942
Views
17
CrossRef citations to date
0
Altmetric
Review

Recent advances from metabolomics and lipidomics application in alzheimer’s disease inspiring drug discovery

&
Pages 319-331 | Received 12 Jul 2019, Accepted 27 Sep 2019, Published online: 16 Oct 2019

  • Burns A, Iliffe S. Alzheimer’s disease. BMJ. 2009;5:b158.
  • Weller J, Budson A. Current understanding of alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:1161.
  • Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet. 2011;377:1019–1031.
  • Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of amyloid-β peptide hint at new ways to treat alzheimer’s disease. Front Aging Neurosci. 2018;10(APR):1–16.
  • Tarawneh R, Holtzman DM. Critical issues for successful immunotherapy in alzheimer’s disease: development of biomarkers and methods for early detection and intervention. CNS Neurol Disord Drug Targets. 2009;8:144–159.
  • Bishop GM, Robinson SR. The amyloid hypothesis: let sleeping dogmas lie?. Neurobiol Aging. 2002;23:1101–1105.
  • Frain L, Swanson D, Cho K, et al. Association of cancer and alzheimer’s disease risk in a national cohort of veterans. Alzheimers Dement. 2017;13:1364–1370.
  • Edrey YH, Medina DX, Gaczynska M, et al. Amyloid β and the longest-lived rodent: the naked mole-rat as a model for natural protection from Alzheimer’s disease. Neurobiol Aging. 2013;34:2352–2360.
  • Deweerdt S. Comparative biology: naked ambition. Nature. 2014;509:S60–S61.
  • Esparza TJ, Wildburger NC, Jiang H, et al. Soluble amyloid- β aggregates from human alzheimer’s disease brains. Sci Rep. 2016;6:1–16.
  • Gordon BA, Cairns NJ, Benzinger TLS, et al. Tau and A imaging, CSF measures, and cognition in alzheimers disease tau and A beta imaging, CSF measures, and cognition in alzheimer ’ s disease. Sci Transl Med. 2016;8(338):1–10.
  • Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in alzheimer’s disease. Front Neurosci. 2018;
  • Cheng C-K, Tsao Y-C, Su Y-C, et al. Metabolic risk factors of alzheimer’s disease, dementia with lewy bodies, and normal elderly: a population-based study. Behav Neurol. 2018;1–8.
  • Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in alzheimer’s disease: a biochemical road map. Alzheimer’s Dementia. 2017;13(9):965–984.
  • de la Monte SM, Tong M. Brain metabolic dysfunction at the core of alzheimer’s disease. Biochem Pharmacol. 2014;88:548–559.
  • Kandimalla R, Thirumala V, Reddy PH. Is alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1078–1089.
  • Kim M, Legido-Quigley C. Small molecule biomarkers in alzheimer’s disease. Ocl. 2018;25(4).
  • Liang Q, Liu H, Zhang T, et al. Discovery of serum metabolites for diagnosis of progression of mild cognitive impairment to alzheimer’s disease using an optimized metabolomics method. RSC Adv. 2016;6(5):3586–3591.
  • Orešič M, Lötjönen J, Soininen H. Systems medicine and the integration of bioinformatic tools for the diagnosis of alzheimer’s disease. Genome Med. 2010;2(11)
  • Arnold M, Nho K, Kueider-paisley A, et al. The alzheimer’ s disease metabolome : effects of sex and APOE ε4 genotype. bioRxiv. 2019.585455: 1-53
  • Carmona S, Zahs K, Wu E, et al. The role of TREM2 in alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol. 2018 Aug;17(8):721–730.
  • Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in alzheimer’s disease. Mol Neurodegener. 2018 Dec 20;13(1):66.
  • Leyns, Cheryl EG, Gratuze M, Narasimhan S, et al. TREM2 function impedes tau seeding in neuritic plaques. Nat Neurosci. 2019. 22: 1217–1222
  • Ulrich JD, Ulland TK, Mahan TE, et al. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med. 2018;215(4):1047–1058.
  • Nai-jing L, Wen-tao L, Wei L, et al. Ping H plasma metabolic profiling of alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem. 2010;43:992–997.
