485
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamics of in vitro rumen methane production after nitrate addition

ORCID Icon, ORCID Icon & ORCID Icon
Pages 512-523 | Received 24 May 2023, Accepted 20 Oct 2023, Published online: 17 Jan 2024

References

  • Almeida K, Santos G, Daniel J, Nino-de-Guzman C, Amaro F, Sultana H, Arriola K, Araujo R, Vyas D. 2022. Effects of nitrate sources on in vitro methane production and ruminal fermentation parameters in diets differing in starch degradability. Anim Feed Sci Technol. 292:115437. doi: 10.1016/j.anifeedsci.2022.115437.
  • Asanuma N, Yokoyama S, Hino T. 2015. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to selenomonas ruminantium having the ability to reduce nitrate and nitrite. Anim Sci J. 86:378–384. doi: 10.1111/asj.12307.
  • Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. 2020. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal. 14:2–16. doi: 10.1017/S1751731119003100.
  • Božic AK, Anderson RC, Carstens GE, Ricke SC, Callaway TR, Yokoyama MT, Wang JK, Nisbet DJ. 2009. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin® and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresour Technol. 100:4017–4025. doi: 10.1016/j.biortech.2008.12.061.
  • Braidot M, Sarnataro C, Romanzin A, Spanghero M. 2022. A new equipment for continuous measurement of methane production in a batch in vitro rumen system. J Anim Physiol Anim Nutr. 107:747–753. doi: 10.1111/jpn.13780.
  • Dehority BA. 2003. Rumen Microbiology. Nottingham University Press.
  • Feng XY, Dijkstra J, Bannink A, van Gastelen S, France J, Kebreab E. 2020. Antimethanogenic effects of nitrate supplementation in cattle: a meta-analysis. J Dairy Sci. 103:11375–11385. doi: 10.3168/jds.2020-18541.
  • Janssen PH. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol. 160:1–22. doi: 10.1016/j.anifeedsci.2010.07.002.
  • Latham EA, Anderson RC, Pinchak WE, Nisbet DJ. 2016. Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Front Microbiol. 7:228. doi: 10.3389/fmicb.2016.00228.
  • Lavrenčič A, Levart A, Košir IJ, Čerenak A. 2015. In vitro gas production kinetics and short-chain fatty acid production from rumen incubation of diets supplemented with hop cones (Humulus lupulus L.). Animal. 9:576–581. doi: 10.1017/S1751731114002936.
  • Lee C, Beauchemin KA. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can J Anim Sci. 94:557–570. doi: 10.4141/cjas-2014-069.
  • Li L, Davis J, Nolan J, Hegarty R. 2012. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Anim Prod Sci. 52:653. doi: 10.1071/AN11254.
  • Lin M, Schaefer DM, Guo WS, Ren LP, Meng QX. 2011. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Aust J Anim Sci. 24:471–478. doi: 10.5713/ajas.2011.10288.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. J Agric Sci. 93:217–222.
  • Nguyen SH, Li L, Hegarty RS. 2016. Effects of rumen protozoa of Brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Aust J Anim Sci. 29:807–813. doi: 10.5713/ajas.15.0641.
  • Nolan JV, Hegarty RS, Hegarty J, Godwin IR, Woodgate R. 2010. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim Prod Sci. 50:801. doi: 10.1071/AN09211.
  • Olijhoek DW, Hellwing ALF, Brask M, Weisbjerg MR, Højberg O, Larsen MK, Dijkstra J, Erlandsen EJ, Lund P. 2016. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J Dairy Sci. 99:6191–6205. doi: 10.3168/jds.2015-10691.
  • Patra AK, Yu Z. 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour Technol. 148:352–360. doi: 10.1016/j.biortech.2013.08.140.
  • Patra AK, Yu Z. 2014. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresour Technol. 155:129–135. doi: 10.1016/j.biortech.2013.12.099.
  • Patra AK, Yu Z. 2015. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. J Appl Microbiol. 119:127–138. doi: 10.1111/jam.12819.
  • Sakthivel PC, Kamra DN, Agarwal N, Chaudhary LC. 2012. Effect of sodium nitrate and nitrate reducing bacteria on in vitro methane production and fermentation with buffalo rumen liquor. Asian-Aust J Anim Sci. 25:812–817. doi: 10.5713/ajas.2011.11383.
  • Sarnataro C, Spanghero M, Lavrenčič A. 2020. Supplementation of diets with tannins from chestnut wood or an extract from stevia rebaudiana bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. J Anim Physiol Anim Nutr. 104:1310–1316. doi: 10.1111/jpn.13414.
  • St-Pierre NR. 2001. Invited review: integrating quantitative findings from multiple studies using mixed model methodology. J Dairy Sci. 84:741–755. doi: 10.3168/jds.S0022-0302(01)74530-4.
  • Susmel P, Spanghero M, Stefanon B. 1999. Interpretation of rumen degradability of concentrate feeds with a Gompertz model. Anim Feed Sci Technol. 79:223–237. doi: 10.1016/S0377-8401(99)00016-4.
  • van Zijderveld SM, Gerrits WJ, Apajalahti J, Newbold JR, Dijkstra J, Leng RA, Perdok HB. 2010. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci. 93:5856–5866. doi: 10.3168/jds.2010-3281.
  • Wang M, Sun XZ, Janssen PH, Tang SX, Tan ZL. 2014. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim Feed Sci Technol. 194:1–11. doi: 10.1016/j.anifeedsci.2014.04.012.
  • Wenner BA, Wagner BK, St-Pierre NR, Yu ZT, Firkins JL. 2020. Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture. J Dairy Sci. 103:7124–7140. doi: 10.3168/jds.2020-18325.
  • Wu H, Meng Q, Zhou Z, Yu Z. 2019. Ferric citrate, nitrate, saponin and their combinations affect in vitro ruminal fermentation, production of sulphide and methane and abundance of select microbial populations. J Appl Microbiol. 127:150–158. doi: 10.1111/jam.14286.
  • Yáñez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O’Kiely P, Reynolds CK, Schwarm A, Shingfield KJ, Yu Z, et al. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants-A review. Anim Feed Sci Technol. 216:1–18. doi: 10.1016/j.anifeedsci.2016.03.016.
  • Yang C, Rooke JA, Cabeza I, Wallace RJ. 2016. Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front Microbiol. 12:132. doi: 10.3389/fmicb.2016.00132.