplement):S76–S77. doi: 10.3177/jnsv.68.S76
  • Montes-Ibarra M, Oliveira CLP, Orsso CE, et al. The impact of long COVID-19 on muscle health. Clin Geriatr Med. 2022;38(3):545–557. doi: 10.1016/j.cger.2022.03.004
  • Tosato M, Ciciarello F, Zazzara MB, et al. Nutraceuticals and dietary supplements for older adults with long COVID-19. Clin Geriatr Med. 2022;38(3):565–591. doi: 10.1016/j.cger.2022.04.004
  • Rossato MS, Brilli E, Ferri N, et al. Observational study on the benefit of a nutritional supplement, supporting immune function and energy metabolism, on chronic fatigue associated with the SARS-CoV-2 post-infection progress. Clin Nutr ESPEN. 2021;46:510–518. doi: 10.1016/j.clnesp.2021.08.031
  • Ertas Ozturk Y, Helvaci EM, Sokulmez Kaya P, et al. Is Mediterranean diet associated with multiple sclerosis related symptoms and fatigue severity? Nutr Neurosci. 2023;26(3):228–234. doi: 10.1080/1028415X.2022.2034241
  • Kleckner AS, Culakova E, Kleckner IR, et al. Nutritional status predicts fatty acid uptake from fish and soybean oil supplements for treatment of cancer-related fatigue: results from a phase II nationwide study. Nutrients. 2021;14(1):184. doi: 10.3390/nu14010184
  • Filippa MG, Tektonidou MG, Mantzou A, et al. Adrenocortical dysfunction in rheumatoid arthritis: a narrative review and future directions. Eur J Clin Invest. 2022;52(1):e13635. doi: 10.1111/eci.13635
  • Ghavidel-Parsa B, Bidari A. The crosstalk of the pathophysiologic models in fibromyalgia. Clin Rheumatol. 2023;42(12):3177–3187. doi: 10.1007/s10067-023-06778-3
  • Falco P, Galosi E, Di Stefano G, et al. Autonomic small-fiber pathology in patients with fibromyalgia. J Pain. 2023;25(1):64–72. doi: 10.1016/j.jpain.2023.07.020
  • On AY, Tanigor G, Baydar DA. Relationships of autonomic dysfunction with disease severity and neuropathic pain features in fibromyalgia: is it really a sympathetically maintained neuropathic pain? Korean J Pain. 2022;35(3):327–335. doi: 10.3344/kjp.2022.35.3.327
  • Zhao SS, Duffield SJ, Goodson NJ. The prevalence and impact of comorbid fibromyalgia in inflammatory arthritis. Best Pract Res Clin Rheumatol. 2019;33(3):101423. doi: 10.1016/j.berh.2019.06.005
  • Molero-Chamizo A, Nitsche MA, Bolz A, et al. Non-invasive transcutaneous vagus nerve stimulation for the treatment of fibromyalgia symptoms: a study protocol. Brain Sci. 2022;12(1):95. doi: 10.3390/brainsci12010095
  • Badran BW, Huffman SM, Dancy M, et al. A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Bioelectron Med. 2022;8(1):13. doi: 10.1186/s42234-022-00094-y
  • Aranow C, Atish-Fregoso Y, Lesser M, et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Ann Rheum Dis. 2021;80(2):203–208. doi: 10.1136/annrheumdis-2020-217872
  • Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261–72. doi: 10.1089/jmf.2014.7000
  • Mediavilla C. Bidirectional gut-brain communication: a role for orexin-A. Neurochem Int. 2020;141:104882. doi: 10.1016/j.neuint.2020.104882
  • Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology. 2022;47(1):309–328. doi: 10.1038/s41386-021-01100-8
  • Perez-Caballero L, Torres-Sanchez S, Romero-Lopez-Alberca C, et al. Monoaminergic system and depression. Cell Tissue Res. 2019;377(1):107–113. doi: 10.1007/s00441-018-2978-8
  • Li R, Dai Z, Hu D, et al. Mapping the alterations of glutamate using Glu-weighted CEST MRI in a rat model of fatigue. Front Neurol. 2020;11:589128. doi: 10.3389/fneur.2020.589128
  • Wiehler A, Branzoli F, Adanyeguh I, et al. A neuro-metabolic account of why daylong cognitive work alters the control of economic decisions. Curr Biol. 2022;32(16):3564–3575. doi: 10.1016/j.cub.2022.07.010
  • Haghighi S, Forsmark S, Zachrisson O, et al. Open-label study with the monoamine stabilizer (-)-OSU6162 in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav. 2021;11(4):e02040. doi: 10.1002/brb3.2040