  • Corso G, Cristofano A, Sapere N, et al. Costanzo A serum amino acid profiles in normal subjects and in patients with or at risk of alzheimer dementia. Dement Geriatr Cogn Disord Extra. 2017;7:143–159.
  • Fonteh AN, Harrington RJ, Tsai A, et al. Harrington MG Free amino acid and dipeptide changes in the body fluids from alzheimer’s disease subjects. Amino Acids. 2007;32:213–224.
  • Mapstone M, Lin F, Nalls MA, et al. What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for alzheimer’s disease. Neurobiol Aging. 2017;51:148–155.
  • Tynkkynen J, Chouraki V, van der Lee SJ, et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and alzheimer’s disease: a prospective study in eight cohorts. Alzheimers Dement. 2018;14(6):723–733.
  • Li H, Ye D, Xie W, et al. Defect of branched-chain amino acid metabolism promotes the development of alzheimer’s disease by targeting the MTOR signaling. Biosci Rep. 2018;38(4)
  • Larsson SC, Markus HS. Branched-chain amino acids and alzheimer’s disease: a mendelian randomization analysis. Sci Rep. 2017;7(1):1–4.
  • Smith GS, Barrett FS, Joo JH, et al. Molecular imaging of serotonin degeneration in mild cognitive impairment. Neurobiol Dis. 2017;105:33–41.
  • Kolodziejczak M, Béchade C, Gervasi N, et al. Serotonin modulates developmental microglia via 5-HT2B receptors: potential implication during synaptic refinement of retinogeniculate projections. ACS Chem Neurosci. 2015;6(7):1219–1230.
  • Chatterjee P, Goozee K, Lim CK, et al. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: a pilot study. Sci Rep. 2018; 8(1)
  • Lopes S, Vaz-Silva J, Pinto V, et al. Tau protein is essential for stress-induced brain pathology. Proc Nat Acad Sci. 2016;113(26).
  • Phillips RS, Iradukunda EC, Hughes T, et al. Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition. Front Mol Biosci. 2019;6
  • Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer’s disease – A focus on NMDA receptors. Neuropharmacology. 2014;76:16–26.
  • Anand R, Gill KD, Mahdi AA. Therapeutics of alzheimer’s disease: past. Neuropharmacology. 2014;76:27–50.
  • Liu J, Chang L, Song Y, et al. The role of NMDA receptors in alzheimer’s disease. Front Neurosci. 2019;13(FEB):1–22.
  • Snowden SG, Ebshiana A, Hye A, et al. Neurotransmitter imbalance in the brain and alzheimer’s pathology. bioRxiv 2017; 220699: 1-21
  • Kurz A, Perneczky R. Novel insights for the treatment of alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:373–379.
  • Bergin D, Jing Y, Mockett B, et al. Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of alzheimer’s disease. Transl Psychiatry. 2018;8(1).
  • Handley RR, Reid SJ, Brauning R, et al. Brain urea increase is an early huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Nat Acad Sci. 2017; 114(52).
  • Engelke UF, Tassini M, Hayek J, et al. Guanidinoacetate methyltransferase (GAMT) deficiency diagnosed by proton NMR spectroscopy of body fluids. NMR Biomed. 2009 Jun;22(5):538–544.
  • Zhu Y, Prives C. p53 and metabolism: the GAMT connection. Mol Cell. 2009;36(3):351–352.
  • Remington R, Bechtel C, Larsen D, et al. A phase II randomized clinical trial of a nutritional formulation for cognition and mood in alzheimer’s disease. J Alzheimers Dis. 2015;45(2):395–405.
  • Wishart DS, Frolkis A, Knox C, et al. SMPDB: the small molecule pathway database. Nucleic Acids Res. 2010;38(Database issue):D480–7.
  • Jewison T, Su Y, Disfany FM, et al. SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 2014;42(Database issue):D478–84.
  • Szybińska A, Wieslawa L. P53 dysfunction in neurodegenerative diseases - the cause or effect of pathological changes? Aging Dis. 2017;8(4):506.
  • Hsieh CF, Liu CK, Lee CT, et al. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep. 2019;9(1):1–16.
  • Alzheimer RA, Stelzmann HN, Schnitzlein FR. Murtagh an english translation of alzheimer’s 1907 paper, ‘Uber eine eigenartige Erkankung der Hirnrinde’. Clin Anat. 1995;8:429–431.
