1,338
Views
27
CrossRef citations to date
0
Altmetric
Original papers

Repair of bone segment defects with surface porous fiber‐reinforced polymethyl methacrylate (PMMA) composite prosthesis: Histomorphometric incorporation model and characterization by SEM

, , , , , & show all
Pages 555-564 | Received 08 Nov 2006, Accepted 13 Dec 2007, Published online: 08 Jul 2009

  • Aho A J, Ekfors T, Dean PB, Aro H T, Ahonen A, Nikkanen V. Incorporation and clinical results of large allografts of the extremities and pelvis. Clin Orthop 1994, 307: 200–13
  • Aho A J, Ekfors T, Knuuti J, Mattila K, Heikkilä J. Repair of massive allografts: Histological, nuclear medicine and CT-studies. In: Orthopaedic allograft surgery, A A Czitrom, H Winkler. Springer‐Verlag Wien, New York 1996; 67–73
  • Aho A J, Hautamäki M P, Mattila R, Alander P, Strandberg N, Rekola J, Gunn J, Lassila L V. Surface porous fiber-reinforced composite bulk bone substitute - In vitro studies and in vivo evaluation of segment defect. Cell Tissue Banking 2004; 5(4)213–21
  • Aldlyami E, Abudu A, Grimer R J, Carter S R, Tillman R M. Endoprosthetic replacement of diaphyseal bone defects. Long-term results. Int Orthop 2005; 29: 25–9
  • Delloye C H. The Bridging capasity of a cortical bone defect by different bone and crafting materials and diaphyseal distraction lengthening: An experimental study. Thesis. Catholic University of Louvain, Belgium, Louvain 1990
  • den Boer F C, Wippermann B W, Blokhuis T J, Patka P, Bakker F C, Haarman H J. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autolo-gous bone marrow. J Orthop Res 2003; 21(3)521–8
  • Donath K, Breuner G. A method for the study of undecalci-fied bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Path 1982; 11(4)318–26
  • Enneking W F, Campanacci D A. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg (Am) 2001; 83(7)971–86
  • Dyer S R, Lassila L V J, Jokinen M, Vallittu P K. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials. J Pros-thet Dent 2005; 94(3)219–26
  • Flautre B, Descamps M, Delecourt C, Blary M C, Hardouin P. Porous HA ceramic for bone replacement: Role of the pores and interconnections - experimental study in rabbit. J Mat Sci: Materials in Medicine 2001; 12: 679–82
  • Fujibayashi S, Kimb H, Neoa M, Uchida M, Kokubo T, Nakamura T. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials 2003; 24: 3445–51
  • Gao T J, Lindholm T S, Kommonen B, Ragni P, Paronzini A, Lindholm T C. Enhanced healing of segmental tibia defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type IV collagen. J Biomed Mat Res 1996; 32: 505–12
  • Gerhart T N, Kirke-Head C A, Kriz MJ, Holtrop M E, Hennig G E, Hipp J. Healing segmental bone defects in sheep using recombinant human bone morphogenetic protein. Clinic Orthop 1993, 293: 317–26
  • Gil-Albarova J, Salinas A J, Bueno-Lozano A L, Roman J, Aldini-Nicolo N, Garcıa-Barea A. The in vivo behaviour of a sol-gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials 2005; 26(21)4374–82
  • Gondret F, Larzul C, Combes S, de Rochambeau H. Carcass composition, bone mechanical properties, and meat quality traits in relation to growth rate in rabbits. J Anim Sci 2005; 83: 1526–35
  • Hacking S A, Harvey E J, Tanzer M, Krygier J J, Bobyn J D. Acid-etched microtexture for enhancement of bone growth into porous-coated implants. J Bone Joint Surg (Br) 2003; 85(8)1182–9
  • Itälä A, Nordstrom E G, Ylanen H, Aro H T, Hupa M. Creation of microrough surface on sintered bioactive glass microspheres. J Biomed Mat Res 2001; 56(2)282–8
  • Kim S H, Watts D C. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent 2004; 91(3)274–80
  • Kitsugi T, Yamamuro T, Kokubo T. Bonding behavior of a glass-ceramic containing apatite and wollastonite in seg-mental replacement of the rabbit tibia under load-bearing conditions. J Bone Joint Surg (Am) 1989; 71(2)264–72
  • Lane J M, Tomin E, Bostrom M P G. Biosynthetic bone grafting. Clin Orthop 1999, 367: 107–17
  • Lotz J C, Gerhart T N, Hayes W C. Mechanical properties of metaphyseal bone in the proximal femur. J Biomechanics 1991; 24(5)317–25
  • Lu W W, Cheung K M, Li Y W, Luk KD K, Holmes A D, Zhu Q A. Bioactive bone cement as a principal fixture for apinal burst fracture. An in vitro biomechanical and morphologic study. Spine 2001; 26(24)2684–91
  • Mattila K T, Heikkilä J T, Aho A J, Manner I K, Dean P B. Massive osteoarticular knee allografts; structural changes evaluated with CT. Radiology 1995; 196(3)657–60
  • Mattila R H, Lassila L V J, Vallittu P K. Production and structural characterisation of porous fibre-reinforced composite. Composites Part A. Appl Scie Manufact 2004; 35: 631–6
  • Miettinen V M, Vallittu P K. Release of residual methyl methacrylate into water from glass fibre-poly(methyl methacrylate) composite used in dentures. Biomaterials 1997; 16: 181–5
  • Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. J Biomed Mat Res 2003; 67(4-A)1417–23
  • Ohgushi H, Goldberg V M, Caplan A I. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand 1989; 60: 334–9
  • Okada Y, Kawanabe K, Fujita H, Nishio K, Nakamura T. Repair of segmental bone defects using bioactive bone cement: Comparison with PMMA bone cement. J Biomed Mat Res 1999; 47(3)353–9
  • Reilly D T, Burstein A H. The elastic and ultimate properties of compact bone tissue. J Biomechanics 1975; 8(6)393–405
  • Seeherman H, Wosney J M. Delivery of bone morphoge-netic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 2005; 16: 329–45
  • Shinzato S, Kobayashi M, Mousa W F, Kamimura M, Neo M, Kitamura Y. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite-and wollastonite-containing glass-ceramic, and hydroxy-apatite fillers on mechanical and biological properties. J Biomed Mat Res 2000; 51(2)258–72
  • Teixeira J O C, Urist M R. Bone morphogenetic protein induced repair of compartmentalized segmental diaphy-seal defects. Arch Orhop Trauma Surg 1998; 117: 27–34
  • Tuusa S M-R, Lassila L V J, Matinlinna J P, Peltola M J, Vallittu P K. Initial adhesion of glass-fiber reinforced com-postie to surface of porcine calvarial bone. J Biomed Mat Res 2005; 75(A)334–42
  • Vallittu P K. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. J Prosthet Dent 1999; 81: 318–26
  • Vallittu P K, Miettinen V M, Alakuijala P. Residual monomer content and its release into water from denture base materials. Dent Mat 1995; 11(6)338–42
  • Walsh W R, Chapman-Sheath P J, Cain S, Debes J, Bruce W M J, Svehla M J. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model. J Orthop Res 2003; 21: 655–61
  • Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials 2003, 24: 2133–2151
  • Yoneda M, Terai H, Imai Y, Okada T, Nozakiet K, Inou H. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials 2005; 26(25)5145–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.