  • Richman S, Morris MC, Broderick G, et al. Pharmaceutical interventions in chronic fatigue syndrome: a literature-based commentary. Clin Ther. 2019;41(5):798–805. doi: 10.1016/j.clinthera.2019.02.011
  • Fudin NA, Khadartsev AA, Moskvin SV. Transcranial electrostimulation and serotonin laser phoresis in the athletes experiencing a combined effect of fatigue and psycho-emotional stress. Vopr Kurortol Fizioter Lech Fiz Kult. 2019;96(1):37–42. doi: 10.17116/kurort20199601137
  • Holton KF, Kirkland AE, Baron M, et al. The low glutamate diet effectively improves pain and other symptoms of gulf war illness. Nutrients. 2020;12(9):2593. doi: 10.3390/nu12092593
  • Rottoli M, La Gioia S, Frigeni B, et al. Pathophysiology, assessment and management of multiple sclerosis fatigue: an update. Expert Rev Neurother. 2017;17(4):373–379. doi: 10.1080/14737175.2017.1247695
  • Wong TL, Weitzer DJ. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-A systemic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas). 2021;57(5):418. doi: 10.3390/medicina57050418
  • Thomas M. The fatigue-related symptoms post-acute SARS-CoV-2: a preliminary comparative study. Int J Environ Res Public Health. 2022;19(18):11662. doi: 10.3390/ijerph191811662
  • Margalit I, Yelin D, Sagi M, et al. Risk factors and multidimensional assessment of long coronavirus disease fatigue: a nested case-control study. Clin Infect Dis. 2022;75(10):1688–1697. doi: 10.1093/cid/ciac283
  • Rudroff T, Fietsam AC, Deters JR, et al. Post-COVID-19 fatigue: potential contributing factors. Brain Sci. 2020;10(12):1012. doi: 10.3390/brainsci10121012
  • Chee YJ, Fan BE, Young BE, et al. Clinical trials on the pharmacological treatment of long COVID: a systematic review. J Med Virol. 2023;95(1):e28289. doi: 10.1002/jmv.28289
  • Fawzy NA, Abou Shaar B, Taha RM, et al. A systematic review of trials currently investigating therapeutic modalities for post-acute COVID-19 syndrome and registered on WHO international clinical trials platform. Clin Microbiol Infect. 2023;29(5):S1198–743X(23)00009–5. doi: 10.1016/j.cmi.2023.01.007
  • Sandler CX, Lloyd AR. Chronic fatigue syndrome: progress and possibilities. Med J Aust. 2020;212(9):428–433. doi: 10.5694/mja2.50553
  • Almeida C, Choy EH, Hewlett S, et al. Biologic interventions for fatigue in rheumatoid arthritis. Cochrane Database Syst Rev. 2016;6(6):CD008334. doi: 10.1002/14651858.CD008334.pub2
  • Chauffier K, Salliot C, Berenbaum F, et al. Effect of biotherapies on fatigue in rheumatoid arthritis: a systematic review of the literature and meta-analysis. Rheumatology (Oxford). 2012;51(1):60–68. doi: 10.1093/rheumatology/ker162
  • Burmester GR, Kaeley GS, Kavanaugh AF, et al. Treatment efficacy and methotrexate-related toxicity in patients with rheumatoid arthritis receiving methotrexate in combination with adalimumab. RMD Open. 2017;3(2):e000465. doi: 10.1136/rmdopen-2017-000465
  • Curtis JR, Xie F, Mackey D, et al. Patient’s experience with subcutaneous and oral methotrexate for the treatment of rheumatoid arthritis. BMC Musculoskelet Disord. 2016;17(1):405. doi: 10.1186/s12891-016-1254-x
  • Nowell WB, Karis E, Gavigan K, et al. Patient-reported nausea and fatigue related to methotrexate: a prospective, self-controlled study in the ArthritisPower(R) registry. Rheumatol Ther. 2022;9(1):207–221. doi: 10.1007/s40744-021-00398-6
  • Holdren M, Schieir O, Bartlett SJ, et al. Improvements in fatigue lag behind disease remission in early rheumatoid arthritis: results from the Canadian early arthritis cohort. Arthritis Rheumat. 2021;73(1):53–60. doi: 10.1002/art.41499
  • Choy EH. Effect of biologics and targeted synthetic disease-modifying anti-rheumatic drugs on fatigue in rheumatoid arthritis. Rheumatology (Oxford). 2019 Nov 1;58(Suppl 5):v51–v55.