  • McQuade A, Blurton-Jones M. Microglia in alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol. 2019;431(9):1805–1817.
  • Chornenkyy Y, Wang WX, Wei A, et al. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol. 2019 Jan;29(1):3–17.
  • Femminella GD, Frangou E, Love SB, et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20(1):191.
  • Schmidt DR, Holmstrom SR, Fon Tacer K, et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J Biol Chem. 2010;285:14486–14494.
  • Nho K, Kueider-Paisley A, MahmoudianDehkordi S, et al. Altered bile acid profile in mild cognitive impairment and alzheimer’s disease: relationship to neuroimaging and CSF biomarkers. Alzheimer’s Dementia. 2019;15(2):232–244.
  • Mahmoudian Dehkordi S, Arnold M, Nho K, et al. Altered bile acid profile associates with cognitive impairment in alzheimer’s disease—an emerging role for gut microbiome. Alzheimer’s Dementia. 2019;15(1):76–92.
  • Ding L, Yang L, Wang Z, et al. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B. 2015;5(2):135–144.
  • Massafra V, Pellicciari R, Gioiello A, et al. Progress and challenges of selective farnesoid X receptor modulation. Pharmacol Ther. 2018;191:162–177.
  • Han CY. Update on FXR biology: promising therapeutic target?. Int J Mol Sci. 2018;19(7).
  • Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in alzheimer’s disease. Sci Rep. 2017;7(1):1–11.
  • Li S, Tan HY, Wang N, et al. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid Med Cell Longev. 2018;8394818: 1–25.
  • Zeka K, Ruparelia K, Arroo R, et al. Flavonoids and their metabolites: prevention in cardiovascular diseases and diabetes. Diseases. 2017;5(3):19.
  • Braga R, Teles DA, Diniz TC, et al. Flavonoids as therapeutic agents in alzheimer’s and parkinson’s diseases: a systematic review of preclinical evidences. Oxid Med Cell Longev. 2018;2018:7043213.
  • Bertram L. Alzheimer’s disease genetics current status and future perspectives. Int Rev Neurobiol. 2009;84:167–184.
  • van der Kant R, Langness VF, Herrera CM, et al. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived alzheimer’s disease neurons. Cell Stem Cell. 2019 Mar 7;24(3):363–375.
  • Loera-Valencia R, Goikolea J, Parrado-Fernandez C, et al. Alterations in cholesterol metabolism as a risk factor for developing alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol. 2019;190:104–114.
  • van der Lee SJ, Teunissen CE, Pool R, et al. Circulating metabolites and general cognitive ability and dementia: evidence from 11 cohort studies. Alzheimers Dement.2018; 14: 707-722.
  • Nakamura S, Fukai E, Miya S, et al. Sphingolipid signaling and neuronal function. Chem Phys Lipids. 2011;164:S9.
  • Czubowicz K, Jęśko H, Wencel P, et al. The role of ceramide and sphingosine-1-phosphate in alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol. 2019;56:5436–5455.
  • Jazvinšćak Jembrek M, Hof PR, Šimić G.Ceramides in alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. OxidMed Cell Longevity. 2015;2015: 346783.
  • Snook CF, Jones JA. Hannun YA sphingolipid-binding proteins. Biochim Biophys Acta. 2006;1761:927–946.
  • Xu R, Wang K, Mileva I, et al. Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response. Oncotarget. 2016;7:18440–18457.
  • Fenech M. Vitamins associated with brain aging, mild cognitive impairment, and alzheimer disease: biomarkers, epidemiological and experimental evidence, plausible mechanisms, and knowledge gaps. Adv Nutr. 2017;8(6):958–970.
  • Aghajafari F, Pond D, Catzikiris N, et al. Quality assessment of systematic reviews of vitamin D, cognition and dementia. BJPsych Open. 2018 Jul;4(4):238–249.
  • Lloret A, Esteve D, Monllor P, et al. The effectiveness of vitamin E treatment in alzheimer’s disease. Int J Mol Sci. 2019;20(4):879.
  • Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin e in the treatment of alzheimer’s disease: evidence from animal models. Int J Mol Sci. 2017;18(12).
