670
Views
0
CrossRef citations to date
0
Altmetric
Scientific and Technical

The SARS-CoV-2 Spike Protein Mutation Explorer: using an interactive application to improve the public understanding of SARS-CoV-2 variants of concern

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 122-132 | Received 15 Sep 2022, Accepted 23 Jun 2023, Published online: 01 Aug 2023

References

  • Alathas, H. (2018). How to measure product usability with the System Usability Scale (SUS) Score [Online]. https://uxplanet.org/how-to-measure-product-usability-with-the-system-usability-scale-sus-score-69f3875b858f
  • Barak, M., & Hussein-Farraj, R. (2013). Integrating model-based learning and animations for enhancing students’ understanding of proteins structure and function. Research in Science Education, 43(2), 619–636. doi: 10.1007/s11165-012-9280-7.
  • Benton, D. J., Wrobel, A. G., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 588(7837), 327–330. doi: 10.1038/s41586-020-2772-0.
  • Bonner, A., Almogren, A., Furtado, P. B., Kerr, M. A., & Perkins, S. J. (2009). Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity. Mucosal Immunology, 2(1), 74–84. doi: 10.1038/mi.2008.68.
  • Brooke, J. (1996). SUS: A “quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester & I. L. McClelland (Eds.), Usability evaluation in industry (pp. 189–194). Taylor and Francis.
  • Bruce-Low, S. S., Burnet, S., Arber, K., Price, D., Webster, L., & Stopforth, M. (2013). Interactive mobile learning: A pilot study of a new approach for sport science and medical undergraduate students. Advances in Physiology Education, 37(4), 292–297. doi: 10.1152/advan.00004.2013.
  • Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., Taylor, B. C., McLellan, J. S., Fadda, E., & Amaro, R. E. (2020). Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 6(10), 1722–1734. doi: 10.1021/acscentsci.0c01056.
  • Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. doi: 10.1080/22221751.2020.1719902.
  • Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews. Microbiology, 19(7), 409–424. Volume doi: 10.1038/s41579-021-00573-0.
  • Heo, L., & Feig, M. (2020). SARS-Cov-2 protein structure models [Online]. https://github.com/feiglab/sars-cov-2-proteins/tree/master/Membrane
  • Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations—A meta-analytic review. Educational Psychology Review, 22(3), 245–269. doi: 10.1007/s10648-010-9126-7.
  • Iannucci, S., Harvey, W., Hughes, J., Robertson, D. L., Hutchinson, E., & Poyade, M. (2022). Using molecular visualisation techniques to explain the molecular biology of SARS-CoV-2 spike protein mutations to a general audience. In L. Shapiro & P. M. Rea (Eds.), Biomedical visualisation. Advances in experimental medicine and biology (vol. 1388, pp. 129–152). Springer. doi: 10.1007/978-3-031-10889-1_6.
  • Jenkinson, J. (2018). Molecular biology meets the learning sciences: Visualizations in education and outreach. Journal of Molecular Biology, 430(21), 4013–4027. doi: 10.1016/j.jmb.2018.08.020.
  • Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H.-G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838), 498–502. doi: 10.1038/s41586-020-2665-2.
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. doi: 10.1038/s41564-020-0688-y.
  • Peacock, T. P., Penrice-Randal, R., Hiscox, J. A., & Barclay, W. S. (2021). SARS- CoV-2 one year on: Evidence for ongoing viral adaptation. Journal of General Virology, 102(4), 001584. doi: 10.1099/jgv.0.001584.
  • Sauro, J. (2016). Measuring usability with the System Usability Scale (SUS) [Online]. https://www.userfocus.co.uk/articles/measuring-usability-with-the-SUS.html
  • Scapin, G., Yang, X., Prosise, W. W., McCoy, M., Reichert, P., Johnston, J. M., Kashi, R. S., & Strickland, C. (2015). Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nature Structural & Molecular Biology, 22(12), 953–958. doi: 10.1038/nsmb.3129.
  • Schmiege, P., Fine, M., Blobel, G., & Li, X. (2017). Human TRPML1 channel structures in open and closed conformations. Nature, 550(7676), 366–370. doi: 10.1038/nature24036.
  • Smyk, A. (2020). The System Usability Scale & how it’s used in UX [Online]. https://xd.adobe.com/ideas/process/user-testing/sus-system-usability-scale-ux/
  • Terasawa, K., Tomabechi, Y., Ikeda, M., Ehara, H., Kukimoto-Niino, M., Wakiyama, M., Podyma-Inoue, K. A., Rajapakshe, A. R., Watabe, T., Shirouzu, M., & Hara-Yokoyama, M. (2016). Lysosome-associated membrane proteins-1 and-2 (LAMP-1 and LAMP-2) assemble via distinct modes. Biochemical and Biophysical Research Communications, 479(3), 489–495. doi: 10.1016/j.bbrc.2016.09.093.
  • Woo, H., Park, S.-J., Choi, Y. K., Park, T., Tanveer, M., Cao, Y., Kern, N. R., Lee, J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2020). Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. The Journal of Physical Chemistry B, 124(33), 7128–7137. doi: 10.1021/acs.jpcb.0c04553.
  • World Health Organization. (2022). WHO coronavirus (COVID-19) dashboard [Online]. https://covid19.who.int/
  • Wright, D. (2021). COVID-19 Genomics UK Consortium (COG-UK) mutation explorer [Online]. http://sars2.cvr.gla.ac.uk/cog-uk/
  • Wrobel, A. G., Benton, D. J., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nature Structural & Molecular Biology, 27(8), 763–767. doi: 10.1038/s41594-020-0468-7.
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448. doi: 10.1126/science.abb2762.
  • Zhao, J., Beyrakhova, K., Liu, Y., Alvarez, C. P., Bueler, S. A., Xu, L., Xu, C., Boniecki, M. T., Kanelis, V., Luo, Z.-Q., Cygler, M., & Rubinstein, J. L. (2017). Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathogens, 13(6), e1006394. doi: 10.1371/journal.ppat.1006394.