  • Wysocki T, Paradowska-Gorycka A. Pharmacogenomics of anti-TNF treatment response marks a new era of tailored rheumatoid arthritis therapy. Int J Mol Sci. 2022;23(4):2366. doi: 10.3390/ijms23042366
  • Abu-Shakra M, Zisman D, Balbir-Gurman A, et al. Effect of tocilizumab on fatigue and bone mineral density in patients with rheumatoid arthritis. Isr Med Assoc J. 2018;20(4):239–244.
  • Strand V, Reaney M, Chen CI, et al. Sarilumab improves patient-reported outcomes in rheumatoid arthritis patients with inadequate response/intolerance to tumour necrosis factor inhibitors. RMD Open. 2017;3(1):e000416. doi: 10.1136/rmdopen-2016-000416
  • Corominas H, Alegre C, Narvaez J, et al. Correlation of fatigue with other disease related and psychosocial factors in patients with rheumatoid arthritis treated with tocilizumab: ACT-AXIS study. Medicine (Baltimore). 2019;98(26):e15947. doi: 10.1097/MD.0000000000015947
  • Hammer HB, Agular B, Terslev L. Fatigue is not associated with objective assessments of inflammation during tocilizumab treatment of patients with rheumatoid arthritis. ACR Open Rheumatol. 2022;4(3):202–208. doi: 10.1002/acr2.11379
  • Fleischmann R, Pangan AL, Song IH, et al. Upadacitinib versus placebo or adalimumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III, double-blind, randomized controlled trial. Arthritis Rheumat. 2019;71(11):1788–1800. doi: 10.1002/art.41032
  • Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 2017;376(7):652–662. doi: 10.1056/NEJMoa1608345
  • Wang F, Tang X, Zhu M, et al. Efficacy and safety of JAK inhibitors for rheumatoid arthritis: a meta-analysis. J Clin Med. 2022;11(15):4459. doi: 10.3390/jcm11154459
  • Burmester GR, Blanco R, Charles-Schoeman C, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381(9865):451–60. doi: 10.1016/S0140-6736(12)61424-X
  • Takeuchi T, Tanaka Y, Tanaka S, et al. Safety and effectiveness of peficitinib (ASP015K) in patients with rheumatoid arthritis: final results (32 months of mean peficitinib treatment) from a long-term, open-label extension study in Japan, Korea, and Taiwan. Rheumatol Ther. 2021;8(1):425–442. doi: 10.1007/s40744-021-00280-5
  • Wang Y, Yu L, Ma D, et al. Efficacy and safety of filgotinib in patients with rheumatoid arthritis and inadequate response to disease-modifying antirheumatic drugs (DMARDs): a meta-analysis of randomized controlled trials. ARP Rheumatol. 2022;1:230–243.
  • Rocha CM, Alves AM, Bettanin BF, et al. Current jakinibs for the treatment of rheumatoid arthritis: a systematic review. Inflammopharmacology. 2021;29(3):595–615. doi: 10.1007/s10787-021-00822-x
  • Crispino N, Ciccia F. JAK/STAT pathway and nociceptive cytokine signalling in rheumatoid arthritis and psoriatic arthritis. Clin Exp Rheumatol. 2021;39(3):668–675. doi: 10.55563/clinexprheumatol/e7ayu8
  • Simon LS, Taylor PC, Choy EH, et al. The Jak/STAT pathway: a focus on pain in rheumatoid arthritis. Semin Arthritis Rheum. 2021;51(1):278–284. doi: 10.1016/j.semarthrit.2020.10.008
  • Harrington R, Al Nokhatha SA, Conway R. JAK inhibitors in rheumatoid arthritis: an evidence-based review on the emerging clinical data. J Inflamm Res. 2020;13:519–531. 10.2147/JIR.S219586.