  • Hottman DA, Chernick D, Cheng S, et al. Cognition in neurodegenerative disorders. Neurobiol Dis. 2014;72(2):22–36.
  • Grimm MO, Mett J. Hartmann T the impact of vitamin E and other fat-soluble vitamins on alzheimer´s disease. Int J Mol Sci. 2016 Oct 26;17(11):pii: E1785.
  • Goncalves MB, Clarke E, Hobbs C, et al. Amyloid β inhibits retinoic acid synthesis exacerbating alzheimer disease pathology which can be attenuated by an retinoic acid receptor α agonist. Eur J Neurosci. 2013 Apr;37(7):1182–1192.
  • Green R, Allen LH, Bjørke-Monsen AL, et al. Vitamin B12 deficiency. Nat Rev Dis Primers. 2017 Jun 29;3:17040.
  • Cho HS, Huang LK, Lee YT, et al. 201 suboptimal baseline serum vitamin B12 is associated with cognitive decline in people with alzheimer’s disease undergoing cholinesterase inhibitor treatment. Front Neurol. 2018 May 9;9:325.
  • Brites P, Mooyer PA, El Mrabet L, et al. Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain. 2009 Feb;132(Pt 2):482–492.
  • Nagan N, Zoeller RA. Plasmalogens: biosynthesis and functions. Prog Lipid Res. 2001 May;40(3):199–229.
  • Wallner S, Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids. 2011 Sep;164(6):573–589.
  • Wood PL, Locke VA, Herling P, et al. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer’s disease (LOAD). BBA Clin. 2015 Nov;14(5):25–28.
  • Tzimopoulou S, Cunningham VJ, Nichols TE, et al. A multi-center randomized proof-of-concept clinical trial applying [¹⁸F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J Alzheimers Dis. 2010;22(4):1241–1256.
  • Geldmacher DS, Fritsch T, McClendon MJ, et al. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol. 2011 Jan;68(1):45–50.
  • Shah RC, Matthews DC, Andrews RD, et al. An evaluation of MSDC-0160, a prototype mTOT modulating insulin sensitizer, in patients with mild alzheimer’s disease. Curr Alzheimer Res. 2014;11(6):564–573.
  • Zhu N, Pankow JS, Ballantyne CM, et al. High-molecular-weight adiponectin and the risk of type 2 diabetes in the ARIC study. J Clin Endocrinol Metab. 2010;95(11):5097–5104.
  • Femminella GD, Edison P. Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging. Alzheimer’s Dementia. 2014;10(1 Suppl):S55–61.
  • Sato T, Hanyu H, Hirao K, et al. Efficacy of PPAR-γ agonist pioglitazone in mild alzheimer disease. Neurobiol Aging. 2011;32(9):1626–1633.
  • Badhwar A, Lerch JP, Hamel E, et al. Impaired structural correlates of memory in alzheimer’s disease mice. Neuroimage Clin. 2013;3(September):290–300.
  • Nicolakakis N, Aboulkassim T, Ongali B, et al. Complete rescue of cerebrovascular function in aged alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci. 2008;28(37):9287–9296.
  • Larry SD, Sabbagh MN, Connor DJ, et al. Atorvastatin for the treatment of mild to moderate alzheimer disease: preliminary results. Arch Neurol. 2005;62(5):753–757.
  • Zhang X, Wen J, Zhang Z. Statins use and risk of dementia: a dose-response meta analysis. Medicine (Baltimore). 2018;97(30):e11304.
  • Mejías-Trueba M, Pérez-Moreno MA, Fernández-Arche MÁ. Systematic review of the efficacy of statins for the treatment of alzheimer’s disease. Clin Med. 2018;18(1):54–61.
  • Shinto L, Quinn J, Montine T, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in alzheimer’s disease. J Alzheimers Dis. 2014;38(1):111–120.
  • Kryscio RJ, Abner EL, Caban-Holt A, et al. Association of antioxidant supplement use and dementia in the prevention of alzheimer’s disease by Vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74(5):567–573.
  • Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44.
  • Galasko DR, Peskind E, Clark CM, et al. Antioxidants for alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69(7):836–841.
  • Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–1783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.