  • Dodington DW, Desai HR, Woo M. JAK/STAT - emerging players in metabolism. Trends Endocrinol Metab. 2018;29(1):55–65. doi: 10.1016/j.tem.2017.11.001
  • Triantafyllou GA, Paschou SA, Mantzoros CS. Leptin and hormones: energy homeostasis. Endocrinol Metab Clin North Am. 2016;45(3):633–645. doi: 10.1016/j.ecl.2016.04.012
  • Toth L, Juhasz MF, Szabo L, et al. Janus kinase inhibitors improve disease activity and patient-reported outcomes in rheumatoid arthritis: a systematic review and meta-analysis of 24,135 patients. Int J Mol Sci. 2022;23(3):1246. doi: 10.3390/ijms23031246
  • Santos EJF, Duarte C, da Silva JAP, et al. The impact of fatigue in rheumatoid arthritis and the challenges of its assessment. Rheumatology (Oxford). 2019;58(Suppl 5):v3–v9. doi: 10.1093/rheumatology/kez351
  • Bench S, Stayt L, Shah A, et al. Prevalence and experience of fatigue in survivors of critical illness: a mixed-methods systematic review. Anaesthesia. 2021;76(9):1233–1244. doi: 10.1111/anae.15441
  • Gregg LP, Bossola M, Ostrosky-Frid M, et al. Fatigue in CKD: epidemiology, pathophysiology, and treatment. Clin J Am Soc Nephrol. 2021;16(9):1445–1455. doi: 10.2215/CJN.19891220
  • Eisman S, Sinclair R. Ritlecitinib: an investigational drug for the treatment of moderate to severe alopecia areata. Expert Opin Investig Drugs. 2021;30(12):1169–1174. doi: 10.1080/13543784.2021.2012149
  • Hoy SM. Baricitinib: a review in moderate to severe atopic dermatitis. Am J Clin Dermatol. 2022;23(3):409–420. doi: 10.1007/s40257-022-00684-1
  • Long MD, Afzali A, Fischer M, et al. Tofacitinib response in ulcerative colitis (TOUR): early response after initiation of tofacitinib therapy in a real-world setting. Inflamm Bowel Dis. 2022;29(4):570–578. doi: 10.1093/ibd/izac121
  • Taylor PC, Ancuta C, Nagy O, et al. Treatment satisfaction, patient preferences, and the impact of suboptimal disease control in a large international rheumatoid arthritis cohort: SENSE study. Patient Prefer Adherence. 2021;15:359–373. doi: 10.2147/PPA.S289692
  • Ben Mrid R, Bouchmaa N, Ainani H, et al. Anti-rheumatoid drugs advancements: new insights into the molecular treatment of rheumatoid arthritis. Biomed Pharmacother. 2022;151:113126. doi: 10.1016/j.biopha.2022.113126
  • Buckley CD, Simon-Campos JA, Zhdan V, et al. Efficacy, patient-reported outcomes, and safety of the anti-granulocyte macrophage colony-stimulating factor antibody otilimab (GSK3196165) in patients with rheumatoid arthritis: a randomised, phase 2b, dose-ranging study. Lancet Rheumatol. 2020;2(11):E677–E688. doi: 10.1016/S2665-9913(20)30229-0
  • Daien C, Krogulec M, Gineste P, et al. Safety and efficacy of the miR-124 upregulator ABX464 (obefazimod, 50 and 100 mg per day) in patients with active rheumatoid arthritis and inadequate response to methotrexate and/or anti-TNFalpha therapy: a placebo-controlled phase II study. Ann Rheum Dis. 2022;81(8):1076–1084. doi: 10.1136/annrheumdis-2022-222228
  • Espie P, He Y, Koo P, et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant. 2020;20(2):463–473. doi: 10.1111/ajt.15661
  • Ali O, Wang L, Xu W, et al. OP0120 duration of clinical efficacy following treatment with VIB4920 in subjects with moderate to severe rheumatoid arthritis. Ann Rheum Dis. 2021;80(suppl 1):67. doi: 10.1136/annrheumdis-2021-eular.2544

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.